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Introduction: Distributed denial-of-service (DDoS) has become a common attack type in cyber security. Apart from the
conventional DDoS attacks, software-defined networks also face some other typical DDoS attacks, such as flow-table attack or
controller attack. One of the most recent solutions to detect a DDoS attack is using machine learning algorithms to classify the
traffic. Purpose: Analysis of applying machine learning algorithms in order to prevent DDoS attacks in software-defined network.
Results: A comparison of six algorithms (random forest, decision tree, naive Bayes, support vector machine, multilayer perceptron,
k-nearest neighbors) with accuracy and process time as the criteria has shown that a decision tree and naive Bayes are the most
suitable algorithms for DDoS attack detection. As compared to other algorithms, they have higher accuracy, faster processing
time and lower resource consumption. The main features that identify malicious traffic compared to normal one are the number
of bytes in a flow, time flow, Ethernet source address, and Ethernet destination address. A flow-table attack can be detected
easier than a bandwidth attack, as all the six algorithms can predict this type with a high accuracy. Practical relevance: Important
features which play a supporting role in correct data classification facilitate the development of a DDoS protection system with
a smaller dataset, focusing only on the necessary data. The algorithms more suitable for machine learning can help us to detect
DDoS attacks in software-defined networks more accurately.
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Introduction

Nowadays, software defined network (SDN) is
becoming increasingly popular due to the benefits
it provides, such as scalability, flexibility, moni-
toring [1]. SDN architecture separates the network
control from forwarding devices and enables the
controller to become directly programmable. The
controller processes the packets and decides wheth-
er the packets will be forwarded in the switch or
dropped. Due to its centralized nature, the control-
ler can get a global view of the network, and it helps
the network administrators to adjust the network
traffic flow dynamically [2]. Besides, for network
components to interact with each other, several ap-
plication programming interfaces were developed
with this network model, typically the OpenFlow
(OF) protocol [3].

However, the SDN network also faces many se-
curity threats [4]. When management becomes cen-
tralized, it will be easier for the administration, but
it will also be easier to be collapsed under attacks.
One of the attacks that have the most devastating
effect on an SDN network is the distributed deni-
al-of-service (DDoS) attack [5]. It is explained based
on the distinct characteristics of the SDN network.
In the SDN network, besides conventional DDoS at-
tacks by taking up network resources, causing the

system to be paralyzed, we also face other types of
attacks. For example, instead of attacking with a
large number of large packets to occupy bandwidth,
the attacker will constantly flood the network with
strange packets so that the controller is forced to
create new rules for these packets and write them
in flow-table. Then, the table on the switch will in-
crease until there is no more space to new rules, and
as a consequence, the time to respond to each new
requisition increased [6].

There have been several proposed solutions to
solve this problem. For example, drop packets,
block port, redirection, control bandwidth, deep
packet inspection, network reconfiguration, and
topology change; each solution has its advantages
and disadvantages [5]. However, for the above at-
tack mitigation techniques to be effective, SDN
needs to implement effective DDoS attack detec-
tion techniques. The paper [5] introduces several
methods for detecting DDoS attacks, such as using
entropy [7], traffic pattern analysis [8], connection
rate [9], machine learning [6, 10]. Among them,
DDoS detection techniques using machine learning
have received much attention in the computational
intelligence community [11].

This technique is not new. There have been many
studies considering the ability of machine learning
to classify traffic on the SDN environment as in
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[12-15]. However, due to the variety of algorithms,
each machine learning algorithm (simplified here
by ML-algorithms) has its own approach to the
problem, maybe appropriate, maybe not, but it gives
us more options to solve the problem, as well as to
pick out the algorithm that best suits the goal of de-
tecting DDoS attack.

