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Introduction: Due to its advantages, such as high flexibility and the ability to move heavy pieces with high torques and forces, 
the robotic arm, also named manipulator robot, is the most used industrial robot. Purpose: We improve the controlling quality of a 
manipulator robot with seven degrees of freedom in the V-REP program’s environment using the reinforcement learning method 
based on deep neural networks. Methods: Estimate the action signal’s policy by building a numerical algorithm using deep neural 
networks. The action-network sends the action’s signal to the robotic manipulator, and the critic-network performs a numerical 
function approximation to calculate the value function (Q-value). Results: We create a model of the robot and the environment 
using the reinforcement-learning library in MATLAB and connecting the output signals (the action’s signal) to a simulated robot 
in V-REP program. Train the robot to reach an object in its workspace after interacting with the environment and calculating the 
reward of such interaction. The model of the observations was done using three vision sensors. Based on the proposed deep 
learning method, a model of an agent representing the robotic manipulator was built using four layers neural network for the actor 
with four layers neural network for the critic. The agent’s model representing the robotic manipulator was trained for several hours 
until the robot started to reach the object in its workspace in an acceptable way. The main advantage over supervised learning 
control is allowing our robot to perform actions and train at the same moment, giving the robot the ability to reach an object in 
its workspace in a continuous space action. Practical relevance: The results obtained are used to control the behavior of the 
movement of the manipulator without the need to construct kinematic models, which reduce the mathematical complexity of the 
calculation and provide a universal solution.
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Introduction

The use of deep neural networks has been rising 
lately in solving many different technical problems 
in many fields, especially in robotics and automa-
tion control, where the aim is to build intelligent 
systems that can operate without the need of hu-
man experts. The progress of unsupervised deep 
learning has continued to rise in rank, aiming to 
learn intelligent behavior in complex and dynamic 
environments [1, 2]. Therefore, we will review the 
methods of controlling a robotic manipulator using 
kinematic control and machine learning control in 
the field of reinforcement learning and examine 
the problems that can face us in this procedure. 
Learning control policies in different systems’ op-
erations have made reinforcement learning an op-
timal solution where it fits well with various tasks. 
In addition, recent work in this field has progressed 
towards capturing the state of the environment 
through images, something developers are still try-
ing to achieve but in a different context.

Reducing continuous spaces of action would be 
poorly scaled, as the number of discrete actions in-
creases exponentially with the action dimensional-

ity, so deep reinforcement learning operates with 
continuous spaces of action to be convenient with 
real-world control problems. Furthermore, having a 
parameterized policy can be beneficial, since it can 
generalize in the space of action [3].

Reinforcement learning is one of the most popu-
lar areas of machine learning [4–6]. Stimulated by 
human behavior, it allows an agent (the learner and 
decision-maker) to discover optimal performance by 
experiment and failure interactions with its enclos-
ing environment to solve the problems of control. 
The environment is everything outside of the agent 
that can be associated with, while a learning task is 
the complete specification of the environment. The 
first method in the field of reinforcement learning 
is dynamic programming [6]. Dynamic program-
ing uses value functions to structure the search for 
good policies but needs a perfect environment mod-
el. The need to know the complete model of the envi-
ronment limits the dynamic programming method, 
wherein many control problems, knowing the whole 
aspects of the environment, could be impractical 
because many problems give rise to huge state sets. 
The next method is Monte Carlo (MC) one [6]. The 
model-free MC method enables us to learn from the 
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environment’s sample sequences of states, actions, 
and rewards. MC method works by equating the 
sample returns from the environment on an episode 
by episode base, so we do not require the full mod-
el of the environment like in the case of dynamic 
programming, but in MC method the agent must 
consider the exploration-exploitation tradeoff in 
order to get information about the rewards and the 
environment. It needs to explore by analyzing both 
previously unused actions and uncertain actions 
that could lead to negative rewards. A new method 
of reinforcement learning evolves from both dy-
namic programming, and MC method. This method 
is called temporal-difference (TD) learning [6]. TD 
learning combines dynamic programming’s ability 
to learn through bootstrapping and Monte Carlo’s 
ability to learn directly from examples selected 
from the environment without access to the Markov 
decision process. Alternatively, TD method only 
waits until the next time-step by using temporary 
errors to notify us how different the new value is 
from the old prediction. Temporal difference learn-
ing led us to a method called state-action-reward-
state-action (SARSA) [4–6]. SARSA is an on-policy 
TD control algorithm. This name is derived from an 
experience in which the agent starts in certain state 
performs an action, receives a reward, then trans-
fers to a new state, and decides to do a new action. 
Based on SARSA, Q-learning method appeared but 
conversely to SARSA. Q-learning is an off-policy 
TD control algorithm, which directly approximates 
the expected reward independent of the policy be-
ing followed [4–6]. 

