Combined total variation of first and fractional orders for Poisson noise removal in digital images

Pham Cong Thang, PhD, Lecturer, orcid.org/0000-0002-6428-102X, pcthang@dut.udn.vn
Tran Thi Thu Thao, MSc, Lecturer, orcid.org/0000-0001-7705-2405
Pham Minh Tuan, PhD, Lecturer, orcid.org/0000-0001-9843-9676
Nguyen Thanh Cong, MSc, Specialist, orcid.org/0000-0002-8060-0238

a The University of Danang — University of Science and Technology, 54, Nguyen Luong Bang St., 550000, Danang, Vietnam
b The University of Danang — University of Economics, 71, Ngu Hanh Son St., 550000, Danang, Vietnam

Introduction: Many methods have been proposed to handle the image restoration problem with Poisson noise. A popular approach to Poissonian image reconstruction is the one based on total variation. This method can provide significantly sharp edges and visually fine images, but it results in piecewise-constant regions in the resulting images. Purpose: Developing an adaptive total variation-based model for the reconstruction of images contaminated by Poisson noise, and an algorithm for solving the optimization problem. Results: We proposed an effective way to restore images degraded by Poisson noise. Using the Bayesian framework, we proposed an adaptive model based on a combination of first-order total variation and fractional order total variation. The first-order total variation model is efficient for suppressing the noise and preserving the keen edges simultaneously. However, the first-order total variation method usually causes artifact problems in the obtained results. To avoid this drawback, we can use high-order total variation models, one of which is the fractional-order total variation-based model for image restoration. In the fractional-order total variation model, the derivatives have an order greater than or equal to one. It leads to the convenience of computation with a compact discrete form. However, methods based on the fractional-order total variation may cause image blurring. Thus, the proposed model incorporates the advantages of two total variation regularization models, having a significant effect on the edge-preserving image restoration. In order to solve the considered optimization problem, the Split Bregman method is used. Experimental results are provided, demonstrating the effectiveness of the proposed method. Practical relevance: The proposed method allows you to restore Poissonian images preserving their edges. The presented numerical simulation demonstrates the competitive performance of the model proposed for image reconstruction. Discussion: From the experimental results, we can see that the proposed algorithm is effective in suppressing noise and preserving the image edges. However, the weighted parameters in the proposed model were not automatically selected at each iteration of the proposed algorithm. This requires additional research.

Keywords — total variation, image restoration, Poisson noise, minimization method.

tion-based Poissonian images restoration model as follows (TV-model):

$$z^* = \arg \min_{z \in \Omega} \left(\|z\|_{TV} + \frac{\lambda}{2} \|z\|^2_2 + \beta(1, Kz - f \log Kz) \right).$$ \hspace{1cm} (2)$$

The model (2) performs very well for preserving edges while removing noise. However, it often causes undesired artifact effects in smooth regions. To overcome these effects, some high-order models have been introduced for restoring blurred images corrupted by Poisson noise. The authors in [26] replaced the term $\|z\|_{TV}$ in (2) with higher-order $\|z\|_{HTV}$ and proposed following model (HTV-model):

$$z^* = \arg \min_{z \in \Omega} \left(\|z\|_{HTV} + \frac{\lambda}{2} \|z\|^2_2 + \beta(1, z - f \log z) \right).$$ \hspace{1cm} (3)$$

Recently, fractional-order derivatives are widely applied in image processing [27–31]. The works have reflected the good performance of the fractional-order derivative in image denoising with edge-preserving. Following [29], the fractional-order TV model for Poissonian image denoising and deblurring is as follows (FTV-model):

$$z^* = \arg \min_{u} \left(\|z\|_{TV_u} + \frac{\lambda}{2} \|z\|^2_2 + \beta(1, Kz - f \log Kz) \right),$$ \hspace{1cm} (4)$$

where β is positive parameter; $\|z\|_{TV_u}$ stands for fractional-order TV defined in Eq. (10).