In this paper, besides focusing on how to apply
machine learning to detect DDoS in the SDN en-
vironment, we will implement six different ML-
algorithms, making comparisons based on some
criteria to expand the choice and finding the opti-
mal solution. These algorithms are random forest
(RF), decision tree (DT), naive Bayes (NB), sup-
port vector machine (SVM), multilayer perceptron
(MLP), k-nearest neighbors (KNN), all supported
by Python libraries.

Related works

In[16], Braga et al. proposed a lightweight meth-
od for DDoS attack detection based on traffic flow
features. This method is implemented over a NOX-
based network, where OF switches keep Flow Tables
with statistics about all active flows. This system
monitors NOX switches at regular intervals and
uses self-organizing maps to classify the traffic as
normal or malicious.

The authors in [17] introduced a deep learning
based multi-vector DDoS detection system in a SDN
environment. A DDoS detection system that incor-
porates stacked autoencoder based deep learning
approach in an SDN environment was implemented.
The authors evaluated its performance on a dataset
that consists of normal Internet traffic and vari-
ous DDoS attacks. However, as every packet has to
be collected for extracting features, this approach
may limit the performance of the controller in large
networks.

In [18], Giotis et al. combined an OpenFlow and
sFlow for anomaly detection to reduce processing
overhead in native OF statistics collection. It de-
signs a modular mechanism that permits anomaly
detection and mitigation on SDN environments, in-
cluding collector, anomaly detection and anomaly
mitigation. It leverages the packet sampling capa-
bility of sFlow to acquire scalability improvements
and to reduce the required communication between
switches and OF controllers. However, as the imple-
mentation was based on flow sampling using sFlow,
false-positive was quite high in attack detection.

In [19], Ashraf et al. aimed to handle intrusion
and DDoS attacks in the SDN environment applying
machine learning techniques. However, they on-
ly analyzed various machine learning techniques,
such as support vector machine, fuzzy logic, deci-
sion tree, neural networks, and Bayesian networks

7

(BayesNet), which can be used to detect DDoS at-
tacks in the networking system and no further ex-
planation of how to detect and mitigate DDoS at-
tack was given.

Kokila et al. in [13] explored the possibility of
launching DDoS attacks and detection of DDoS us-
ing the SVM classifier. The experiments are carried
out using the DARPA dataset. They suggested that
the use of a support vector machine for detection
of DDoS with a previously trained dataset will give
the least false-positive results compared with other
machine learning techniques.

Dao et al. in [20] presented a solution based on the
IP-filtering technique to defeat DDoS attacks. The
proposed scheme analyzes user behaviour and uses
it to assign the timeouts for the flow entries. Long
timeouts are used for trusted users’ flows, while a
short timeout is assigned for malicious ones. It works
well when the attack traffic is not very massive.
However, this solution drops all malicious traffic,
which may be problematic for false-positive flows.

In [21], Nanda et al. propose using machine
learning algorithms, trained on historical network
attack data, to identify the potential malicious con-
nections and potential attack destinations. They
used four ML-algorithms: DT, BayesNet, decision
table and NB to predict the host that will be at-
tacked based on the historical data. The SDN con-
troller uses the prediction results to define securi-
ty rules to protect the potentially vulnerable hosts
and restrict the access of potential attackers by
blocking the entire subnet.

Our paper is motivated by Santos’s paper [6],
in which the authors managed to exploit differ-
ent kinds of machine learning algorithms to avoid
three types of DDoS attacks (controller attack, flow
table attack, and bandwidth attack). However, they
only focused on the typical attack type of SDN net-
works. In our paper, we are going to consider both
conventional and typical DDoS attacks. We also add
more ML-algorithms as well as modify some param-
eters to make a comprehensive comparison and try
to find out appropriate algorithms for detecting
DDoS attacks in the SDN environment.

Machine learning algorithms
for DDoS detection

In this paper, we will implement six different
ML-algorithms, making comparisons based on
some criteria to expand the choice and finding the
optimal solution. These algorithms are RF, DT, NB,
SVM, MLP, KNN [22].