The main disadvantage of all of the above-men-
tioned methods is the need for a vast database of 
samples and their need to train them before we 
start to perform the process of control. On the other 
hand, we need an algorithm that can be suitable for 
continuous spaces, where the algorithm can learn 
and perform simultaneously with sensor reading 
and action executions. Deep deterministic policy 
gradient or deep Q-learning was developed to solve 
this problem and to overcome all the mentioned 
methods’ disadvantages by developing the architec-
ture of the agent to consist of a critic deep neural 
network and an actor deep neural network. The crit-
ic and the actor can work in parallel to give us the 
actions and the estimated rewards for these actions 
while the training process continues.

Hence, we study deep reinforcement learning al-
gorithm, namely, deep deterministic policy gradi-
ent [3]. In order for robots to achieve a common ad-
vantage purpose, reaching objects is a fundamen-
tal ability to learn. Traditionally, human experts 
are required to analytically produce an algorithm 
for a particular task under adaptive control using 
kinematic control and supervised learning control, 
but this is a challenging and time-consuming ap-

proach. By applying deep learning, we overcome 
these restrictions in generalizing robotic control 
and demonstrating how building the actor-network 
and the critic-network based on convolution neural 
networks (CNN) increases the quality of the perfor-
mance compared with fully connected neural net-
works. We begin by showing the area of interest, 
machine learning, focusing on deep learning and 
reinforcement learning, and deep deterministic 
policy gradient; we describe how to control a robotic 
arm using deep learning.

Kinematics control of a robotic manipulator

Given the joint rotation angles and the lengths 
of the manipulator’s frames, we represent the for-
ward kinematics [3]

 
 ( , ),kinFX q    (1)

where X is the coordinates vector containing the 
position and orientation of the robot’s end effector; 
q is a matrix of joints’ angels; kin is a vector of 
fixed kinematic linking parameters. It consists 
of parameters describing the robotic manipulator 
lengths and angles, illustrating each joint axis’s 
rotation relative to the previous joint axis.

Closed-form solutions of (1) are favored. 
However, there are manipulator structures, for 
which only iterative numerical solutions are pos-
sible. From equation (1) we get the equation of the 
inverse kinematics given as

 
1   ( , , ),kinFq X C    (2)

where C is a vector containing some information 
used to select a possible solution, and another 
alternative is to let C be the previous solution and 
choose the new solution as the closest solution.

When the robot’s end effector is in a fixed po-
sition, there will always be existing values for the 
joints angles which led the end effector to be in such 
position and direction, so a closed-form solution for 
the forward kinematics problem is always assured 
in comparing with the inverse kinematic making 
it more comfortable to deal. This solution defines 
the workspace of a manipulator. On the other hand, 
there can even exist an infinite number of solu-
tions, like the case of a redundant manipulator [3]. 

