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Introduction: Artificial intelligence development strategy involves the use of deep machine learning algorithms in order 
to solve various problems. Neural network models trained on specific data sets are difficult to interpret, which is due to the 
“black box” approach when knowledge is formed as a set of interneuronal connection weights. Purpose: Development of a 
discrete knowledge model which explicitly represents information processing patterns encoded by connections between 
neurons. Methods: Adaptive quantization of a feature space using a genetic algorithm, and construction of a discrete model 
for a multidimensional OLAP cube with binary measures. Results: A genetic algorithm extracts a discrete knowledge carrier 
from a trained neural network. An individual’s chromosome encodes a combination of values of all quantization levels for the 
measurable object properties. The head gene group defines the feature space structure, while the other genes are responsible 
for setting up the quantization of a multidimensional space, where each gene is responsible for one quantization threshold for 
a given variable. A discrete model of a multidimensional OLAP cube with binary measures explicitly represents the relationships 
between combinations of object feature values and classes. Practical relevance: For neural network prediction models based on 
a training sample, genetic algorithms make it possible to find the effective value of the feature space volume for the combinations 
of input feature values not represented in the training sample whose volume is usually limited. The proposed discrete model 
builds unique images of each class based on rectangular maps which use a mesh structure of gradations. The maps reflect 
the most significant integral indicators of classes that determine the location and size of a class in a multidimensional space. 
Based on a convolution of the constructed class images, a complete system of production decision rules is recorded for the 
preset feature gradations.
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Introduction

It is known, that the up-to-date artificial intel-
ligence research and technology uses deep machine 
learning algorithms, which improves quality of 
modern business processes in the areas of logistics 
management, optimize supply planning, financial 
operations, production processes, predict risks, 
increase customer satisfaction, diagnose diseases, 
selects dosages of drugs and solve other narrow 
classification problems, as well as the creation of a 
strong artificial intelligence, universal in applica-
tion to various tasks [1–7].

But, the deep neural network models, which 
trained on specific data sets, are difficult to inter-
pret for both human mind and machine algorithms. 
Also, the creation of a strong artificial intelligence, 
which capable of adapting and interacting with the 
external environment is an actual complex scientif-
ic challenge [8, 9].

The difficulty of verbalizing the output of deep 
learning and clearly clarification of the obtained 
result (i. e. why the model made those or another 

decisions) is associated with the using of the “black 
box” model [10], in which in the process of training 
neural network, the “knowledge” is formed from 
the sets of links weight between the neighbor neu-
rons. Herewith, visualization and synthesis of new 
solutions can be carried out using generative adver-
sarial networks [11, 12]. In this case, one network 
generates artificially created examples of complex 
objects, and the other network evaluates their reali-
ty based on a training set, which allows performing 
creative tasks, generating variants and prototypes 
of multidimensional objects.

The creation of a universal algorithm for strong 
artificial intelligence can be based on the method 
of complex use of multidimensional data analysis, 
aimed at transforming a multidimensional feature 
space into a finite set of classes, and then building a 
basic discrete code that stores information in a com-
pressed form about a set of features characteristic 
of a given class. This discrete form of knowledge, 
not only provides the ability to interpret themselves 
by the various methods, e. g., mathematical produc-
tion rules, but also allows to made cognitive visual-

Articles



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2020 13

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ

ization of multidimensional classes using descrip-
tive (explanatory) variables.

Neural network as a discretization model 
of the signs space

Classifying neural network uses object data at 
the training stage 1, , ,i i n   which can be aggre-
gated from different sources, e. g. the Internet, or 
can be inclusions of a variety of sensors in a process 
control loop or some technical object. The geomet-
ric paradigm of machine learning uses an attrib-
utive description of objects of the training sample 
and their representation by the points in a multidi-
mensional coordinate system. Using conversion of 
nominal and ordinal variables to a binary type is 
applied we are providing a numerical representa-
tion of qualitative properties.