Decision tree. The DT is one of the classification
techniques, which performs classification through
a learning tree. In the tree, each node represents
a feature (attribute) of a data, all branches repre-
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sent the conjunctions of features that lead to clas-
sifications, and each leaf node is a class label. The
unlabeled sample can be classified by comparing
its feature values with the nodes of the DT. The DT
has many advantages, such as intuitive knowledge
expression, simple implementation, and high clas-
sification accuracy. However, due to its instability,
even a small change in the training dataset can re-
sult in significant changes in the DT-model.
Random forest. The RF-algorithm, also known
as random decision forest, can be used for classifi-
cation and regression tasks. A RF consists of many
DTs. This algorithm works well on the large train-
ing dataset and reduces instability (relative to DT).
However, it has low training speed. The steps to
classify a new data sample by using a RF-algorithm
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are: a) put the data sample to each tree in the forest;
b) each tree gives a classification result, which is
the tree’s “vote”; c) the data sample will be classi-
fied into the class, which has the most votes.
k-nearest neighbors. The KNN is a supervised
learning technique, where the classification of a
data sample is determined based on the k nearest
neighbors of that unclassified sample. The process
of the KNN-algorithm is very simple: if most of the
KNN belong to a specific class, the unclassified
sample will be classified into that class. This algo-
rithm is simple to implement but computationally
expensive due to the distance calculation of each
training data sample to classify a new sample.
Naive Bayes uses Bayesian theory that pre-
dicts the type of the unknown samples based on

B Table 1. Hyperparameters and ML-algorithms

Models Hyperparameters Description
criterion The function to measure the quality of a split
Decision | splitter The strategy used to choose the split at each node
tree min_samples_split | The minimum number of samples required to split an internal node
min_samples_leaf The minimum number of samples required to be at a leaf node
n_estimators The number of trees in the forest
Random | criterion The function to measure the quality of a split
forest min_samples_split | The minimum number of samples required to split an internal node
min_samples_leaf The minimum number of samples required to be at a leaf node
Naive . A portion of the largest variance of all features that is added to variances for
Bayes var_smoothing calculation stability
n_neighbors The number of neighbors to use
weights Weight function used in prediction
k-nearest | leaf_size Leaf size passed to BallTree or KDTree
neighbor | Power parameter for the Minkowski metric
metric The distance metric to use for the tree
algorithm Auto between: ball_tree, kd_tree, brute
Kernel Specifies the kernel type to be used in the algorithm
Support Gamma Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’
vector C Regularization parameter
machine Tol Tolerance for stopping criterion
max_iter Hard limit on iterations within solver
hidden_layer sizes | The ith element represents the number of neurons in the ith hidden layer
activation Activation function for the hidden layer
solver The solver for weight optimization
ﬁgi?}l):zgi alpha L2 penalty (regularization term) parameter
max_iter The maximum number of iterations
tol Tolerance for optimization
max_fun The maximum number of loss function calls
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prior probability using the training samples. The
Bayesian classification model relies on statistical
analysis and Bayesian theory that consists of the
Bayesian learning. The NB-algorithm operates by
segregating the training set into an attribute vec-
tor and a decision variable. The algorithm also as-
sumes that every member of the attribute vector
independently acts on the decision variables.

Support vector machine. SVM is another popular
supervised learning method, which has been wide-
ly used in classification and pattern recognition.
The basic idea of SVM is to map the input vectors
into a high-dimensional feature space. This map-
ping is achieved by applying different kernel func-
tions, such as linear, polynomial and radial based
function (RBF). The objective of SVM is to find a
separating hyperplane in the feature space to maxi-
mize the margin between different classes. The dis-
advantage of this algorithm is hard to train large
datasets because the training is computationally
expensive.