When the dimension of the task-space is smaller 
than the dimension of the joint space, the kinematic 
structure is considered redundant. Here the inter-
est is in the inverse problem because we can calcu-
late the angels of the joints that will lead to reach-
ing a point in their workspace. As we can see, the 
kinematic control needs to know the robot’s param-
eters and environment, which makes it a non-uni-
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versal solution for the controlling problem. Each 
robot needs to rebuild the complete mathematical 
model and recalculate all the inverse and forward 
kinematics metrics, which will take a lot of process-
ing each time. The solution for finding a universal 
solution for the controlling process is by using un-
supervised learning.

Advantages of reinforcement learning 
in controlling a robotic manipulator

In unsupervised learning, we get a lower com-
plexity compared to supervised learning because 
we are not expected to understand and then mark 
the input data. This situation happens in real-time 
so that all the input data must be analyzed and 
marked, which helps us understand the various 
training models and sorting of raw data [4–6]. It is 
easier for us to get unmarked data from a comput-
er than marked data because marked data demands 
human interface and understanding of the catego-
rization of such data to use in the learning process. 
Experts should estimate the target output or part 
of it in order to achieve the learning process. The 
supervised learning makes this way time-consum-
ing and not flexible for various systems where some 
changes to the environment or the robot could hap-
pen. Nevertheless, there are many systems where 
we can not estimate the output, and we can not have 
enough information to build the target output to 
achieve the learning process. 

In supervised learning, we would have a set of 
coordination of some locations in the workspace 
and the corresponding angles of the manipulator’s 
joints. We can then feed those input frames through 
a neural network that, at the output, can produce 
the angles of the motors or joints by training on the 
data set from the previous data of the locations and 
the corresponding angles. Many approaches could 
be used, like backpropagation, so we can train that 
neural network to replicate human manual control 
actions. However, when we want to do supervised 
learning, we have to create a data set to train [6–8]. 
On which is not always a straightforward thing to 
do, and on the other hand, if we train our neural 
network model to imitate the actions of the human 
control well only, then by definition, our agent can 
never be better at executing the right action. When 
we want to train a neural network to perform by it-
self a controlling process on a robotics manipulator, 
where this controlling will take place in different 
environments, it could face many new problems. On 
the other hand, the offered method of unsupervised 
learning achieves this goal [9, 10]. 

However, the only difference here is that now we 
do not know the target label. Therefore, we do not 
know the rotation of the manipulator’s joints in any 

situation because we do not have a data set to train 
on, and in reinforcement learning, the network that 
transforms input frames to output actions is called 
the policy network [11]. The approach in policy gra-
dients is that we start with a completely random 
network, we feed that network the coordinates from 
the environment, and it produces random action. 
Send that action back to the joints motors and then 
produces the next frame and this is how the loop 
continues and the network, in this case, it could be 
fully connected networks, but we can apply convolu-
tion network, in other words, deep neural networks 
and from this, we get the name “Deep learning”. 
Allowing our agent to randomly explore the envi-
ronment and discover better rewards and better be-
havior [12].

Within the task, the learning process is divided 
into episodes. We usually use each episode as a con-
trol for a finite steps model, where it is essential to 
operate in many steps until we reach the time where 
we reset and restart.

When we move from a step to another under 
making an action, the agent receives a reward de-
scribing the effectiveness of this step regarding the 
task. The objective here is to maximize this collec-
tive reward during the learning process for the ro-
bot [13]. The equation of the collective reward R is 
given as

  
1 2 3 1 1

0
,

K

K k
k

R r r r r r 


         (3)

were r1 is a reward for moving from the state 0 to 
the state 1 in the step 1; r2 is a reward for moving 
from the state 1 to the state 2 in the step 2; (K + 1) 
is the number of rewards or steps, which refers to 
the end of the episode; k is a counter for the sum 
sign; (k + 1) is a step number.