Descriptive signs { 1  },,jX j N   entered to the 
input layer of the neural network, characterize 
the properties of objects of the training sample. 
The classifying output attribute indicates the be-
longing of objects i to the one of the class sets 
m, 1  , .m M  Having an adequate set of signs X, 
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  Fig. 1. Training set objects in a multidimensional 
space
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  Fig. 2. Structure and weight coefficients of the clas-
sifying neural network
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  Fig. 3. Separation of cluster shells in the X1–X2 and X2–X3 subspaces

it is possible to form an individual space, in which 
the objects of the training sample are separated by 
non-intersecting class hulls (Fig. 1).

By the classification process, the neural network 
transforms a continuous signs space into a discrete 
set of classes. So, trained on data corresponding 
to Fig. 1, a three-layer (one input and output lay-
er, one middle layer) neural network transform a 
combination of the values of three signs into one of 
four specified classes. The model defined by a set of 
weighting coefficients shown in Fig. 2. This is uses 

the activation function likes 
1

1
( ) ,Sf S

e



 where S 

is the signal on the input layer.

For the clearly interpret the constructed neural 
network, the information processing should be pre-
sented explicitly as connections between combina-
tions of values of N signs Xj and classes m. Such 
a view can be attracted using a discrete model of a 
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multidimensional OLAP (online analytical process-
ing) cube with binary measures (cell values) [13].

The key step in this case, is the quantization 
of the multidimensional space into the minimum 
allowable number of cells that preserve the sepa-
rating power of the original dictionary of signs X. 
Accordingly, for each signs Xj the minimum num-
ber of thresholds tj, is set, at which the distinguish-
ability of classes not violated (Fig. 3). 

The number of thresholds tj is determined by the 
number of class pairs separable by the Xj signs. If 
several pairs of classes have a common gap, then 
one threshold is used.

Method of neural network interpretation

A discrete carrier of knowledge should be built 
in the form of a binary decision matrix [14] or a 
multidimensional OLAP cube with binary meas-
ures and measurement labels, which are gradations 
of signs values.

The number of signs gradations and the location 
of the thresholds are determined in the process of 
adaptive quantization of the signs space using a ge-
netic algorithm.

The creations of the intervals of changes in the 
initial signs Xj within the specified classes m, is 
performed by independently changing the value of 
Xj at the input of the neural network. Herewith, we 
using the set of average values for the remaining 
sign, when the m-th output neuron is triggered.

If an object of the m-th class has a binary signs 
(attribute) Xj, or the values of the quantitative signs 
Xj belong to the interval (d(i–1) j, dij), then the grada-
tions of the signs value xij for the class m in the 
cells of the OLAP cube take single values

11     1   1  

0, otherwise,
( )

( )

, , ( , ), , , , ;

ij

m j i j ij j

x m

x d d m M i t



     


where tj — the number of gradations of the sign Xj 
(so-called, the nominal values).

The subcube of the discretized multidimensional 
space for class 4 is shown in Fig. 4.

In such a discrete classifying space, the values 
of signs are set in the form of single elements of the 
OLAP cube and threshold levels. By this way, it is 
provided an easy semantic interpretation of the de-
cision rule, based on the trained neural network.

Interpreting an OLAP cube with binary meas-
ures, based on a system of mathematical production 
(decision) rules of the form

“ ( 1)
1

if ( ( , ) ), then "
N

j i j ij m m
j

x d d


  ”, 1  ,,m M

which use gradations (d(i–1)j, dij)m values of signs xj, 
1  , ,j N  for each class m.
The object signs values points to the cells in the 

OLAP cube. During the recognition process, occurs 
element-by-element conjunction (logical AND) of 
cells, resulting to distinguish the single cell, corre-
sponding to the class code. The space of “own” gra-
dations point out to the found object.

After the coding process in a discretized multi-
dimensional signs space, the images of the classes 
are rendered using rectangular maps, that use a 
mesh structure of gradations. On the basis of the 
such constructed maps (with the gradations sets of 
signs) we can create a complete system of mathe-
matical production rules.

Genetic model for optimizing discretized 
feature signs

To describe the discretization algorithm and the 
choice of the signs space, we use genetic methods 
concepts, used for the solving common optimiza-
tion tasks [15–18].