Multilayer perceptron. The MLP is a class of
feedforward artificial neural network and has
been widely adopted neural network for intrusion
detection in conventional systems. An MLP con-
sists of at least three layers of nodes: an input lay-
er, a hidden layer, and an output layer. Except for
the input nodes, each node is a neuron that uses a
nonlinear activation function. MLP utilizes a su-
pervised learning technique called backpropaga-
tion for training. Its multiple layers and non-linear
activation distinguish MLP from a linear percep-
tron. It can distinguish data that is not linearly
separable.

Each algorithm has its own strengths. We will
test each algorithm as well as compare them togeth-
er to select the optimal algorithm for the detection
of DDoS attacks in the SDN network. Table 1 shows
the hyperparameters used in this experiment asso-
ciated with the respective machine learning algo-
rithm.

The studied features used to build the model for
the algorithms are shown in Table 2.

The number of studied featuresisup to 14, which
is almost all of the data that we can get from the
flow-table through OpenFlow Switch. Among the
above features, not all features help to detect abnor-
mal and normal traffic classification. However, at
this time, it is not known which features will play a
decisive role in detecting DDoS attacks, so the mod-
els will be built based on all these features. At the
end of the experiment, we can review and take out
the important features table to find out which fea-
tures will play a decisive role in this case. Because
the characteristics of each algorithm are differ-
ent, important features are particular parameters
that can only be derived when studying DT and RF.
However, these features still help identify the fea-

7

B Table 2. Description of studied features

Ne Features Description

0 | Byte_count Number of bytes in a flow

1 | Cookie _Opaqw_ucf controller-issued
identifier

Eth_src Ethernet source address
3 | Eth_dst Ethernet destination address
. Time flow has been alive in
4 | Duration_nsec
- nanoseconds
. Time flow has been alive in
5 | Duration_sec
- seconds
6 | Hard timeout Max time before discarding
- (seconds)

7 | Idle_timeout Idle time before discarding
(seconds)

8 | In_port Port ID

9 | Max len Max length to send to the

- controller

10 | Packet_count | Number of packets in the flows

11 | Priority The priority level of a flow entry

12 | Port Output port

13 | Table_id The IP of the table to put the
flow in

14 | Type Type of action

tures needed to reduce data in building models of
other algorithms.

Goals and implementation plan

Goals

The primary purpose of our experiment is to
find ways to apply machine learning to detect DDoS
attacks in SDN networks. Besides, another goal that
we are aiming at in this paper is to compare differ-
ent ML-algorithms as a solution to the problem, be-
cause each algorithm has its own characteristics.

Based on [23], the basic criteria to evaluate a
model in detecting abnormal traffic such as DDoS
include accuracy, data quality, correctness, and ef-
ficiency. In this paper, since all the tests take place
in a simulation environment, and there is always a
difference between simulation data and actual col-
lected data, we will not perform an evaluation based
on data quality.

Usually, with classification problems for any
model of machine learning, accuracy criterion is a
suitable criterion for evaluation. It indicates how
much percentage of a model’s accuracy is rated,
which makes it easy to visualize. For processing
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time, this is the time for a model to classify a flow
from input into normal traffic or abnormal traffic.
In other words, the accuracy and processing time
criteria will represent the efficacy and efficiency
of the machine learning model, respectively. Also,
to evaluate the algorithms more objectively, we rely
on information from the receiver operating charac-
teristic (ROC) curve (correctness) [6] to be able to
choose the suitable model.

Planning

Network architecture

The entire experiment is carried out on Ubuntu
18.04 virtual machine VMware with hardware con-
figuration Core i5-5200U (2.2 GHz, 4 cores, 4 pro-
cessors), 2 GB of RAM, and 40 GB hard drive space.
Mininet VN (version 2.3.0d6) is used for creating the
SDN network with an RYU controller (version 4.32),
one OpenFlow Switch and three hosts, as shown in
Fig. 1.