Motivated by the above studies, we introduce an adaptive TV based optimization problem as follows:

$$z^* = \arg \min_{u} \log \{ P(z|f) \} - \log \{ P(f|z) \} + \log \{ P(z) \},$$ \hspace{1cm} (5)$$

$$z^* = \arg \min_{u} \log \{ P(z|f) \} - \log \{ P(f|z) \} + \log \{ P(z) \},$$ \hspace{1cm} (6)$$

where λ, μ_2 and β are positive parameters, $\mu_1, \mu_2 \in (0, 1)$.

Motivated by the previous works, we propose a Poisson noise removal model that can substantially reduce artifact effects while preserving edges in the restored images. The proposed model is designed by combining advantages of the first order TV and fractional order TV. We extend the split Bregman method for solving the optimization problem. Furthermore, we provide experimental results to demonstrate the efficiency of our algorithm for the considered problem, in comparison with state-of-the-art methods.

Preliminaries

We recall the principle behind Eq. (5). We aim at reconstructing the original image u with the known noisy image f. Our strategy is to find the image u which maximizes the conditional probability $P(u|f)$. Bayes’s rule gives

$$P(u|f) = \frac{P(f|u)P(u)}{P(f)}.$$ \hspace{1cm} (6)$$

The probability density function of the observed image f corrupted by Poisson noise is:

$$P(f|z) = \frac{z^f \exp(-z)}{f!}.$$ \hspace{1cm} (7)$$

Suppose that f has size $M \times N$, and let $I = \{1, ..., M\} \times \{1, ..., N\}$ denote the domain of f. For $i \in I$, we write f_i the pixel of f at position i (and similarly u_i the pixel of u at position i) [32]. Then:

$$P(f|z) = \prod_{i \in I} \left(\frac{z_i^f}{f_i!} \right).$$ \hspace{1cm} (8)$$

Maximizing $P(z|f)$ is equivalent to minimizing $-\log(P(z|f))$, so let us compute the quantity $-\log(P(f|z))$:

$$\sum_{i \in I} z_i^f \log(z_i) + \log(f_i!).$$ \hspace{1cm} (9)$$

Since f is constant, we can ignore the term $\log(f_i!)$. Now we assume that $P(z)$ follows a choice of the prior:

$$P(z) = \exp \left(\frac{1}{\tau} \phi(z) \right),$$ \hspace{1cm} (10)$$

where τ is a normalization factor being positive and constant.

In this work, we assumpt that

$$\phi(z) = \mu_1 \|z\|_{TV} + \mu_2 \|z\|_{TV_u} + \frac{\lambda}{2} \|z\|^2_2.$$ \hspace{1cm} (11)$$

The assumption on $P(u)$ means that each pixel depends (weakly) on the neighbouring pixels only, so we do not lose much by assuming independence.

We now have all the ingredients to maximize $P(z|f)$. By Eq. (6), this amounts to minimize the expression $-\log(P(z|f)) - \log(P(z))$, so we can plug in Equations (7) and (8) to get:

$$z^* = \arg \min_z \sum_{i \in I} \left(\frac{1}{\tau} \phi(z_i) + (z_i - f_i \log(z_i)) \right)$$ \hspace{1cm} (12)$$
and we can view this expression as a discrete approximation of the functional $E(\mathbf{z})$ defined as

$$E(\mathbf{z}) = \left(\mu_1 \| \mathbf{z} \|_{TV} + \mu_2 \| \mathbf{z} \|_{TV}^\alpha + \frac{\alpha}{2} \| \mathbf{z} \|^2 + \beta(1, z - f \log z) \right),$$

where $\beta = \gamma$ is positive and constant parameter.

In case of the blur effect, we can generalize the model (5) for restoring a blurred image corrupted by Poisson noise as follows:

$$
\begin{align*}
E(\mathbf{z}) &= \left(\mu_1 \| \mathbf{z} \|_{TV} + \mu_2 \| \mathbf{z} \|_{TV}^\alpha + \frac{\alpha}{2} \| \mathbf{z} \|^2 + \beta(1, Kz - f \log Kz) \right),
\end{align*}
$$

where β is positive and constant parameter.

