
ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 202024

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

UDC 004.896
doi:10.31799/1684-8853-2020-5-24-32

Controlling system based on neural networks
with reinforcement learning for robotic manipulator
E. B. Solovyevaa, Dr. Sc., Tech., Associate Professor, orcid.org/0000-0001-8204-6632, selenab@hotbox.ru
A. Abdullaha, Post-Graduate Student, orcid.org/0000-0002-4024-9201
aSaint-Petersburg Electrotechnical University «LETI», 5, Prof. Popov St., 197376, Saint-Petersburg,
Russian Federation

Introduction: Due to its advantages, such as high flexibility and the ability to move heavy pieces with high torques and forces,
the robotic arm, also named manipulator robot, is the most used industrial robot. Purpose: We improve the controlling quality of a
manipulator robot with seven degrees of freedom in the V-REP program’s environment using the reinforcement learning method
based on deep neural networks. Methods: Estimate the action signal’s policy by building a numerical algorithm using deep neural
networks. The action-network sends the action’s signal to the robotic manipulator, and the critic-network performs a numerical
function approximation to calculate the value function (Q-value). Results: We create a model of the robot and the environment
using the reinforcement-learning library in MATLAB and connecting the output signals (the action’s signal) to a simulated robot
in V-REP program. Train the robot to reach an object in its workspace after interacting with the environment and calculating the
reward of such interaction. The model of the observations was done using three vision sensors. Based on the proposed deep
learning method, a model of an agent representing the robotic manipulator was built using four layers neural network for the actor
with four layers neural network for the critic. The agent’s model representing the robotic manipulator was trained for several hours
until the robot started to reach the object in its workspace in an acceptable way. The main advantage over supervised learning
control is allowing our robot to perform actions and train at the same moment, giving the robot the ability to reach an object in
its workspace in a continuous space action. Practical relevance: The results obtained are used to control the behavior of the
movement of the manipulator without the need to construct kinematic models, which reduce the mathematical complexity of the
calculation and provide a universal solution.

Keywords — kinematic control, reinforcement learning, deep learning, robotic manipulator, deep neural network, deep
deterministic policy gradient.

For citation: Solovyeva E. B., Abdullah A. Controlling system based on neural networks with reinforcement learning for robotic

manipulator. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2020, no. 5, pp. 24–32. doi:10.31799/1684-

8853-2020-5-24-32

Introduction

The use of deep neural networks has been rising
lately in solving many different technical problems
in many fields, especially in robotics and automa-
tion control, where the aim is to build intelligent
systems that can operate without the need of hu-
man experts. The progress of unsupervised deep
learning has continued to rise in rank, aiming to
learn intelligent behavior in complex and dynamic
environments [1, 2]. Therefore, we will review the
methods of controlling a robotic manipulator using
kinematic control and machine learning control in
the field of reinforcement learning and examine
the problems that can face us in this procedure.
Learning control policies in different systems’ op-
erations have made reinforcement learning an op-
timal solution where it fits well with various tasks.
In addition, recent work in this field has progressed
towards capturing the state of the environment
through images, something developers are still try-
ing to achieve but in a different context.

Reducing continuous spaces of action would be
poorly scaled, as the number of discrete actions in-
creases exponentially with the action dimensional-

ity, so deep reinforcement learning operates with
continuous spaces of action to be convenient with
real-world control problems. Furthermore, having a
parameterized policy can be beneficial, since it can
generalize in the space of action [3].

Reinforcement learning is one of the most popu-
lar areas of machine learning [4–6]. Stimulated by
human behavior, it allows an agent (the learner and
decision-maker) to discover optimal performance by
experiment and failure interactions with its enclos-
ing environment to solve the problems of control.
The environment is everything outside of the agent
that can be associated with, while a learning task is
the complete specification of the environment. The
first method in the field of reinforcement learning
is dynamic programming [6]. Dynamic program-
ing uses value functions to structure the search for
good policies but needs a perfect environment mod-
el. The need to know the complete model of the envi-
ronment limits the dynamic programming method,
wherein many control problems, knowing the whole
aspects of the environment, could be impractical
because many problems give rise to huge state sets.
The next method is Monte Carlo (MC) one [6]. The
model-free MC method enables us to learn from the