Methods of attacks

In addition to conventional attacks to a host
or a group of hosts such as UDP flood, ping flood
or smurf attack (collectively called bandwidth at-
tacks), SDN network can also be attacked by new
DDosS attack types due to its own structural charac-
teristics such as controller attack, flow-table attack
[6]. Therefore, to be able to study objectively and
more fully, we will try the bandwidth attack and the
flow-table attack in SDN at the same time.

For flow-table attack, we will use Scapy tool to
continuously send packets from different addresses
(there are 20,000 randomly generated Ips saved in
a file) to the attacked device. When the switch re-
ceives this type of packet, it creates a new rule and
adds to its flow-table. As the number of incoming
packets grows, the number of entries in flow-table
increases and leads to overloading, causing a delay
in responding to other requests from the controller.

/

SAWNTA NHOOPMAUNN N\

20
18
16
14

12

\—— \4
10 "
80
60

40
20

=

|
|
|
VA VA

——

Packets per sec x 104

0
1 6 1116 2126 31 36414651 56 61 66 71 76 81 86 91
Time, s

B Fig. 2. Bandwidth flooding traffic

—
=2}

-
=~

. A
i n
K TP
X I
2

[
[\S]

Packets per sec x 102

0
1 61116 2126 31364146 51566166 7176 8186 91 96

Time, s

B Fig. 3. Normal traffic

Controller

OpenFlow
Switch

@éj ] .

B Fig. 1.SDN network architecture for the experiment

For bandwidth attack, we will focus on taking
up the network bandwidth by continuously flooding
large packets (256—512 KB) to hosts in the network.
We will combine many different types, including
ICMP flood, TCP SYN flood and UDP flood. We
use the hping3 tool to get the best results. Unlike
flow-table attack when it only focuses on increasing
the number of entries in the flow-table as quickly
as possible, for this attack method instead of focus-
ing on the number of attacker machines, we focus
on packet-flood rate (pps — packets per second) and
packet size to take up the network bandwidth.

Figure 2 shows the average network traffic under
a DDoS attack with bandwidth attack (pps ~ 120,000).

We can see a huge difference comparing to nor-
mal traffic shown in Fig. 3. Normal traffic is sim-
ulated using Scapy. UDP, HTTP, ICMP packets are
continuously created for sending inside the net-
work, generating reasonable traffic (pps ~ 1.000).

Experiment Execution

Data Collection

To collect the necessary data from the switch’s
flow-table, we built a separate module. This module
is responsible for reading entries in the flow-table
every second, recording the required information
into a data file, and labelling it.
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‘We then use hping3 from one of the three hosts
inside the network (see Fiig. 1) to create a bandwidth
attack on the remaining hosts. Similarly, we use
Scapy to create flow-table attack as well as normal
traffic.

In the end, the data collected is 7500 data for
each type (2500 data of the dataflow table for band-
width attack, 2500 for flow-table attack, and 2500
for normal traffic). Based on this data set, we will
create two separate datasets: train dataset and test
dataset for the next process.

Building model

We use the training dataset prepared above to
build the models. After that, we will check with the
test dataset to get the best results. To avoid mod-
el overfitting (especially for NB, KNN, SVM, and
MLP), standardization of the values of the features
was applied to the data using StandardScaler in
scikit-learn [24].

Next is the process of tuning hyperparameters.
We use the GridSearch technique (from Sklearn
Library) to find the best hyperparameters set. It
helps to build a suitable model that is highly effec-
tive.

After having obtained a reasonable hyperpa-
rameter set, during the next training period, we
use cross-validation to avoid algorithms’ overfit-
ting with the training dataset. Specifically, we use
Stratified K Fold [24] with ten folds and then evalu-
ate the returned results, from which the conclusion
is made.

Results

After the process of tuning hyperparameter, we
obtain the following parameters, as in Table 3.