The discrete gradients of an image \mathbf{z} in z ($i = 1..M; j = 1..N$) are defined like [33–35]:

$$\| \mathbf{z} \|_{TV} = \sqrt{(V_1^2 z)^2 + (V_2^2 z)^2},$$

$$\begin{align*}
V_1^2 z_{i,j} &= z_{i+1,j} - z_{i,j}, \\
V_2^2 z_{i,j} &= z_{i,j+1} - z_{i,j}, \\
\| \mathbf{z} \|_{H_{TV}} &= \sqrt{(V_1^{12} z)^2 + (V_2^{12} z)^2 + (V_2^{22} z)^2}.
\end{align*}$$

Due to the convenience in numerical implementation, from Greunwald — Letnikov (GL) fractional-order derivative, the discrete fractional-order TV $\| \mathbf{z} \|_{TV}^\alpha$ of $z \in \Omega$ is defined as follows [27, 31]:

$$\| \mathbf{z} \|_{TV}^\alpha = \sqrt{(V_1^\alpha z)^2 + (V_2^\alpha z)^2},$$

where the discrete gradients $V_1^\alpha z$ and $V_2^\alpha z$ are defined as follows:

$$(V_1^\alpha z)_{i,j} = \sum_{k=0}^{L-1} C_k^\alpha z_{i-k,j}, \quad (V_2^\alpha z)_{i,j} = \sum_{k=0}^{L-1} C_k^\alpha z_{i,j-k}.$$

Parameter L is the number of neighboring pixels that are used to compute the fractional-order derivative at each pixel; the coefficients C_k^α are defined as follows [27]:

$$C_k^\alpha = \frac{\Gamma(\alpha + 1)}{\Gamma(k + 1) \Gamma(\alpha + 1 - k)}, \quad k = 1..L - 1.$$

Computational method

In this section, we derive the numerical method for the problem (5) in detail. There are many methods which can be employed to obtain the solution of the optimization problem. In this article, we decide to employ the split Bregman method for solving the optimization problem.

The split Bregman method performs break the minimization problem down into easy subproblems [36–38]. Subproblems can be directly solved with tools like fast Fourier transform (FFT), shrinkage operator that makes the optimization algorithm rather fast. We have a scalar γ and two convex functionals $\Psi(\cdot)$ and $G(\cdot)$; and that we need to solve the following constrained optimization problem:

$$\arg \min_{\mathbf{z}, \mathbf{w}} (\| \mathbf{w} \| + \gamma G(\mathbf{z})), \text{ s.t. } \mathbf{w} = \Psi(\mathbf{z}).$$

We convert (11) into an unconstrained problem:

$$\arg \min_{\mathbf{z}, \mathbf{w}} (\| \mathbf{w} \| + \gamma G(\mathbf{z}) + \frac{\rho}{2} \| \mathbf{d} - \Psi(\mathbf{z}) - b \|_{\| \|}^2),$$

where w — splitting variable; ρ is positive constant parameters; b — variable of the Bregman iterations.

The solution to problem (12) can be approximated by the Split Bregman method:

$$\begin{align*}
\mathbf{z}^{(k+1)} &= \arg \min_{\mathbf{z}} (\gamma G(\mathbf{z}) + \frac{\rho}{2} \| \mathbf{d} - \Psi(\mathbf{z}) - b \|_{\| \|}^2); \\
\mathbf{w}^{(k+1)} &= \arg \min_{\mathbf{w}} (\| \mathbf{w} \| + \frac{\rho}{2} \| \mathbf{w} - \Psi(\mathbf{z}^{(k+1)}) - b \|_{\| \|}^2),
\end{align*}$$

$$b^{(k+1)} = b^{(k)} + \Psi(\mathbf{z}^{(k+1)}) - \mathbf{w}^{(k+1)}.$$

We return to the problem (5). By introducing three auxiliary variables \mathbf{u}, \mathbf{p} and q, Eq. (5) is equivalent to the constrained optimization problem:

$$\min_{\mathbf{p}, \mathbf{q}, \mathbf{u}} \left(\mu_1 \| \mathbf{p} \| + \mu_2 \| \mathbf{q} \| + \frac{\rho_1}{2} \| \mathbf{z} \|_{\| \|}^2 + \beta(1, u - f \log u) \right),$$