Articles

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 5, 2020 25

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

environment’s sample sequences of states, actions,
and rewards. MC method works by equating the
sample returns from the environment on an episode
by episode base, so we do not require the full mod-
el of the environment like in the case of dynamic
programming, but in MC method the agent must
consider the exploration-exploitation tradeoff in
order to get information about the rewards and the
environment. It needs to explore by analyzing both
previously unused actions and uncertain actions
that could lead to negative rewards. A new method
of reinforcement learning evolves from both dy-
namic programming, and MC method. This method
is called temporal-difference (TD) learning [6]. TD
learning combines dynamic programming’s ability
to learn through bootstrapping and Monte Carlo’s
ability to learn directly from examples selected
from the environment without access to the Markov
decision process. Alternatively, TD method only
waits until the next time-step by using temporary
errors to notify us how different the new value is
from the old prediction. Temporal difference learn-
ing led us to a method called state-action-reward-
state-action (SARSA) [4–6]. SARSA is an on-policy
TD control algorithm. This name is derived from an
experience in which the agent starts in certain state
performs an action, receives a reward, then trans-
fers to a new state, and decides to do a new action.
Based on SARSA, Q-learning method appeared but
conversely to SARSA. Q-learning is an off-policy
TD control algorithm, which directly approximates
the expected reward independent of the policy be-
ing followed [4–6].

The main disadvantage of all of the above-men-
tioned methods is the need for a vast database of
samples and their need to train them before we
start to perform the process of control. On the other
hand, we need an algorithm that can be suitable for
continuous spaces, where the algorithm can learn
and perform simultaneously with sensor reading
and action executions. Deep deterministic policy
gradient or deep Q-learning was developed to solve
this problem and to overcome all the mentioned
methods’ disadvantages by developing the architec-
ture of the agent to consist of a critic deep neural
network and an actor deep neural network. The crit-
ic and the actor can work in parallel to give us the
actions and the estimated rewards for these actions
while the training process continues.

Hence, we study deep reinforcement learning al-
gorithm, namely, deep deterministic policy gradi-
ent [3]. In order for robots to achieve a common ad-
vantage purpose, reaching objects is a fundamen-
tal ability to learn. Traditionally, human experts
are required to analytically produce an algorithm
for a particular task under adaptive control using
kinematic control and supervised learning control,
but this is a challenging and time-consuming ap-

proach. By applying deep learning, we overcome
these restrictions in generalizing robotic control
and demonstrating how building the actor-network
and the critic-network based on convolution neural
networks (CNN) increases the quality of the perfor-
mance compared with fully connected neural net-
works. We begin by showing the area of interest,
machine learning, focusing on deep learning and
reinforcement learning, and deep deterministic
policy gradient; we describe how to control a robotic
arm using deep learning.

Kinematics control of a robotic manipulator

Given the joint rotation angles and the lengths
of the manipulator’s frames, we represent the for-
ward kinematics [3]

 (,),kinFX q  (1)

where X is the coordinates vector containing the
position and orientation of the robot’s end effector;
q is a matrix of joints’ angels; kin is a vector of
fixed kinematic linking parameters. It consists
of parameters describing the robotic manipulator
lengths and angles, illustrating each joint axis’s
rotation relative to the previous joint axis.

Closed-form solutions of (1) are favored.
However, there are manipulator structures, for
which only iterative numerical solutions are pos-
sible. From equation (1) we get the equation of the
inverse kinematics given as

1 (, ,),kinFq X C  (2)

where C is a vector containing some information
used to select a possible solution, and another
alternative is to let C be the previous solution and
choose the new solution as the closest solution.

When the robot’s end effector is in a fixed po-
sition, there will always be existing values for the
joints angles which led the end effector to be in such
position and direction, so a closed-form solution for
the forward kinematics problem is always assured
in comparing with the inverse kinematic making
it more comfortable to deal. This solution defines
the workspace of a manipulator. On the other hand,
there can even exist an infinite number of solu-
tions, like the case of a redundant manipulator [3].

When the dimension of the task-space is smaller
than the dimension of the joint space, the kinematic
structure is considered redundant. Here the inter-
est is in the inverse problem because we can calcu-
late the angels of the joints that will lead to reach-
ing a point in their workspace. As we can see, the
kinematic control needs to know the robot’s param-
eters and environment, which makes it a non-uni-

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 202026

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

versal solution for the controlling problem. Each
robot needs to rebuild the complete mathematical
model and recalculate all the inverse and forward
kinematics metrics, which will take a lot of process-
ing each time. The solution for finding a universal
solution for the controlling process is by using un-
supervised learning.

Advantages of reinforcement learning
in controlling a robotic manipulator

In unsupervised learning, we get a lower com-
plexity compared to supervised learning because
we are not expected to understand and then mark
the input data. This situation happens in real-time
so that all the input data must be analyzed and
marked, which helps us understand the various
training models and sorting of raw data [4–6]. It is
easier for us to get unmarked data from a comput-
er than marked data because marked data demands
human interface and understanding of the catego-
rization of such data to use in the learning process.
Experts should estimate the target output or part
of it in order to achieve the learning process. The
supervised learning makes this way time-consum-
ing and not flexible for various systems where some
changes to the environment or the robot could hap-
pen. Nevertheless, there are many systems where
we can not estimate the output, and we can not have
enough information to build the target output to
achieve the learning process.