The main objective of this study is to apply ma-
chine learning to detect DDoS attacks, compare
algorithms, and build a model that can classify as
many types of traffic as possible. Therefore, from
the initial data (7500 data of dataflow table, 2500
of each type), we will create six different datasets,
including train/test datasets for normal traffic and
bandwidth attack traffic (ratio 1:1); train/test data-
sets for normal traffic and flow-table attack traffic
(ratio 1:1); finally, train/test datasets for all three
traffic types at once (ratio 1:1:1).

To evaluate the accuracy of the ML-algorithms
for each attack simulated, we use the following for-
mula [6]:

Number of correct classifications
Accuracy =

Total of samples

The accuracy is a statistical value that deter-
mines how close our ML-algorithm is to the ideal. If

7

B Table 3. The best hyperparameters set for each ML-
algorithm

Model Hyperparameter Value
n_estimators 10
Random criterion Gini
forest min_samples_split 2
min_samples_leaf 1
Criterion Gini
Decision tree Splitter Best
min_samples_split 2
min_samples_leaf 1
Naive Bayes | var_smoothing le-9
n_neighbors 3
weights Uniform
k-nearest | leaf size 30
neighbors | 2
metric Minkowski
algorithm Auto
Kernel Rbf
Support Gamma Auto
vector C le+5
machine Tol 1e-3
Max_iter -1
hidden_layer sizes 5,)
activation Relu
solver Lbfgs
mer | apna
max_iter 2000
Tol le-4
max_fun 2000

this value is 1 (100 %), it means that the algorithm
has no error and classifies the data perfectly.

Figure 4 shows a comparison of the accuracy of
ML-algorithms.

It is easy to realize that for the current problem,
the lazy learner algorithm — KNN is entirely in-
appropriate. It gives results with low accuracy for
bandwidth attack. For flow-table attack, although
the results are quite good, it is inferior to the re-
maining algorithms.

The two algorithms SVM and MLP are useful
algorithms for this problem with high accuracy.
However, SVM still has many errors in the classifi-
cation of bandwidth attack.

The other three algorithms are RF, DT, and NB
are excellent algorithms with an almost absolute
precise classification capability.
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Besides accuracy, we also use process time for
comparison. Fig. 5 presents this comparison.

As we can see, the two algorithms RF and KNN,
take too much time to process compared to other al-
gorithms. Among the remaining four algorithms,
although the DT has a faster processing speed than
NB, SVM, and MLP, all four algorithms show that
they are consistent with the traffic classification.

Besides, in this paper, we also build ROC curve
graphs in the model evaluation phase by cross-vali-
dation for each algorithm in each attack.

The ROC curve represents a relation between
true positive rate — represented by the percentage
of data classified as malicious that is really mali-
cious and false positive rate — the percentage of
data classified as normal, but that is malicious.
This curve is very used in the machine learning to
choose a good point for the classifiers, given by the
point above the central curve in which the distance
between them is maximum.

To determine a good model, we need to consider
the shape of the curve as well as the rate of false

\ SAWNTA NHOOPMAUNN N\

prediction and the rate of omission depending on
the characteristics of each specific case.

In the graphs, we also show the area under curve
(AUC) metric, that is, the area under the curve.
When this metric is higher, then the classification
is better. Fig. 6, a—f presents the ROC curve for all
algorithms.

Analysis and interpretation

Based on the results we have obtained above,
we can say that the type of algorithm lazy learn-
er — KNN is not appropriate for DDoS detection.
Because the accuracy prediction rate is low, and it
takes a lot of processing time. The reason may be
due to the similarity between the traffics at the
start of the attack. It leads to misjudging the re-
sults because the evaluation is based on nearby
neighbors. At the same time, for KNN, the process
to make predictions always takes place when new
data is received, meaning it requires a longer time
to calculate and produce results.

The two algorithms, SVM and MLP, are useful
algorithms, capable of applying in detecting DDoS
attack with high accuracy and the processing speed
is not slow, which is at an average level. However,
looking at ROC curve with cross-validation, we
found that there are still quite large errors for some
data groups; this is relatively understandable be-
cause, for SVM, when the noise appears, the hyper-
plane cannot divide the data exactly, but most are
still acceptable.