As we can see from equation (3), the collective 
reward could increase without any conversion, 
making it not suitable for all the tasks [14, 15]. 
Therefore, we define a factor 0   1 that assures 
the conversion and determines the value of the fu-
ture rewards that the robot might receive. By add-
ing this discount factor to equation (3) we get the 
expected collective reward as

 

2
1 2 3 1 1

0
,

K
K k

K k
k

R r r r r r 


            (4)

where  is the discount factor.
We must take extreme caution when choosing an 

appropriate value of  in equation (4) because it can 
often change the form of the optimal solution where 
different values lead to different performances 
[16]. If  is small, the agent could select cases that 
only increase the reward and lead to lower perfor-
mance in the long-term. In contrast, if  is big, the 
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agent will lose the capacity to differentiate between 
the policies that will get a reward in the future and 
those directly get a big reward [17, 18].

Controlling a robotic manipulator 
using deep learning

Deep learning is a field of reinforcement unsu-
pervised learning involved with deep neural net-
works. We used two types of deep neural networks 
each time, the convolution neural network and the 
fully connected neural network. In convolution neu-
ral networks, the connections are between the neu-
ron and its surrounding neurons from the previous 
layer, and these connections share the same weights 
and bias [19–21]. 

L et’s consider the method of deep deterministic 
policy gradient with using deep neural networks as 
an actor and critic. Set up the following notations 
and variables: (sj) is the actor-network output 
calculated on the basis of the actor neural network 
having the input vector sj and the parameters vec-
tor ; j is the current step; sj is the state vector built 
by the observation in step j;  is the parameters 
vector of the actor-network; Q(sj+1, (sj+1)) is the 
output of the critic network having the input vec-
tor sj+1, which is obtained from state sj after action 
aj of the actor-network, and the parameters vec-
tor . On the basis of the TD learning, the updat-
ed parameters vector  of the critic-network results 
from solving the optimization problem [6,  9]

 

 2
1

1
 ( , | ) min,

M

j j j
j

L Q
M 

   y s a


   (5)

where L is the loss function; M is the maximum 
count in the last step; yj is the value function target, 
output vector of deep neural network, which gives 
the critic signal or the joint angels; aj is the action 
vector in the given state sj. This output vector, 
similar to the solution of the inverse kinematics 
equation (2), is described as

 
  1 1 , | | ,j j j jr Q     y s s      (6 )

where rj is the reward in step j; j is the current step.
We train the network to decrease the mean 

squared error concerning the Q function [22, 23]. 
However, the dependence of the Q targets on Q itself 
can lead to instabilities or even divergence during 
learning. We consider a policy that can be described 
by parameters very beneficial for control because it 
allows for learning when the sensory reading and 
actions executions belong to continuous spaces. The 
target value function yj in (6) is proposed to be a 
permanent value on learning a neural network by 
the back-propagation algorithm. 

After updating the parameters vector  of the 
critic-network, to updat the parameters vector  of 
the actor-network we use the following policy gra-
dient when maximizing the expected discounted 
reward (4) [6, 9]:

 1

1
,

M

j j
j

J
M 


  G G     (7)

 ( , ( | ) | ),j j jQ   G s s   

( | ),j j G s   

where J is the policy gradient; Gj, Gj  are the 
gradient vectors of the critic’s and actor’s outputs 
with respect to an actions and parameters of the 
actor-network respectively;  is the gradient 
ascent with respect to the policy of the action;  is 
the gradient ascent with respect to the parameters 
vector  of the actor-network.

From equation (7), the resulting policy gradient 
increases the expected discount reward, and we use 
it to update the actor-network weights and bias. On 
the other hand, from equation (5), after minimiz-
ing the loss function over all the experiences, we 
use it to update the critic-network weights and bi-
ases. In consideration of the observation, we eval-
uate the gradient of the critic-network output and 
the gradient of the output of the actor-network. We 
perform a smoothing process to update the weights 
and the biases of the target actor-network and the 
critic-network:

1( ) ,          1( ) ,        

where  is a smoothing factor equal to less than 
one;  ,   are the updated parametes vectors of the 
critic and actor networks correspondently.