In supervised learning, we would have a set of
coordination of some locations in the workspace
and the corresponding angles of the manipulator’s
joints. We can then feed those input frames through
a neural network that, at the output, can produce
the angles of the motors or joints by training on the
data set from the previous data of the locations and
the corresponding angles. Many approaches could
be used, like backpropagation, so we can train that
neural network to replicate human manual control
actions. However, when we want to do supervised
learning, we have to create a data set to train [6–8].
On which is not always a straightforward thing to
do, and on the other hand, if we train our neural
network model to imitate the actions of the human
control well only, then by definition, our agent can
never be better at executing the right action. When
we want to train a neural network to perform by it-
self a controlling process on a robotics manipulator,
where this controlling will take place in different
environments, it could face many new problems. On
the other hand, the offered method of unsupervised
learning achieves this goal [9, 10].

However, the only difference here is that now we
do not know the target label. Therefore, we do not
know the rotation of the manipulator’s joints in any

situation because we do not have a data set to train
on, and in reinforcement learning, the network that
transforms input frames to output actions is called
the policy network [11]. The approach in policy gra-
dients is that we start with a completely random
network, we feed that network the coordinates from
the environment, and it produces random action.
Send that action back to the joints motors and then
produces the next frame and this is how the loop
continues and the network, in this case, it could be
fully connected networks, but we can apply convolu-
tion network, in other words, deep neural networks
and from this, we get the name “Deep learning”.
Allowing our agent to randomly explore the envi-
ronment and discover better rewards and better be-
havior [12].

Within the task, the learning process is divided
into episodes. We usually use each episode as a con-
trol for a finite steps model, where it is essential to
operate in many steps until we reach the time where
we reset and restart.

When we move from a step to another under
making an action, the agent receives a reward de-
scribing the effectiveness of this step regarding the
task. The objective here is to maximize this collec-
tive reward during the learning process for the ro-
bot [13]. The equation of the collective reward R is
given as

1 2 3 1 1

0
,

K

K k
k

R r r r r r 


       (3)

were r1 is a reward for moving from the state 0 to
the state 1 in the step 1; r2 is a reward for moving
from the state 1 to the state 2 in the step 2; (K + 1)
is the number of rewards or steps, which refers to
the end of the episode; k is a counter for the sum
sign; (k + 1) is a step number.

As we can see from equation (3), the collective
reward could increase without any conversion,
making it not suitable for all the tasks [14, 15].
Therefore, we define a factor 0   1 that assures
the conversion and determines the value of the fu-
ture rewards that the robot might receive. By add-
ing this discount factor to equation (3) we get the
expected collective reward as

2
1 2 3 1 1

0
,

K
K k

K k
k

R r r r r r 


          (4)

where  is the discount factor.
We must take extreme caution when choosing an

appropriate value of  in equation (4) because it can
often change the form of the optimal solution where
different values lead to different performances
[16]. If  is small, the agent could select cases that
only increase the reward and lead to lower perfor-
mance in the long-term. In contrast, if  is big, the

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 5, 2020 27

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

agent will lose the capacity to differentiate between
the policies that will get a reward in the future and
those directly get a big reward [17, 18].

Controlling a robotic manipulator
using deep learning

Deep learning is a field of reinforcement unsu-
pervised learning involved with deep neural net-
works. We used two types of deep neural networks
each time, the convolution neural network and the
fully connected neural network. In convolution neu-
ral networks, the connections are between the neu-
ron and its surrounding neurons from the previous
layer, and these connections share the same weights
and bias [19–21].

L et’s consider the method of deep deterministic
policy gradient with using deep neural networks as
an actor and critic. Set up the following notations
and variables: (sj) is the actor-network output
calculated on the basis of the actor neural network
having the input vector sj and the parameters vec-
tor ; j is the current step; sj is the state vector built
by the observation in step j;  is the parameters
vector of the actor-network; Q(sj+1, (sj+1)) is the
output of the critic network having the input vec-
tor sj+1, which is obtained from state sj after action
aj of the actor-network, and the parameters vec-
tor . On the basis of the TD learning, the updat-
ed parameters vector  of the critic-network results
from solving the optimization problem [6, 9]

 2
1

1
 (, |) min,

M

j j j
j

L Q
M 

   y s a


 (5)

where L is the loss function; M is the maximum
count in the last step; yj is the value function target,
output vector of deep neural network, which gives
the critic signal or the joint angels; aj is the action
vector in the given state sj. This output vector,
similar to the solution of the inverse kinematics
equation (2), is described as

  1 1 , | | ,j j j jr Q     y s s    (6)

where rj is the reward in step j; j is the current step.
We train the network to decrease the mean

squared error concerning the Q function [22, 23].
However, the dependence of the Q targets on Q itself
can lead to instabilities or even divergence during
learning. We consider a policy that can be described
by parameters very beneficial for control because it
allows for learning when the sensory reading and
actions executions belong to continuous spaces. The
target value function yj in (6) is proposed to be a
permanent value on learning a neural network by
the back-propagation algorithm.