The other three algorithms, RF, DT, and NB, are
all excellent algorithms with almost exact classifi-
cation ability, showing the suitability of these al-
gorithms for the classification of anomalies traffic
and normal traffic. Nevertheless, although the RF
has almost absolute accuracy, it takes a lot of time
to process. The number of trees (10 trees) explains
this. Each tree consumes a particular time, re-
sulting in significantly increased time. Therefore,
when we need high processing speed and low re-
source consumption, RF will not be appreciated as
DT and NB algorithms.

In contrast to RF, both DT and NB algorithms
have very fast processing speed. For the DT-
algorithm, the fast processing speed is explained
by its advantage. After training to build a deci-
sion, the next classification of this algorithm will
not need much calculation. For NB, this is always
considered an easy algorithm to implement and
train even with small data sets. NB is a light-
weight algorithm, but the results are still very
good.

With such results, DT and NB are suitable algo-
rithms for the problem of detecting DDoS attacks in
the SDN network.
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In terms of attack type, the data shows that
flow-table attack is a more recognizable type of at-
tack than a bandwidth attack using the above algo-
rithms.

We also try to check the features, which play a
supporting role (important features) to the process
of correctly classifying data for the DT-algorithm.
Features that play the essential role are byte count,
duration_sec, packet count, and some other fea-
tures. It is also to be expected because, with DDoS
attacks, the large amount of incoming packets
makes packet count change a lot compared to nor-

7
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Ne of feature in Table 2

Importance

B Fig. 7. Importance of each feature

B Table 4. Important features for classification

mal traffic’s packet count. Same with byte count.
However, most of the features that we collect from
OpenFlow Switch are almost useless. The result is
shown in Fig. 7.

Table 4 presents the features according to its
importance for the detection of the anomalies.

Conclusion

The benefits of SDN network to overcome the
drawbacks of a traditional network model are un-
disputed, but there are also certain limitations. For
example, the entire system will collapse if the con-
troller receives a DDoS attack and cannot respond
to other valid requests. But based on what we have
tested above and the results we have obtained, the
application of ML-algorithms to detect these DDoS
attacks is entirely possible, and gives very good re-
sults.

We tested six different ML-algorithms includ-
ing RF, NB, KNN, SVM, MLP, and DT, to classify
different types of traffic, including normal traf-
fic, bandwidth attack traffic, and flow-table attack
traffic. We have proved that DT, as well as NB, are
suitable algorithms for DDoS attack detection (high
accuracy and fast processing time, consume less re-
source compared to other algorithms).

Besides, we also pointed out that the main fea-
tures that identify malicious traffic compared
to normal traffic. It will make it easier to build a
DDoS protection system with a more compact data-
set, focusing only on the data needed.

Furthermore, we realized that flow-table attack
is a more easily discovered attack than Bandwidth
attack, as all six algorithms can predict this type
with high accuracy. The efficiency of bandwidth at-
tack detection is lower, so we need to focus more on
this type to improve the predictive results.

In future work, we will focus on data quality cri-
teria by comparing the results of detection between
simulation dataset and real dataset.