Finally, we repeat performing equation (6) af-
ter we get the new observation for a new step in the 
training until the end of the episode and the begin-
ning of new training episode. 

The practical experiment of controlling 
the robot manipulator

As illustrated in Fig. 1, the learning process 
starts with taking the coordinates of the end effec-
tor and the cube on the three-axis from the cameras, 
generating the state vector. We send the state vec-
tor to the actor-network. The critic network takes 
both the action generated by the actor-network and 
the state and gives us the expected reward from 
this action or the Q-value. In the next steps to im-
prove the performance, when we are in a state, and 
the actor is proposing a particular action, we take a 
slightly different action and see if the Q-value a lit-
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tle higher we change the action to the new proposed 
action. The robotic manipulator moves when it gets 
the action signal. The cameras make the observa-
tions, generating a new state vector describing the 
new situation of the environment. On each axis, if 
the distance between the end effector and the cube 
gets smaller than before, we add a positive reward. 

On the contrary, if the distance gets bigger, then 
before we add a negative reward. We sum the re-
wards to get the actual reward of the current action. 
We calculate the loss by achieving a TD between the 
actual reward and the estimated reward generated 
by the critic (the Q-value). We use the loss in com-
puting the gradient of the Q-value with respect to 
the action. We back propagate the gradient of the 
Q-value with respect to the action to train and up-
date the neural networks and to evolve our actor in 
the right direction.

The simulation environment is built using 
V-REP program. A robot arm model with seven de-
grees of freedom (7 DoF manipulator) is used. In ad-
dition, three cameras are added in different places 
to use them in determining the state and the val-
ue of the reward function. A linkage library called 
Remote API is used to connect V-REP program with 
MATLAB language. This library provides a way to 
create a connection between the programming lan-
guage and the simulation program, so it becomes 
possible to take pictures from the cameras and pro-
cess them using MATLAB image processing func-
tions. The connection mechanism also allows send-
ing motion commands to the motors on the robot 
joints, which makes the simulation environment so 
close to the real implementation environment. 

We want to enable our agent to learn entirely by 
itself. The only feedback that was going to give it 

is the distance between its end effector and the ob-
ject we want the manipulator to reach. Whenever 
our agent manages to make this distance smaller, it 
will receive a positive reward. If the gap gets bigger 
than before, then our agent will receive a penalty of 
negative reward. The target of the agent is to opti-
mize its policy to earn as much reward as possible. 
To train our policy network, we will collect a bunch 
of experiences by selecting random actions to feed 
them back into the actor and create a whole bunch 
of random movements in the environment. Since 
our agent has not learned anything useful yet, it is 
going to make arbitrary, not accurate movements. 
Sometimes our agent might get lucky while it is go-
ing to random select of action. In this case, when 
a sequence minimizes the distance, our agent will 
receive a reward. We should note that every epi-
sode, regardless of whether we want a positive or 
a negative reward, we can compute the gradients 
that would make the actions that our agent has 
chosen more likely in the future. Therefore, what 
policy gradients are going to do is that for every 
episode where we have a positive reward, we will 
use the normal gradients to increase the probabil-
ity of those actions in the future. Whenever we got 
a negative one, it is going to apply the same gradi-
ent, but we are going to multiply it with minus one, 
and this minus sign will make sure that in the fu-
ture, all the actions that we took in a bad episode 
are going to be less likely. The result is that while 
training our policy network, the actions that lead 
to negative rewards are slowly going to be reduced, 
and the actions that lead to positive rewards will 
increase. 