After updating the parameters vector  of the
critic-network, to updat the parameters vector  of
the actor-network we use the following policy gra-
dient when maximizing the expected discounted
reward (4) [6, 9]:

 1

1
,

M

j j
j

J
M 


  G G   (7)

 (, (|) |),j j jQ   G s s   

(|),j j G s   

where J is the policy gradient; Gj, Gj are the
gradient vectors of the critic’s and actor’s outputs
with respect to an actions and parameters of the
actor-network respectively;  is the gradient
ascent with respect to the policy of the action;  is
the gradient ascent with respect to the parameters
vector  of the actor-network.

From equation (7), the resulting policy gradient
increases the expected discount reward, and we use
it to update the actor-network weights and bias. On
the other hand, from equation (5), after minimiz-
ing the loss function over all the experiences, we
use it to update the critic-network weights and bi-
ases. In consideration of the observation, we eval-
uate the gradient of the critic-network output and
the gradient of the output of the actor-network. We
perform a smoothing process to update the weights
and the biases of the target actor-network and the
critic-network:

1() ,         1() ,        

where  is a smoothing factor equal to less than
one;  ,  are the updated parametes vectors of the
critic and actor networks correspondently.

Finally, we repeat performing equation (6) af-
ter we get the new observation for a new step in the
training until the end of the episode and the begin-
ning of new training episode.

The practical experiment of controlling
the robot manipulator

As illustrated in Fig. 1, the learning process
starts with taking the coordinates of the end effec-
tor and the cube on the three-axis from the cameras,
generating the state vector. We send the state vec-
tor to the actor-network. The critic network takes
both the action generated by the actor-network and
the state and gives us the expected reward from
this action or the Q-value. In the next steps to im-
prove the performance, when we are in a state, and
the actor is proposing a particular action, we take a
slightly different action and see if the Q-value a lit-

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 202028

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

tle higher we change the action to the new proposed
action. The robotic manipulator moves when it gets
the action signal. The cameras make the observa-
tions, generating a new state vector describing the
new situation of the environment. On each axis, if
the distance between the end effector and the cube
gets smaller than before, we add a positive reward.

On the contrary, if the distance gets bigger, then
before we add a negative reward. We sum the re-
wards to get the actual reward of the current action.
We calculate the loss by achieving a TD between the
actual reward and the estimated reward generated
by the critic (the Q-value). We use the loss in com-
puting the gradient of the Q-value with respect to
the action. We back propagate the gradient of the
Q-value with respect to the action to train and up-
date the neural networks and to evolve our actor in
the right direction.

The simulation environment is built using
V-REP program. A robot arm model with seven de-
grees of freedom (7 DoF manipulator) is used. In ad-
dition, three cameras are added in different places
to use them in determining the state and the val-
ue of the reward function. A linkage library called
Remote API is used to connect V-REP program with
MATLAB language. This library provides a way to
create a connection between the programming lan-
guage and the simulation program, so it becomes
possible to take pictures from the cameras and pro-
cess them using MATLAB image processing func-
tions. The connection mechanism also allows send-
ing motion commands to the motors on the robot
joints, which makes the simulation environment so
close to the real implementation environment.

We want to enable our agent to learn entirely by
itself. The only feedback that was going to give it

is the distance between its end effector and the ob-
ject we want the manipulator to reach. Whenever
our agent manages to make this distance smaller, it
will receive a positive reward. If the gap gets bigger
than before, then our agent will receive a penalty of
negative reward. The target of the agent is to opti-
mize its policy to earn as much reward as possible.
To train our policy network, we will collect a bunch
of experiences by selecting random actions to feed
them back into the actor and create a whole bunch
of random movements in the environment. Since
our agent has not learned anything useful yet, it is
going to make arbitrary, not accurate movements.
Sometimes our agent might get lucky while it is go-
ing to random select of action. In this case, when
a sequence minimizes the distance, our agent will
receive a reward. We should note that every epi-
sode, regardless of whether we want a positive or
a negative reward, we can compute the gradients
that would make the actions that our agent has
chosen more likely in the future. Therefore, what
policy gradients are going to do is that for every
episode where we have a positive reward, we will
use the normal gradients to increase the probabil-
ity of those actions in the future. Whenever we got
a negative one, it is going to apply the same gradi-
ent, but we are going to multiply it with minus one,
and this minus sign will make sure that in the fu-
ture, all the actions that we took in a bad episode
are going to be less likely. The result is that while
training our policy network, the actions that lead
to negative rewards are slowly going to be reduced,
and the actions that lead to positive rewards will
increase.