Individual objects in a population represent a dis-
cretized multidimensional space X1  X2 …  XN 
using phenotype — a set of combinations of 
levels of signs of the working vocabulary Xw, 

{ 1  },,w j wX j N X  containing a list of measura-

ble properties of objects.

The match function (so-called, fitness-function) 
of an individual objects determined by its separat-
ing ability — the proportion of combinations of lev-
els of signs, indicating that the object  belongs to 
the one of the pairwise disjoint classes m, m, 
12…M.

At the level of the heritable structures, informa-
tion about space is determined by the genotype — 
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  Fig. 4. Subcube 4 of a discretized multidimensional 
space
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a set of genes of a given individual objects, aggregated in a chromosome series. An individual objects in a 
population can be represented by a genotype or a single chromosome, when the genotype consists of one chro-
mosome. The coding system for heritable information is a genetic code.

We use a kind of genetic-like algorithm that represents chromosomes using bit strings. Only one gene in a 
chromosome corresponds to each level of quantization of a signs in a phenotype. A gene is a fixed length bit 
string containing the value of this level. Thus, a combination of values of all quantization levels for measura-
ble properties of an object is encrypted in the chromosome of an individual.

Improving the quality of the individual’s matching function is associated with minimizing the volume of 
the signs space

1
, ) min

wN

w j j
j

V(N t t


 

providing I(Xw)1, ensure error-free division of the sample into M classes in the discretized space of the 

working vocabulary, and natural limits xj [xj min, xj max], where 1  , ,wj N  NwXw. Thus, for choosing the 

best individual, we should reduce both the number of object signs and the number of their gradations tj, which 
makes it possible to increase the extrapolating power of the classifying rule [19].

For these conditions, the length of the chromosome depends on the unknown number of gradations of the 
signs.

Therefore, the size of the chromosome is fixed by specifying for each signs the minimum number of thresh-
olds, which makes it possible to separate all completely separable classes for which the intervals of change in 
the values of the signs do not intersect.

Chromosome G consists of two gene groups: G{gx, gd}. 
Gene groups gx contains single-bit genes bit(xj), indicating the occurrence of a signs Xij in optimizing space Xw:

gx{bit(x1), …, bit(xj), …, bit(xN)}.

Gene groups gd combines genes that in binary format represent quantization threshold values dj sign Xj, 
1  , ,ji p  pjtj – 1, where tj — minimum number of sign quantization levels:

gd{bin(d11), …, bin(dij), …, bin(dpN N)}.

Number of bits to represent the threshold gene bit string

max min
2log 1 ,j j

j
j

x x
K

 
    

where j — accuracy of representation of sign Xj.
Structure of chromosomal thread Ch

1001101101
N positions


1 1

1

00101011 10100010...
K positions K positions

p

 


…  0110 1011...
j j

j

K positions K positions

p


… 01100010 10001011... .
N N

N

K positions K positions

p

 


The head gene group determines the structure of the signs space, the rest of the genes are responsible for 
setting the quantization of the multidimensional space, where each gene is responsible for one quantization 
threshold for a given variable.

The values of the quantization thresholds are determined by the genes of the found individual

max min min
bin

( ) .
2 1

( )
j

ij
ij j j jK

d
d X X X  



Therms “individual” means the value of the chromosome vector belonging to the range of permissible val-
ues, Ch Chpermissible:

Chpermissible{ChI(Xw)I(X)},
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where I(Xw) — separating power of the signs system Xw, Xw X, which is defined as the number of class 
pairs completely separable by a given system to the total number of class pairs M(M – 1)/2.

The work of the genetic algorithm is generally described as follows [16, 18].
1. Initialization. An initial population is randomly generated from NI binary chromosomes.
2. Computation of the match function and assessment of the fitness of chromosomes in the population.
3. Selection of parents for crossing (performed using a selection operator).
4. Execution of the operator of crossing.
5. Mutation of offspring (descendant) chromosomes.
6. Formation of a new population by selecting the best individuals in a generation.
7. Switch to the next generation of parents and descendants by repeating steps 2–6 until the stop rule is met.
This algorithm implements adaptive quantization of the signs space. The solution of this algorithm is the 

discrete neural chromosome code. It describes the space of signs of the minimum volume, while maintaining 
the separating power of the trained neural network.