To make observations of the state for the agent 
of the reinforcement learning (the robotic manip-
ulator), we have used three web cameras that take 
photos of the manipulator workspace from three 
perspectives so we can analyses a 3D vision for the 
environment on the three axes. Because of the lim-
itation of the hardware, we do not have the ability 
to give the images as input to the neural networks, 
so we performed image processing using MATLAB 
to get the coordinates of both the robot and the end 
effector. We added as well the angles of rotation for 
each joint to form the state vector (the observations). 
Thus, using simulated webcams with 128128 res-
olution, the environment was observed. Before each 
action, a picture is taken from each cam. Then using 
image processing methods of segmentation and de-
tection in MATLAB system, we get the coordinates 
of the end effector and the object we want to reach 
to form our state. The original photos from three 
vision sensors in the environment of V-REP with a 
resolution of 128128 showing the robotic arm as 
a whole and the box we want to reach are depicted in 
Fig. 2, a. The images obtained after the photos pro-
cessing in MATLAB and showing two green pints, 

Actor 
network

Critic 
network

TD

state

action

Q- value

Environment

Agent

loss error

Three 
cameras

Robotic 
manipulator

actual  reword

  Fig. 1. The block-scheme of the deep deterministic 
policy gradient used to control the robotic manipulator
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which are the end effector of the robot and the box, 
we aim to reach, are depicted in Fig. 2, b. 

Let us consider the simulation environment. The 
robotic manipulator has seven motors; each motor 
is related to two adjacent digits, respectively. The 
motor rotates in a clockwise direction if the first 
digit is bigger than the second one and vice versa. 
Thus, the number of the action signal parameters 
is 14. After that, we start taking pictures from the 
cameras and discovering the green areas in them, 
because the end effector and the element we want 
to reach are made in green. Then, we determine the 
coordinates of these two elements in the three im-
ages, as seen in Fig. 2, b. The state contains seven 
values that reflect the motors’ angles, and 12 val-
ues reflect a pair of coordinates in each of the three 
images. The total number of the state signal param-
eters is 19.

Tw o kinds of neural networks are chosen to 
build the actor and the critic networks. In the first 
case, the actor and critic networks are designed as 
CNN and, in the second case, as the fully connected 
neural networks. The actor-network includes four 
layers and has a size of 2002003814, where 
every number means the number of neurons in a lay-
er. The actor-network has 14 output signals to give 
the rotation of the joints with two pairs for each of 

the seven joints. The critic-network comprises four 
layers and has a size of 200200101. The out-
put signal is a value of the Q-function.

The training process of the robot consists of a 
maximum number of 600 episodes when using con-
volution neural networks and 1000 when using the 
fully connected networks, where the episode is all 
the actions, and the states that come in between an 
initial-state and a terminal-state and each taken 
action and state is considered to be one step inside 
the episode. The episode consists of a maximum 
number of 600 steps when using the convolution 
neural networks and 1000 when using the fully con-
nected networks. Each episode ends when the robot 
achieves the task of reaching the cube or when it 
reaches its maximum number of steps without be-
ing able to reach the cube. After that, a new episode 
begins with a new initial position for the cube in the 
workspace of the robot. As a start of the training 
process during the first step in the first episode, 
the state vector is constructed by taking the coor-
dinates of the end effector of the robot and the cube 
(the object we aim to reach) from three images in the 
initial observations. We send the state vector to the 
actor-network as its input. The actor-network gen-
erates the first action as an output, and we send it 
to the motors’ joints to perform the first movement. 

  Fig. 2. The original photos from three vision sensors in the environment of V-REP with a resolution of 128 128 to 
simulate real life web cameras (a) and the images obtained after the photos processing (b)

a)