To make observations of the state for the agent
of the reinforcement learning (the robotic manip-
ulator), we have used three web cameras that take
photos of the manipulator workspace from three
perspectives so we can analyses a 3D vision for the
environment on the three axes. Because of the lim-
itation of the hardware, we do not have the ability
to give the images as input to the neural networks,
so we performed image processing using MATLAB
to get the coordinates of both the robot and the end
effector. We added as well the angles of rotation for
each joint to form the state vector (the observations).
Thus, using simulated webcams with 128128 res-
olution, the environment was observed. Before each
action, a picture is taken from each cam. Then using
image processing methods of segmentation and de-
tection in MATLAB system, we get the coordinates
of the end effector and the object we want to reach
to form our state. The original photos from three
vision sensors in the environment of V-REP with a
resolution of 128128 showing the robotic arm as
a whole and the box we want to reach are depicted in
Fig. 2, a. The images obtained after the photos pro-
cessing in MATLAB and showing two green pints,

Actor
network

Critic
network

TD

state

action

Q- value

Environment

Agent

loss error

Three
cameras

Robotic
manipulator

actual reword

  Fig. 1. The block-scheme of the deep deterministic
policy gradient used to control the robotic manipulator

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 5, 2020 29

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

which are the end effector of the robot and the box,
we aim to reach, are depicted in Fig. 2, b.

Let us consider the simulation environment. The
robotic manipulator has seven motors; each motor
is related to two adjacent digits, respectively. The
motor rotates in a clockwise direction if the first
digit is bigger than the second one and vice versa.
Thus, the number of the action signal parameters
is 14. After that, we start taking pictures from the
cameras and discovering the green areas in them,
because the end effector and the element we want
to reach are made in green. Then, we determine the
coordinates of these two elements in the three im-
ages, as seen in Fig. 2, b. The state contains seven
values that reflect the motors’ angles, and 12 val-
ues reflect a pair of coordinates in each of the three
images. The total number of the state signal param-
eters is 19.

Tw o kinds of neural networks are chosen to
build the actor and the critic networks. In the first
case, the actor and critic networks are designed as
CNN and, in the second case, as the fully connected
neural networks. The actor-network includes four
layers and has a size of 2002003814, where
every number means the number of neurons in a lay-
er. The actor-network has 14 output signals to give
the rotation of the joints with two pairs for each of

the seven joints. The critic-network comprises four
layers and has a size of 200200101. The out-
put signal is a value of the Q-function.

The training process of the robot consists of a
maximum number of 600 episodes when using con-
volution neural networks and 1000 when using the
fully connected networks, where the episode is all
the actions, and the states that come in between an
initial-state and a terminal-state and each taken
action and state is considered to be one step inside
the episode. The episode consists of a maximum
number of 600 steps when using the convolution
neural networks and 1000 when using the fully con-
nected networks. Each episode ends when the robot
achieves the task of reaching the cube or when it
reaches its maximum number of steps without be-
ing able to reach the cube. After that, a new episode
begins with a new initial position for the cube in the
workspace of the robot. As a start of the training
process during the first step in the first episode,
the state vector is constructed by taking the coor-
dinates of the end effector of the robot and the cube
(the object we aim to reach) from three images in the
initial observations. We send the state vector to the
actor-network as its input. The actor-network gen-
erates the first action as an output, and we send it
to the motors’ joints to perform the first movement.