Individuals of the initial population contain randomly filled threshold genes, they limited by the values of 
signs, and the chromosome vector Ch belongs to the range of permissible values.

The algorithm has the following parameters:
— size of population of individuals NI;
— number of pairs selected for reproduction;
— mutation probability Pmut;
— crossing probability Pcross.
For each population, we determine the number of mutating chromosomes, the number of pairs of crossing 

chromosomes, a given level of convergence of the algorithm .
Probability of selection of an individual for reproduction

1

,i
i N

i
i

f
P

f






where i — individual number; fiV(N) – V(Nw), 1  , Ii N  — individuals match function.
Probability of using the crossing operator Pcross0.9…1. We use some elite individuals in the crossing 

procedure with quantity Ne(1 – Pcross)NI. In conditions when Pcross < 1 the best individuals of the current 
population moves into the population without any changes.

In relation to our task, the crossing operator must ensure the process of study of the set of signs for which 
the head gene group is responsible, and the set of thresholds, encoded by the corresponding genes. Parent-
encodings transfer genetic material to new descendant-encodings. To reproduce them, we use a two-parent 
crossover, which exchanges parts of the bit string of genes at break points.

Reproduction of parent individuals with chromosomes Chl and Chk looks as follows

1 2 1 0... ...l l l l l
N rb b b b b  

1 1 2 1 0... ...l l l l l
K rb b b b b  … 1 2 1 0... ...

j

l l l l l
K rb b b b b  … 1 2 1 0... ...

N

l l l l l
K rb b b b b

+

1 2 1 0... ...k k k k k
N rb b b b b  

1 1 2 1 0... ...k k k k k
K rb b b b b  … 1 2 1 0... ...

j

k k k k k
K rb b b b b  … 1 2 1 0... ...

N

k k k k k
K rb b b b b



1 1 1 0... ...k k l l l
N p pb b b b b   

1 1 1 1 0... ...k k l l l
K p pb b b b b   … 1 1 1 0... ...

j

k k l l l
K p pb b b b b   … 1 1 1 0... ...

N

k k l l l
K p pb b b b b 

and

1 1 1 0... ...l l k k k
N p pb b b b b   

1 1 1 1 0... ...l l k k k
K p pb b b b b   … 1 1 1 0... ...

j

l l k k k
K p pb b b b b   … 1 1 1 0... ... ,

N

l l k k k
K p pb b b b b 

where the p-th bits of genes act as the breaking point, bprandom(0, K – 1), K — number of gene encoding bits.
When exchanging pieces of parental-encodings, the existing fragments of alleles will be redistributed 

among the genes of the descendant-encodings while preserving their loci.
To enforce the genetic variability of alleles, we use the mutation operator, which leads to the appearance of 

new alleles from fragments that were not previously contained in the parental genes.
Сhromosomes descendants are exposed with random changes with probability Pmut (0.001…0.01). The num-

ber of changes made to the chromosome is defined as follows
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Kmutrandom(1, K),

where K — size of the chromosomes, K 

1

N

j j
j

N p K


   ;  — mutation power coefficient, 

[0; 1].
Mutation stands in inverting the binary se-

quence, which position in the chromosome deter-
mined strongly randomly:

: 1 ,
n nr rb b 

where rnrandom(1, K), 1  , .mutn K
During the simulation modeling we config-

ure the power of mutation because this is one of 
the most important properties of the search algo-
rithm.

The rule (decision) for stopping the genetic al-
gorithm is to achieve a given level of convergence 
fi max – fi min <  — determining such power of 
match of individuals in the population, at which 
their further improvement does not occur.

The result of the genetic algorithm computa-
tion leads to the choice of an individual from a fi-
nite population that has the maximum value of the 
matching function fi.

The genetic algorithm makes it possible to find 
the effective value of the volume of the signs space 
V(Xw), for neural network prediction models based 
on a “black box” type and trained on a samples. This 
type of space provides us with a prediction for those 
combinations of values of input signs that were not 
represented in the training sample, which is usual-
ly strongly limited by size.