b)
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We take the new observations constructing the new 
state vector, and we send it to the critic-network 
with the action vector. The critic-network takes the 
state vector, and the action vector as an input and 
generates the Q-value is output. At the end of this 
step, the reward of the taken action is demonstrat-
ed by calculating the distance in the three images. 
Depending on the Q-value and the reward, we up-
date the parameters of the actor-network and the 
critic-network entering the next step. In the next 
step, the actor-network gives the new action signal 
for the join’s motor to rotate depending on the cur-
rent state vector, and the new observations are tak-
en constructing the new state vector. The new state 
vector is sent with the action vector to the crit-
ic-network repeating the same process. If the taken 
action in the step leads the robot to move far from 
the cube, the reward takes a negative value in order 
to reduce the repetition of such actions, and if the 
action in the current step reduces the distance mov-
ing the robot towards the cube, the rewards take 
a positive value to ensure repeating such actions. 
The task is considered to be accomplished when the 
distance is reduced to a certain level (very small 
distance) in the three images at the same time. The 
episode ends, and we give the reward a big positive 
value, and the robot returns to its initial position, 
a new position is determined randomly for the 
cube (the element we want to reach). A new episode 
starts, and a new action is taken from the output of 
the actor-network repeating the same process in the 
previous episodes. The training stops in the final 
episode, where the parameters of the actor-network 
always lead the robot to execute the actions, those 
making it reaching the cube.

In our experiment, we achieved two training 
process first using convolution neural networks to 
build the actor and critic networks. The results are 
represented in Table 1. Then, we repeat the training 
using the fully connected neural networks to build 
the actor and critic networks. The results are noted 
in Table 2.

In table 1 is clear that, the larger the network’s 
size, the higher the learning parameters, the high-
er the average reward, which leads the robot to exe-
cute more likely good actions to reach the cube and 
to reaching high accuracy and lower elapsed time 
quickly.

As follows from the analysis of tables 1 and 2, 
the architecture of the convolution neural networks 
gives the character to be more specialized and effi-
cient than the fully connected networks. In the ar-
chitecture of the fully connected neural networks, 
there are connections between all the neurons in 
previous layers with each neuron in the next lay-
er, with a unique weight to each connection. This 
connection pattern increases the network param-
eters and makes no assumptions about the data’s 

features, increasing the expenses of the memory 
and the computation. On the other hand, in the con-
volution neural network’s architecture due to its 
convolutional layers, the connections are between 
the neuron and its surrounding neurons from the 
previous and the next layer, and these connections 
share the same weights. This connection pattern 
decreases the number of the network parameters 
affecting its memory use (less memory use), the 
computation (less time), and increases the accuracy 
by producing more likely actions that increase the 
average reward. 

We trained the networks using back propaga-
tion of the loss error by taking the gradient of the 
Q-value with respect to the input. However, the 
training process time depends on many factors; for 
example, each neural network is initialized with 
random values of biases and weights, giving dif-
ferent starting points per simulation during the 
training process. Due to its architecture, fewer 
connections and weights make convolutional layers 
relatively cheap in memory and computation (less 
time). In other words, CNN has a lower number of 
parameters, making it quicker to achieve the train-
ing target. 

Convolution neural networks have a connection 
pattern that increases its accuracy in comparison 

  Table 1. The number of parameters, average reward 
and elapsed time on learning the actor and critic networks 
in the form of convolution neural networks

Sizes of actor and

critic-networks

Number of 

parameters

Average 

reward

Elapsed 

time, h

2002003814

200200101
3040

412
100.02 5.10

1901903814

190190101
2890

392
99.23 5.24

1801803814

180180101
2740

372
98.01 5.37

  Table 2. The number of parameters, average reward 
and elapsed time on learning the actor and critic networks 
in the form of fully connected neural networks

Sizes of actor and

critic-networks

Number of 

parameters

Average 

reward

Elapsed 

time, h

2002003814

200200101
48 384

42 221
98.01 5.21

1901903814

190190101
44 094

38 211
94.21 5.40

1801803814

180180101
40 004

34 401
90.46 5.59
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with the fully connected network because this pat-
tern provides the characteristic of feature extrac-
tion allowing the data to be represented as spatial 
with the locally and equally possible to occur ex-
tracted features at any input. This feature extrac-
tion quality produces a lower rate of decreasing 
the average reward when reducing the parameters 
of CNN over reducing the parameters of the fully 
connected networks, which lack this property of the 
feature extraction.