Position Feature Description
1st Byte_count Number of bytes in a flow
ond Duration sec Tlme flow has been alive
- in seconds
3rd Packet_count Number of packets in the
flows
4th Eth_src Ethernet source address
5th | Duration nsec T1me flow has been alive
= in nanoseconds
6th Eth_dst Ethernet destination
address
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BBenmenmue: pacupeesieHHas aTaka TAIA «0TKa3 B o6cay:kuBaHun» (DDoS) craia momyasapHBIM TUIIOM aTak B KubepbesomnacHocTu. [1o-
MuMoO 00bIuHBIX DD0S-aTak, mporpaMMHO-OIIPeiesigseMble CeTH CTAJIKUBAIOTCA ¢ HEKOTOPhIMU APyruMu tTunudabiMu DDoS-atakamu, Ta-
KUMHU KaK aTaka ¢ UCII0JIb30BaHNEM IIOTOKOBOM TaOIUIILI U aTaKa KOHTPoJIepa. OMHUM 13 CAMBIX MOCJIEIHUX PEIeHNH AJ1s1 O0HADYKEeHU
DDoS-arak siBJIsieTCs UCIIOJb30BaHUe aJITOPUTMOB MAIIMHHOTO 00yUeHusA I Kiaaccuduranuu rpadura. Ilenas: aHains mnpuMeHeHUA ajl-
TOPUTMOB MAIIIMHHOT'O 00yUYeHUs AJs IpenoTBpaiiernsa DDoS-aTak mporpaMMHO-0OIIpeieiseMbIX ceTeli. Pe3yIbTaThl: CpaBHEHUE IIIeCTH
aJIrOpUTMOB (CIydYalHbIN JIeC, [ePEeBO PeIleHnl, HAUBHBIN 0aileCOBCKUI METO/], MAIlIMHA OIMTIOPHBIX BEKTOPOB, MHOTOCJIOMHBIH ITIePCEIITPOH,
k-6makaiiinue cocequ) Mo KPUTEPUSAM TOYHOCTD M BpeMs 00pabOTKH ITOKa3aJIo, YTO JePeBO PeIlleHn, KaK U HAaUBHBIN 0aileCOBCKUA, sB-
JISTIOTCSA JIYYIIUMU aJITOPUTMaMU JJid o0HapyskeHuss DDoS-aTak (BbICOKasa TOUHOCTH U ObICTPOE BpeMs 00paboTKU, MeHbIIIee TOoTpedIeHre
PECYpCOB IO CPABHEHUIO C APYTHMH aJTOPUTMaMU). Y KasaHbl U MPOAHATNSUPOBAHBI OCHOBHBIE ()YHKIINK, KOTOPbIE UAEHTU(DUIUDYIOT
BPEJOHOCHBIH TpaUK 10 CPABHEHUIO C OOBIUHBIM TPa(@UKOM: KOJHNYECTBO OAaiTOB B IIOTOKE, IOTOK BpemeHu, Ethernet-agpec ncrounuka,
Ethernet-agpec nasumauenus. ITo pesyabraTaM MCCJIEeIOBAHUI CleJIaH BBIBOJ, UTO aTaKa C UCIOJIb30BAHUEM TAOJIUIBI IIOTOKOB SIBJISETCSA
6oJiee JIETKOI [yiA OOHAPYIKEHUS, UeM aTaKa II0 IIPOIIyCKHOU crocobHocTu. IIpaKkTHYeckass 3SHAUMMOCTh: OCHOBHBIE (QYHKIINU, KOTOPHIE
HUrPAioT BCIIOMOTaTeIbHYIO POJIb B IIPOIlecce IPAaBUIbHOMN KIacCu(PUKaIu JaHHBIX, 00JI€TYalOT CO3aHue CUCTeMBI 3aIuThl oT DDoS-aTak
c 6oJiee KOMIIAKTHBIM HA60POM JAaHHBIX, BKJIIOUAIOIIIMM TOJbKO HEOOXOAMMbIE JaHHbIe. AJITOPUTMBI, KOTOPbIe 0oJiee MOAXONAT AJId Ma-
IIMHHOT'0 O0yYeHU s, IOMOTYT TOUHee 00Hapy:KuBaTh DD0oS-aTaky B IpOrpaMMHO-OIIPEEIAEMBIX CETAX.

Karouessie ciiroBa — DDoS, anropuTMbl MalluHHOTO 00yUeHUS, aTaKa 10 TabJIuIle IIOTOKOB, aTaKa II0 IPOIIYCKHOM CIIOCOOHOCTH.
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