  Fig. 2. The original photos from three vision sensors in the environment of V-REP with a resolution of 128 128 to
simulate real life web cameras (a) and the images obtained after the photos processing (b)

a)

b)

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 202030

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

We take the new observations constructing the new
state vector, and we send it to the critic-network
with the action vector. The critic-network takes the
state vector, and the action vector as an input and
generates the Q-value is output. At the end of this
step, the reward of the taken action is demonstrat-
ed by calculating the distance in the three images.
Depending on the Q-value and the reward, we up-
date the parameters of the actor-network and the
critic-network entering the next step. In the next
step, the actor-network gives the new action signal
for the join’s motor to rotate depending on the cur-
rent state vector, and the new observations are tak-
en constructing the new state vector. The new state
vector is sent with the action vector to the crit-
ic-network repeating the same process. If the taken
action in the step leads the robot to move far from
the cube, the reward takes a negative value in order
to reduce the repetition of such actions, and if the
action in the current step reduces the distance mov-
ing the robot towards the cube, the rewards take
a positive value to ensure repeating such actions.
The task is considered to be accomplished when the
distance is reduced to a certain level (very small
distance) in the three images at the same time. The
episode ends, and we give the reward a big positive
value, and the robot returns to its initial position,
a new position is determined randomly for the
cube (the element we want to reach). A new episode
starts, and a new action is taken from the output of
the actor-network repeating the same process in the
previous episodes. The training stops in the final
episode, where the parameters of the actor-network
always lead the robot to execute the actions, those
making it reaching the cube.

In our experiment, we achieved two training
process first using convolution neural networks to
build the actor and critic networks. The results are
represented in Table 1. Then, we repeat the training
using the fully connected neural networks to build
the actor and critic networks. The results are noted
in Table 2.

In table 1 is clear that, the larger the network’s
size, the higher the learning parameters, the high-
er the average reward, which leads the robot to exe-
cute more likely good actions to reach the cube and
to reaching high accuracy and lower elapsed time
quickly.

As follows from the analysis of tables 1 and 2,
the architecture of the convolution neural networks
gives the character to be more specialized and effi-
cient than the fully connected networks. In the ar-
chitecture of the fully connected neural networks,
there are connections between all the neurons in
previous layers with each neuron in the next lay-
er, with a unique weight to each connection. This
connection pattern increases the network param-
eters and makes no assumptions about the data’s

features, increasing the expenses of the memory
and the computation. On the other hand, in the con-
volution neural network’s architecture due to its
convolutional layers, the connections are between
the neuron and its surrounding neurons from the
previous and the next layer, and these connections
share the same weights. This connection pattern
decreases the number of the network parameters
affecting its memory use (less memory use), the
computation (less time), and increases the accuracy
by producing more likely actions that increase the
average reward.

We trained the networks using back propaga-
tion of the loss error by taking the gradient of the
Q-value with respect to the input. However, the
training process time depends on many factors; for
example, each neural network is initialized with
random values of biases and weights, giving dif-
ferent starting points per simulation during the
training process. Due to its architecture, fewer
connections and weights make convolutional layers
relatively cheap in memory and computation (less
time). In other words, CNN has a lower number of
parameters, making it quicker to achieve the train-
ing target.

Convolution neural networks have a connection
pattern that increases its accuracy in comparison

  Table 1. The number of parameters, average reward
and elapsed time on learning the actor and critic networks
in the form of convolution neural networks

Sizes of actor and

critic-networks

Number of

parameters

Average

reward

Elapsed

time, h

2002003814

200200101
3040

412
100.02 5.10

1901903814

190190101
2890

392
99.23 5.24

1801803814

180180101
2740

372
98.01 5.37

  Table 2. The number of parameters, average reward
and elapsed time on learning the actor and critic networks
in the form of fully connected neural networks

Sizes of actor and

critic-networks

Number of

parameters

Average

reward

Elapsed

time, h

2002003814

200200101
48 384

42 221
98.01 5.21

1901903814

190190101
44 094

38 211
94.21 5.40

1801803814

180180101
40 004

34 401
90.46 5.59

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 5, 2020 31

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

with the fully connected network because this pat-
tern provides the characteristic of feature extrac-
tion allowing the data to be represented as spatial
with the locally and equally possible to occur ex-
tracted features at any input. This feature extrac-
tion quality produces a lower rate of decreasing
the average reward when reducing the parameters
of CNN over reducing the parameters of the fully
connected networks, which lack this property of the
feature extraction.

Conclusion

In robotic control, we trained the robotic arm,
using a typical robot with seven joints to move in
high action space, using deep reinforcement learn-
ing algorithms and deep deterministic policy gra-
dients. These methods have the advantage of allow-
ing our robot to perform actions and train at the
same moment. Therefore, we used them to control
our robotic manipulator to reach a cube in its work-
space; since these methods give the robot the ability
to perform in continuous space action (the sensory
reading and actions executions belong to continu-
ous spaces).

The results of the investigation show that using
convolution neural networks for designing the ac-
tor and the critic-networks has the following advan-
tages over the fully connected networks:

— higher accuracy by driving the actor-network
to perform more likely actions that led the robot to
increase the average reward during the training;

— the robustness over decreasing the network
parameters due to the feature extraction property,
where decreasing the network’s parameters, did not
affect the convolution neural network in the same
way it affects the fully connected networks.