Conclusion

In robotic control, we trained the robotic arm, 
using a typical robot with seven joints to move in 
high action space, using deep reinforcement learn-
ing algorithms and deep deterministic policy gra-
dients. These methods have the advantage of allow-
ing our robot to perform actions and train at the 
same moment. Therefore, we used them to control 
our robotic manipulator to reach a cube in its work-
space; since these methods give the robot the ability 
to perform in continuous space action (the sensory 
reading and actions executions belong to continu-
ous spaces).

The results of the investigation show that using 
convolution neural networks for designing the ac-
tor and the critic-networks has the following advan-
tages over the fully connected networks:

— higher accuracy by driving the actor-network 
to perform more likely actions that led the robot to 
increase the average reward during the training;

— the robustness over decreasing the network 
parameters due to the feature extraction property, 
where decreasing the network’s parameters, did not 
affect the convolution neural network in the same 
way it affects the fully connected networks.

— a quicker performance using less computa-
tion power and less memory than the fully connect-
ed neural networks.

The obtained results expand the possibilities of 
reinforced learning used in control systems, in par-
ticular when controlling a robotic manipulator, by 
combining the method of deep deterministic policy 
gradient with deep neural networks. An essential as-
pect of the research results is the demonstrated ef-
fectiveness of using cellular neural networks for re-
inforcement learning on controlling a robotic manip-
ulator. This fact is important because cellular neural 
networks are very popular and they are part of many 
different structures of deep neural networks.
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Система управления на основе нейронных сетей при обучении с подкреплением для робота-манипулятора

Е. Б. Соловьеваa, доктор техн. наук, доцент, orcid.org/0000-0001-8204-6632, selenab@hotbox.ru

А. Абдуллахa, аспирант, orcid.org/0000-0002-4024-9201
aСанкт-Петербургский государственный электротехнический университет «ЛЭТИ», Профессора Попова ул., 5, 

Санкт-Петербург, 197376, РФ

Введение: в силу высокой гибкости и способности перемещать тяжелые предметы с большими вращающими моментами и 
усилиями роботизированная рука, называемая роботом-манипулятором, является часто используемым промышленным роботом. 
Цель: повысить качество управления роботом-манипулятором с семью степенями свободы, представленным в среде симулятора 
V-REP, применяя метод обучения с подкреплением для глубоких нейронных сетей. Методы: оценка сигнала политики действия 
посредством построения численного алгоритма с использованием глубоких нейронных сетей. Сеть актора отправляет сигнал дей-
ствия в роботизированный манипулятор, а сеть критика выполняет численную аппроксимацию для вычисления оценки функции 
(Q-оценки). Результаты: мы создаем модель робота и его окружающую среду, используя библиотеку обучения с подкреплением в 
MATLAB и направляя выходной сигнал (сигнал действия) к симулятору робота в программе V-REP. Робот обучается достижению 
объекта в рабочем пространстве при взаимодействии с окружающей средой и при расчете вознаграждения за это взаимодействие. 
Модель наблюдения создана с применением трех видеосенсоров. С помощью метода глубокого обучения модель агента, представ-
ляющего собой робот-манипулятор, построена на базе четырехслойных нейронных сетей актора и критика. Модель агента обуча-
лась в течение нескольких часов до момента достижения роботом объекта в своем рабочем пространстве с приемлемой точностью. 
Основное преимущество предлагаемого управления над управлением с учителем заключается в том, что робот одновременно об-
учается и выполняет перемещение в непрерывном пространстве действий. Практическая значимость: полученные результаты 
применяются для управления движением робота-манипулятора без конструирования кинематических моделей, в результате 
уменьшается сложность расчетов и обеспечивается универсальность решения.

Ключевые слова — кинематическое управление, обучение с подкреплением, глубокое обучение, робот-манипулятор, глубо-
кая нейронная сеть, глубокий детерминированный градиент политики.
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