s.t. $p = V\mathbf{z}$, $q = V^\alpha \mathbf{z}$, $u = K\mathbf{z}$,

$$\min_{\mathbf{p}, \mathbf{q}, \mathbf{u}} \left(\mu_1 \| \mathbf{p} \| + \mu_2 \| \mathbf{q} \| + \frac{\rho_1}{2} \| \mathbf{z} \|_{\| \|}^2 + \beta(1, u - f \log u) \right),$$

$$\min_{\mathbf{p}, \mathbf{q}, \mathbf{u}} \left(\mu_1 \| \mathbf{p} \| + \mu_2 \| \mathbf{q} \| + \frac{\rho_1}{2} \| \mathbf{z} \|_{\| \|}^2 + \beta(1, u - f \log u) \right),$$

where μ_1, μ_2, β, γ are positive parameters; ρ_1, ρ_2 are Lagrangian multipliers.
The extended split Bregman iterative method employed for solving the problem (5) can be described as follows:

\[
z^{(k+1)} = \arg \min_z \left\{ \frac{\theta}{2} \| z \|_2^2 + \frac{\rho_1}{2} \| p^{(k)} - \nabla z - b^{(k)}_p \|_2^2 + \rho_2 \| q^{(k)} - \nabla z - b^{(k)}_q \|_2^2 + \frac{\rho_3}{2} \| u^{(k)} - K z - b^{(k)}_u \|_2^2 \right\}
\]

with update for \(b^{(k+1)}_p, b^{(k+1)}_q, b^{(k+1)}_u\):

\[
\begin{align*}
b^{(k+1)}_p &= b^{(k)}_p + \nabla z^{(k+1)} - p^{(k+1)} \\
b^{(k+1)}_q &= b^{(k)}_q + \nabla z^{(k+1)} - q^{(k+1)} \\
b^{(k+1)}_u &= b^{(k)}_u + K z^{(k+1)} - u^{(k+1)}
\end{align*}
\]

Hence, we have three subproblems to solve: \(z, p\) and \(q\).

Subproblem \(z\). For the \(z\) subproblem, optimality condition reads:

\[
0z + \rho_1 (V)^T (V z + b^{(k)}_p - p^{(k)}) + \rho_2 (V^\alpha)^T (V^\alpha z + b^{(k)}_q - q^{(k)}) = 0.
\]

Therefore, we have

\[
(\theta + \rho_1 (V)^T V + \rho_2 (V^\alpha)^T V^\alpha) z = \rho_1 (V)^T (p^{(k)} - b^{(k)}_p) + \rho_2 (V^\alpha)^T (q^{(k)} - b^{(k)}_q).
\]

The Eq. (15) can be solved efficiently with one Fourier transform operation and one inverse FFT operation as follows:

\[
z^{(k+1)} = F^{-1} \left(F(\rho_1 (V)^T (p^{(k)} - b^{(k)}_p) + \rho_2 (V^\alpha)^T (q^{(k)} - b^{(k)}_q)) \right) \],
\]

where \(F\) and \(F^{-1}\) are the forward and inverse Fourier transform operators.

Subproblem \(u\). For the \(u\) subproblem, optimality condition reads:

\[
\beta \frac{u-t}{u} + \rho_3 (u - K z^{(k+1)} - b^{(k)}_z) = 0.
\]

At the \((k+1)\)th iteration, we compute \(u\) by discretization scheme:

\[
\beta \frac{u^{(k+1)}-t}{u^{(k+1)}} + \rho_3 (u^{(k+1)} - K z^{(k+1)} - b^{(k+1)}_z) = 0.
\]

Therefore, we have

\[
u^{(k+1)} = \beta f + \rho_3 u^{(k+1)} \frac{(K z^{(k+1)} + b^{(k+1)}_z)}{\beta + \rho_3 u^{(k)}}. \tag{17}
\]