— a quicker performance using less computa-
tion power and less memory than the fully connect-
ed neural networks.

The obtained results expand the possibilities of
reinforced learning used in control systems, in par-
ticular when controlling a robotic manipulator, by
combining the method of deep deterministic policy
gradient with deep neural networks. An essential as-
pect of the research results is the demonstrated ef-
fectiveness of using cellular neural networks for re-
inforcement learning on controlling a robotic manip-
ulator. This fact is important because cellular neural
networks are very popular and they are part of many
different structures of deep neural networks.

References

1. Beysolow T. II Introduction to deep learning using R.
A step-by-step guide to learning and implementing
deep learning models using R. Berkeley, Apress, 2017.

227 p. doi:10.1007/978-1-4842-2734-3

2. Ketkar N. Deep learning with Python. Berkeley,

Apress, 2017. 226 p. doi:10.1007/978-1-4842-2766-4

3. Polydoros A. S., Nalpantidis L., Kruger V. Real-time

deep learning of robotic manipulator inverse dynam-

ics. 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Hamburg, Ge r-

many, September 28–October 2, 2015, pp. 3442–3448.

doi:10.1109/iros.2015.7353857

4. LeCunn Y., Bengio Y., Hinton G. Deep learning. Na-
ture, 2015, vol. 521, no. 5, pp. 436–444. doi:10.1038/

nature14539

5. El-Amir H., Hamdy M. Deep learning pipeline. Berke-

ley, Apress, 2019. 551 p. doi:10.1007/978-1-4842-

5349-6

6. Lapan M. Deep reinforcement learning hands-on. Bir-

mingham, Packt Publishing, 2020. 800 p.

7. Solovyeva E. Behavioural nonlinear system models

specified by various types of neural networks. Jour-
nal of Physics: Conference Series, 2018, vol. 1015,

no. 3, 032139, pp. 1–6. doi:10.1088/1742-6596/1015/3/

032139

8. Solovyeva E. Recurrent neural networks as approxi-

mators of nonlinear filters operators. Journal of Phys-

ics: Conference Series, 2018, vol. 1141, no. 1, 012115,

pp. 1–10. doi:10.1088/1742-6596/1141/1/012115

9. Brown B., Zai A. Deep reinforcement learning in action.

New York, Manning Publications Co., 2020. 360 p.

10. Sejnowski T. J. The deep learning revolution. Cam-

bridge, The MIT press, 2018. 352 p. doi:10.7551/mit-

press/11474.001.0001

11. Angelova A., Carneiro G., Sünderhauf N., Leitne J.
Special issue on deep learning for robotic vision. Inter-
national Journal of Computer Vision, 2020, vol. 128,

pp. 1160–1161. doi:10.1007/s11263-020-01324-z

12. Gupta A., Eppner C., Levine S., Abbeel P. Learning

dexterous manipulation for a soft robotic hand from

human demonstrations. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, October 9–14, 2016, pp. 3786–3793.

doi:10.1109/iros.2016.7759557

13. Rajeswaran A., Kumar V., Gupta A., Vezzani G.,
Schulman J., Todorov E., Levine S. Learning com-

plex dexterous manipulation with deep reinforcement

learning and demonstrations. 14th Robotics: Science
and Systems XIV, Pittsburg, USA, June 26–30, 2018,

pp. 1–9. doi:10.15607/rss.2018.xiv.049

14. Pervez A., Mao Y., Lee D. Learning deep movement

primitives using convolutional neural networks. 2017

IEEE-RAS 17th International Conference on Human-
oid Robotics (Humanoids), Birmingham, UK, No-

vember 15–17, 2017, pp. 191–197. doi:10.1109/human-

oids.2017.8246874

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 5, 202032

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

15. Widmaier F., Kappler D., Schaal S., Bohg J. Robot

arm pose estimation by pixel-wise regression of joint

angles. 2016 IEEE International Conference on Robot-
ics and Automation (ICRA), Stockholm, Sweden,

May 16–17, 2016, pp. 616–623. doi:10.1109/icra.2016.

7487185

16. Shi J., Xu J., Yao Y., Xu B. Concept learning through

deep reinforcement learning with memory-augment-

ed neural networks. Neural Networks, 2019, vol. 110,

pp. 47–54. doi:10.1016/j.neunet.2018.10.018

17. Rahmatizade R., Abolghasemi P., Boloni L., Levine S.
Vision-based multi-task manipulation for inexpen-

sive robots using end-to-end learning from demon-

stration. 2018 IEEE International Conference on Ro-
botics and Automation (ICRA), Brisbane, Australia,

May 21–25, 2018, pp. 3758–3765. doi:10.1109/icra.