Visualization and interpretation of classes

Strictly accurate mapping of characteristic and 
general signs of object classes is a challenged issue 
when visualizing solutions in multidimensional 
continuous spaces [20–27]. It is required to analyze 
Nw(Nw – 1)/2 slices to unambiguously identify a 
class based on an OLAP cube.

Since the information about the combinations 
of gradations of the initial features for any class is 
contained in a compressed form, in a trained dis-
crete knowledge carrier with binary measures, we 
can use a rectangular map to form a unique image 
of each class, which use a mesh structure of grada-
tions.

After coding in a discretized multidimensional 
space of signs, the images of classes reflects the 
most significant, integral indicators of classes and 
smooth out the insignificant signs, which observed 
on image maps, representing the ranges of changes 
in signs and signals at the input of the output neu-
ron with varying signs.

The class image for each output neuron of the 
trained network can be mapped in grayscale (Fig. 5) 
or in 3D. We used the values of linear combinations 
of inputs coming to the output neurons and the val-
ues of the corresponding activation functions. This 
mappings introduce the proportion of the training 
sample, objects belonging to the given m-th class 
(also known as estimation of the “conditional proba-
bility” of the class), in which the j-th characteristic 
lands into the i-th interval.

We use a bar chart (Fig. 6) to assess the inter-
val of changes in a signs within the considered m-th 
class. The columns formed by independently vary-
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  Fig. 5. Class images representing signals at the input of the output neuron when signs vary
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  Fig. 6. Class images representing ranges of signs variation in a normalized space
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ing the value of each initial signs at the input of the 
multilayer neural network (with the set average val-
ues of the remaining signs), when the m-th output 
neuron is triggered. Input indicators (showings) are 
normalized linearly to the interval 0…1.

Variation ranges of signs at the input of a trained 
neural network, at which triggered a neuron of the 
class  1 is: X10…0.4, X20…0.57, X30.0…0.59.

Triggered a neuron of the class 2 is: 
X10.50…1.0, X20…0.47, X30.0…0.43.

Triggered a neuron of the class 3 is: 
X10…0.86, X20…0.89, X30.63…1.0.

Triggered a neuron of the class 4 is: 
X10.17…1.0, X20.30…1.0, X30.31…0.77.

As it was disclaimed early, after the coding pro-
cess, we get the images of the classes that rendered 
using rectangular maps with a mesh structure of 
gradations. Note, that as we says early, this algo-
rithms use a discretized multidimensional signs 
space. The maximum number of gradations T set 
to according to the most featured (discrete) sign 
(Fig. 7). We set “free” gradations, if the signs val-
ues in the class correspond to the highest grada-
tion — that’s need for the maximum conformity of 
the images and a bar chart with continuous ranges 
of signs values.

With the using of the cognitive images, we can 
clearly determine the classes that have the mini-
mum and maximum values of integral indicators 
(showings) — the sum of gradations for all bina-
rized signs Sg(m) and the spread of signs values 
R(m)

arg extr ( );
m

m mSg
 

  


arg extr ( ).
m

m mR
 

  


Small signs values have a class 1, Sg(1)
1 (1 + 1 + 1)3. Classes with the highest char-
acteristic values follows 3 и 4: Sg(3)1(1 + 
+ 1) + 2(1 + 1) + 3(1 + 1 + 1)15, Sg(4)
11 + 2(1 + 1 + 1) + 3(1 + 1)14. Class 1 
has the smallest spread of signs values 1( )R    

1 1 1 1.     Class with the highest spread of val-
ues 3, 3( 3 3 1 3) .R     

Using the convolution of the constructed images 
(of classes) for the set gradations of signs, we can 

produce a complete system of mathematical produc-
tion rules as follows:

“if (X1 X12) and (X2 X21) and (X3 X32), 

then  2”.

Thus, by varying the values of the descriptive 
variables at the input of the trained neural net-
work, we used the genetic algorithm to extract a 
discrete carrier of knowledge. This makes it possi-
ble to clearly interpret the classes using cognitive 
maps and produce a full system of mathematical 
production rules.