Subproblems \(p\) and \(q\). The solution of the \(p\) subproblem can readily be obtained by applying the soft thresholding operator:

\[
p^{(k+1)} = \text{shrink} \left(\frac{\nabla z^{(k+1)} + b^{(k)}_p}{\beta + \rho_3 u^{(k)}} \right)
\]

\[
= \nabla z^{(k+1)} + b^{(k)}_p \max \left(\frac{\nabla z^{(k+1)} + b^{(k)}_p}{\beta + \rho_3 u^{(k)}}, 0 \right). \tag{18}
\]

The solution of the \(q\) subproblem can also be obtained by applying the soft thresholding operator:

\[
q^{(k+1)} = \text{shrink} \left(\frac{\nabla^\alpha u^{(k+1)} + b^{(k)}_q}{\beta + \rho_3 u^{(k)}} \right)
\]

\[
= \nabla^\alpha u^{(k+1)} + b^{(k)}_q \max \left(\frac{\nabla^\alpha u^{(k+1)} + b^{(k)}_q}{\beta + \rho_3 u^{(k)}}, 0 \right). \tag{19}
\]

The complete method is summarized in Algorithm 1.

Algorithm 1: Adaptive split Bregman method for solving the problem (5)

1. Initialize: \(z^{(0)} = f; p^{(0)} = q^{(0)} = 0; b^{(0)}_p = b^{(0)}_q = 0; k = 1\)
2. while \(\left(\frac{\|u^{(k)} - u^{(k-1)}\|_2}{\|u^{(k)}\|_2} < \epsilon \right) \wedge (k < N_{\text{max}})\) do
3. Calculate \(z^{(k+1)}\) using (16)
4. Calculate \(u^{(k+1)}\) using (17)
5. Calculate \(p^{(k+1)}\) using (18)
6. Calculate \(q^{(k+1)}\) using (19)
7. \(b^{(k+1)}_p = b^{(k)}_p + \nabla z^{(k+1)} - p^{(k+1)}\)
8. \(b^{(k+1)}_q = b^{(k)}_q + \nabla^\alpha z^{(k+1)} - q^{(k+1)}\)
9. \(b^{(k+1)} = b^{(k)} + Kz^{(k+1)} - u^{(k+1)} \)
10. \(k = k + 1 \)
11. \(\text{endwhile} \)
12. \(\text{return } z \)

Experimental results

In this section, we present some numerical results to illustrate the performance of the proposed model for Poisson noise removal. In order to prove the efficiency of the proposed model, we compare our reconstruction results with those of the mentioned models: TV-model, HTV-model and FTV-model. The compared models are implemented by the split Bregman method. We performed all experiments under MATLAB and Windows 10 on a PC with an Intel Core (TM) i5 CPU at 2.4 GHz and 8 GB of RAM. Empirically, all images are processed with the equivalent parameters \(\alpha = 1.5, \mu_1 = 0.6, \mu_2 = 0.4, \rho_1 = 0.01, \rho_2 = 0.01, \rho_3 = 0.01, \theta = 0.0001 \). We set the stopping condition for Algorithm 1: \(\varepsilon = 0.00004 \) and \(N = 500 \). The observed images in our experiments are simulated as follows. Poisson noise is data dependent, the noise level of the observed images depends on the pixel intensity value. To test different noise levels, the noisy image is simulated by adding Poisson with some fixed value \(\text{Peak} \). The test images are shown in Fig. 1.

The peak signal-to-noise ratio (PSNR) used in comparison are defined as follows:

\[
\text{PSNR} = 10 \log_{10} \left(\frac{255^2 \cdot MN}{\| u^* - u \|_F^2} \right),
\]

where \(M \) and \(N \) are the number of image pixels in rows and columns; \(u, u^* \) are the original image, the reconstructed or noisy image accordingly. We also use other popular measure called structural similarity index measure (SSIM) which allows us to get more consistent with human visual characteristics [39]:

\[
\text{SSIM}(u, u^*) = \frac{(2\mu_u \mu_{u^*} + c_1)(2\sigma_{u,u^*} + c_2)}{\mu_u^2 + \mu_{u^*}^2 + \sigma^2_{u} + \sigma^2_{u^*} + 2\sigma_{u,u^*} + c_2},
\]

where \(\mu_u, \mu_{u^*} \) are the means of \(u, u^* \), respectively; \(\sigma_u, \sigma_{u^*} \) — their standard deviations; \(\sigma_{u,u^*} \) — the covariance of two images \(u \) and \(u^* \); \(c_1, c_2 \) are positive constants.