2018.8461076

18. Aref M. M., Mattila J. Deep learning of robotic ma-

nipulator structures by convolutional neural net-

work. 2018 Ninth International Conference on Intelli-
gent Control and Information Processing (ICICIP),

Wanzhou, China, November 9–11, 2018, pp. 236–242.

doi:10.1109/icicip.2018.8606719

19. Peiyuan Liao. Deep neural network based subspace

learning of robotic manipulator workspace mapping.
2018 International Conference on Control, Artificial
Intelligence, Robotics & Optimization (ICCAIRO),

Athens, Greece, May 19–21, 2018, pp. 109–120.

doi:10.1109/iccairo.2018.00027

20. Chien J.-T. Source separation and machine learning.

Cambridge, London, Elsevier Inc., 2019. 384 p. doi:10.

1016/C2015-0-02300-0

21. Solovyeva E. Cellular neural network as a non-linear

filter of impulse noise. 2017 20th Conference of Open
Innovations Association FRUCT (FRUCT20),

Saint-Petersburg, Russia, April 3–7, 2017, pp. 420–

426. doi:10.23919/FRUCT.2017.8071343

22. Xiang J., Li Q., Dong X., Ren Z. Continuous control

with deep reinforcement learning for mobile robot

navigation. 2019 Chinese Automation Congress (CAC),
Hangzhou, China, November 22–24, 2019, pp. 1501–

1506. doi:10.1109/cac48633.2019.8996652

23. Ravichandiran S. Hands-on reinforcement learning
with Python. Master reinforcement and deep rein-
forcement learning using OpenAI Gym and Tensor-
Flow. Birmingham, Packt Publishing, 2018. 320 p.

УДК 004.896

doi:10.31799/1684-8853-2020-5-24-32

Система управления на основе нейронных сетей при обучении с подкреплением для робота-манипулятора

Е. Б. Соловьеваa, доктор техн. наук, доцент, orcid.org/0000-0001-8204-6632, selenab@hotbox.ru

А. Абдуллахa, аспирант, orcid.org/0000-0002-4024-9201
aСанкт-Петербургский государственный электротехнический университет «ЛЭТИ», Профессора Попова ул., 5,

Санкт-Петербург, 197376, РФ

Введение: в силу высокой гибкости и способности перемещать тяжелые предметы с большими вращающими моментами и
усилиями роботизированная рука, называемая роботом-манипулятором, является часто используемым промышленным роботом.
Цель: повысить качество управления роботом-манипулятором с семью степенями свободы, представленным в среде симулятора
V-REP, применяя метод обучения с подкреплением для глубоких нейронных сетей. Методы: оценка сигнала политики действия
посредством построения численного алгоритма с использованием глубоких нейронных сетей. Сеть актора отправляет сигнал дей-
ствия в роботизированный манипулятор, а сеть критика выполняет численную аппроксимацию для вычисления оценки функции
(Q-оценки). Результаты: мы создаем модель робота и его окружающую среду, используя библиотеку обучения с подкреплением в
MATLAB и направляя выходной сигнал (сигнал действия) к симулятору робота в программе V-REP. Робот обучается достижению
объекта в рабочем пространстве при взаимодействии с окружающей средой и при расчете вознаграждения за это взаимодействие.
Модель наблюдения создана с применением трех видеосенсоров. С помощью метода глубокого обучения модель агента, представ-
ляющего собой робот-манипулятор, построена на базе четырехслойных нейронных сетей актора и критика. Модель агента обуча-
лась в течение нескольких часов до момента достижения роботом объекта в своем рабочем пространстве с приемлемой точностью.
Основное преимущество предлагаемого управления над управлением с учителем заключается в том, что робот одновременно об-
учается и выполняет перемещение в непрерывном пространстве действий. Практическая значимость: полученные результаты
применяются для управления движением робота-манипулятора без конструирования кинематических моделей, в результате
уменьшается сложность расчетов и обеспечивается универсальность решения.

Ключевые слова — кинематическое управление, обучение с подкреплением, глубокое обучение, робот-манипулятор, глубо-
кая нейронная сеть, глубокий детерминированный градиент политики.

Для цитирования: Solovyeva E. B., Abdullah A. Controlling system based on neural networks with reinforcement learning for robotic

manipulator. Информационно-управляющие системы, 2020, № 5, с. 24–32. doi:10.31799/1684-8853-2020-5-24-32

For citation: : Solovyeva E. B., Abdullah A. Controlling system based on neural networks with reinforcement learning for robotic

manipulator. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2020, no. 5, pp. 24–32. doi:10.31799/1684-

8853-2020-5-24-32