Conclusion

As it was noted before, the complex challenge of 
verbalizing the output of deep learning and clearly 
clarification of the obtained result (i. e. why the model 
made those or another decisions) related to the using 
of the common “black box” model — by the learning 
process, the “knowledge” organized in form of set of 
the weight coefficients of the links between neurons.

Neural network converts a continuous feature 
space into a discrete set of classes by the process of 
classification. For the interpretation of the trained 
neural network decision, the data can be represent-
ed in an obvious form as mappings between combi-
nations of values N of signs of Xj and the classes 
m, using discrete model of a multidimensional 
OLAP cube with binary measures.

The discrete knowledge model is formed by the 
process of adaptive quantization of a signs space us-
ing a common genetic algorithm. Individual’s chro-
mosome encrypts a set of values of all quantization 
levels for measurable properties of an object. The 
head gene group define the structure of the sign s 
space, the remaining genes responsible for config-
uring the quantization of the multidimensional 
space, where each gene in charge for one quantiza-
tion threshold of a given variable.

The genetic algorithm makes it possible to find 
the effective value of the volume of the signs space 
V(Xw), for neural network prediction models based 
on a “black box” type and trained on a samples. This 
type of space provides us with a prediction for those 
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  Fig. 7. Images of classes after encoding in a discretized multidimensional signs space
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combinations of values of input signs that were not 
represented in the training sample, which is usual-
ly strongly limited by size.

Using the proposed discrete model we can form 
a unique images of each class based on rectangular 
maps with cellular structure of gradations. Maps 
reflect the most significant, integral indicators 

(showings) of classes, which strongly determine the 
location and size of a class in multivariate space.

Thus, we can form a complete set of mathemat-
ical production decision rules, both in the process 
of directly interpreting a discrete model of a multi-
dimensional OLAP cube, and on the convolution of 
class images for signs gradations.
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Интерпретация обученной нейронной сети на основе генетических алгоритмов
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Введение: стратегия развития искусственного интеллекта предполагает применение алгоритмов глубокого машинного обучения 
для решения задач различного класса. Обученные на конкретных наборах данных нейросетевые модели трудно интерпретировать, что 
связано с подходом «черного ящика», когда знания формируются как набор весовых коэффициентов связей между нейронами. Цель: 
разработка дискретной модели знаний, представляющей в явной форме закономерности обработки информации, закодированные свя-
зями между нейронами. Методы: адаптивное квантование признакового пространства с помощью генетического алгоритма и постро-
ение дискретной модели многомерного OLAP-куба с бинарными мерами. Результаты: генетический алгоритм выполняет извлечение 
из обученной нейронной сети дискретного носителя знаний. В хромосоме особи зашифровывается комбинация значений всех уровней 
квантования для измеримых свойств объекта. Головная генная группа определяет структуру признакового пространства, остальные 
гены отвечают за настройку квантования многомерного пространства, где каждый ген отвечает за один порог квантования заданной 
переменной. Дискретная модель многомерного OLAP-куба с бинарными мерами представляет в явной форме связи между комбина-
циями значений признаков объектов и классами. Практическая значимость: для нейросетевых моделей предсказания, построенных 
по обучающей выборке, генетический алгоритм дает возможность найти эффективное значение объема пространства признаков для 
тех комбинаций значений входных признаков, которые не были представлены в обучающей выборке, обычно ограниченной в объеме. 
С помощью предложенной дискретной модели формируются уникальные образы каждого класса на основе прямоугольных карт, в 
которых используется ячеистая структура градаций. Карты отражают наиболее существенные, интегральные показатели классов, ко-
торые определяют местоположение и размер класса в многомерном пространстве. На основе свертки построенных образов классов для 
установленных градаций признаков записывается полная система продукционных решающих правил.

Ключевые слова — классификация, глубокое машинное обучение, нейронная сеть, генетический алгоритм, многомерный 
OLAP-куб, решающее правило, семантическая интерпретация, визуализация классов.
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