We first deal with Image denoising. In this case, \(K \) is an identity matrix. In Figs. 2 and 3, we aim

![Fig. 1. Test images: a — Lena; b — Man; c — Aerial; d — MRI](image1)

![Fig. 2. Image “Lena”. Recovered images of different methods for image denoising with Peak = 255: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours](image2)

![Fig. 3. Image “Lena”. Recovered images of different methods for image denoising with Peak = 100: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours](image3)
to restore the image “Lena” corrupted by Poisson noise with \(\text{Peak} = 255\) and \(\text{Peak} = 100\), respectively. In these figures, we also present the zoom-in on small details of the recovered images.

We see that TV-model is efficient for removing noise and simultaneously preserving the edges. However, the numerous artifact exists in result image recovered by TV-model. Meanwhile, the HTV-model and FTV-model can lead to edge blurring when image denoising. The images recovered by our model are more smooth and distinct than those of another three approaches.

In Figs. 4, 6 and 8, we show the results of compared methods for noise levels \(\text{Peak} = 100\). In Figs. 4, b, 6, b, and 8, b, we represent the noisy images. In the others, Figs. 4, c–f, 6, c–f, 8, c–f, we show respectively the reconstructions given by TV, HTV, FTV and our proposed approach. In Figs. 5, 7 and 9, we show the zoomed details of the original images, observed images and the zoomed details of the restored images respectively in Figs. 4, 6 and 8. From the details in Figs. 5, 7 and 9, we can see that the our model can get better visual improvement than the others. In Tables 1 and 2, we show the comparison results in terms of SSIM and PSNR (the best result is highlighted in bold). We can clearly see that our method outperforms the other relative methods for restoring images damaged by Poisson noise.

In the case of image deblurring and denoising, we consider blurred images degraded by Poisson noise. For simulation, we use the Gaussian blur with a window size \(5 \times 5\) and standard deviation of 1. After the blurring operation, we degrade the images by Poission noise with \(\text{Peak} = 100\). In Fig. 10, we perform simultaneously image deblurring and denoising on image “Lena”. Fig. 10, b denotes corrupted image. In Fig. 10, c–f, we show respectively the reconstructions given by TV, HTV, FTV and our approach.

Fig. 4. Image “Aerial”. Recovered images of different methods for image denoising with \(\text{Peak} = 100\): a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Fig. 5. Image “Aerial”. The zoomed-in details of the recovered images in Fig. 4: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Fig. 6. Image “Man”. Recovered images of different methods for image denoising with \(\text{Peak} = 100\): a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Fig. 7. Image “Man”. The zoomed-in details of the recovered images in Fig. 6: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours
Fig. 8. Image “MRI”. Recovered images of different methods for image denoising with Peak = 100: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Table 1. PSNR values for recovered images given by the compared methods with various noisy levels

<table>
<thead>
<tr>
<th>Noise level Peak</th>
<th>Lena</th>
<th>Man</th>
<th>Aerial</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>26.9200</td>
<td>27.6436</td>
<td>26.7701</td>
<td>30.1130</td>
</tr>
<tr>
<td>100</td>
<td>22.8909</td>
<td>23.5718</td>
<td>22.6521</td>
<td>30.1130</td>
</tr>
<tr>
<td>31.8640</td>
<td>29.2134</td>
<td>26.7400</td>
<td>28.9151</td>
<td>29.2772</td>
</tr>
</tbody>
</table>

Table 2. SSIM values for recovered images given by the compared methods with various noisy levels

<table>
<thead>
<tr>
<th>Noise level Peak</th>
<th>Lena</th>
<th>Man</th>
<th>Aerial</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>0.6721</td>
<td>0.8028</td>
<td>0.8277</td>
<td>0.9025</td>
</tr>
<tr>
<td>100</td>
<td>0.5234</td>
<td>0.6578</td>
<td>0.7154</td>
<td>0.8335</td>
</tr>
<tr>
<td>0.8794</td>
<td>0.8770</td>
<td>0.8649</td>
<td>0.9401</td>
<td>0.9014</td>
</tr>
<tr>
<td>0.8812</td>
<td>0.8731</td>
<td>0.8585</td>
<td>0.9401</td>
<td>0.9344</td>
</tr>
<tr>
<td>0.8780</td>
<td>0.8411</td>
<td>0.8645</td>
<td>0.9427</td>
<td>0.9095</td>
</tr>
<tr>
<td>0.9011</td>
<td>0.8505</td>
<td>0.8805</td>
<td>0.9484</td>
<td>0.9272</td>
</tr>
</tbody>
</table>

Fig. 9. Image “MRI”. The zoomed-in details of the recovered images in Fig. (8): a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Fig. 10. Image “Lena”. Recovered results for the test images: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours

Fig. 11. Image “Lena”. The zoomed-in details of the recovered images in Fig. 10: a — original image; b — noisy image; c — TV; d — HTV; e — FTV; f — ours
Meanwhile, Fig. 11 shows enlarged images recovered by four methods in Fig. 10. In Tables 3 and 4, we report the quantitative measures of PSNR and SSIM values for different images and compared methods. The Figures and Tables demonstrate again the effectiveness of our proposed method for image reconstruction under Poisson noise even in presence of blur.

Conclusions

In this paper, we have researched the hybrid regularizers model, combining the fractional-order and first-order TV for denoising images corrupted by Poisson noise. Computationally, an extended split Bregman method is employed for solving the proposed optimization problem. Finally, compared with the existing state-of-the-art models, the experiments demonstrate the efficiency of the proposed method.

Acknowledgments

Pham Cong Thang (corresponding author) would like to thank his colleagues at IT Faculty, DUT, for their helpful comments. The authors also thank reviewers and Editors for their insightful comments and suggestions.

Financial support

This work is supported by The Murata Science Foundation and The University of Danang, University of Science and Technology, code number of Project T2020-02-07MSF.

References

10. Seki T., Ikuhara Y., Shibata N. Theoretical framework of statistical noise in scanning transmission

Введение: известно множество методов для решения проблемы восстановления изображений с помощью пуассоновского шума. Одним из популярных подходов к реконструкции пуассоновского изображения является метод, основанный на полной вариации. С помощью этого метода можно получить весьма резкие границы и визуально четкие изображения, но он приводит к образованию кусочно-постоянных областей в результирующих изображениях. Цель: разработка адаптивной модели на основе полных вариаций для реконструкции изображений, искаженных пуассоновским шумом, и алгоритма решения задачи оптимизации. Результаты: предложен эффективный метод для восстановления изображений, искаженных пуассоновским шумом. На базе байесовой структуры предложена адаптивная модель, основанная на комбинации полной вариации первого порядка и полной вариации дробного порядка. Восстановление изображения на основе модели полной вариации первого порядка эффективно для шумоподавления и одновременно сохранения острых границ. Однако метод полной вариации первого порядка обычно вызывает проблемы с артефактами в полученных результатах. Чтобы избежать этого недостатка, использованы модели полной вариации высокого порядка, одна из которых — модель полной вариации дробного порядка для восстановления изображений. В модели полной вариации дробного порядка производные имеют порядок больше или равный единице. Это приводит к удобству вычислений с компактной дискретной формой. Но методы, основанные на полной вариации дробного порядка, могут вызвать развитие изображения. Таким образом, предложенная модель включает в себя преимущества двух моделей регуляризации полной вариации: существующих и существенных в предложенной модели, не выделяются автоматически на каждой итерации предложенного алгоритма. Для цитирования: Pham C. T., Tran T. T. T., Pham M. Т., Nguyen T. C. Combined total variation of first and fractional orders for Poisson noise removal in digital images. Информационно-управляющие системы, 2021, № 5, с. 10–19. doi:10.31799/1684-8853-2021-5-10-19