УДК 681.52

МОДЕЛЬ ПРИНЯТИЯ РЕШЕНИЙ ПРИ ДИАГНОСТИКЕ ВОСПАЛИТЕЛЬНЫХ ПРОЦЕССОВ ОРГАНИЗМА ПО ВИДУ ИНТОКСИКАЦИИ ИОНАМИ HS⁻ и Fe²⁺

Г. А. Машевский, ассистент З. М. Юлдашев, доктор техн. наук, профессор Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Рассматривается возможность использования Pt- и Ag₂S-электродов для контроля развития воспалительных процессов в организме человека, связанных с интоксикацией организма ионами HS⁻ и Fe²⁺, а также электрохимическая модель работы данных электродов в присутствии сульфгидрильных соединений. Предложена модель принятия решения по виду интоксикаций, а также алгоритм распознавания данных патологий.

Ключевые слова — система мониторинга, ионометрия, диагностика воспалительного процесса, математическая модель.

Введение

В практической медицине сегодня прилагаются значительные усилия для решения проблемы опережающего распознавания различных патологий, а также проведения контроля лечения пациентов.

Интоксикации организма ионами HS- или Fe²⁺ являются распространенными формами послеоперационных осложнений, способными существенно затруднить процесс послеоперационной реабилитации пациента, а в тяжелых случаях — привести к летальному исходу. Механизм токсического действия гидросульфид-аниона (HS⁻) подобен цианиду (CN⁻) и угарному газу (CO) и заключается в комплексовании атома меди в цитохроме А митохондрий, приводящему к его ингибированию. Результатом этого становится невозможность генерировать АТФ и накопление восстановителей в цепи переноса электронов в митохондриях. Избыток Fe²⁺ при воспалении приводит в действие белковый механизм острой фазы, который ограничивает поступление Fe в ткани и снижает его доступность для микроорганизмов, улавливает и транспортирует в макрофаги этот элемент. Данный механизм также связан с разрушением цитохромов, содержащих Fe. Патологические отклонения организма, вызванные повышением концентрации Fe²⁺, при лечении онкологических больных составляют одну из наиболее часто встречающихся форм осложнений (28,4 % из 1364 контрольных измерений). Указанные интоксикации часто сопровождают развитие в организме воспалительного процесса, следовательно, появившиеся в моче ионы HS⁻ или Fe²⁺ становятся его маркерами. Таким образом, решение задачи разработки методики диагностики и лечения интоксикации организма ионами гидросульфида и двухвалентного железа позволит повысить эффективность клинического сопровождения пациентов. Данная проблема была рассмотрена нами в рамках исследования по созданию метода и системы мониторинга состояния водносолевого обмена пациента в постоперационный период [1, 2].

Теоретические исследования

В основе возможности потенциометрического контроля лежат реакции твердокристаллического Ag_2S - и Pt-электродов в присутствии ионов HS^- или Fe^{2+} . Контроль мочи с помощью Ag_2S -электрода в присутствии сульфгидрильных компонентов основан на электрохимических реакциях

$$2Ag^0 + S^{2-} \leftrightarrow Ag_2S + 2e^-$$
 (1)

 $2Ag^0 + HS^- + OH^- \leftrightarrow Ag_2S + H_2O + 2e^-$ (2)

43

Электродные функции для этих реакций соответственно описываются уравнениями

$$\phi_1 = -0,688 - 0,029 lg[S^{2-}][B];$$
 (3)

$$\varphi_2 = -0.282 - 0.029 \text{lg[HS}^-] - 0.029 \text{pH}[\text{B}].$$
 (4)

 Ag_2S -электрод является классическим электродом для определения концентрации сульфидных и гидросульфидных ионов, что определяется произведением растворимости Ag_2S (10⁻⁵¹).

Контроль с помощью платинового электрода возможен благодаря окислительно-восстановительным системам, присутствующим в компартментах человеческого организма. В частности, для описанного выше случая redox-система определяется электрохимическими уравнениями

$$S^{2-} \leftrightarrow S^0 + 2e^-$$
 (5)

$$\mathrm{HS}^{-} + \mathrm{OH}^{-} \leftrightarrow \mathrm{S}^{0} + \mathrm{H}_{2}\mathrm{O} + 2\mathrm{e}^{-} \tag{6}$$

которым соответствуют электродные функции

$$\varphi_3 = -0,480 - 0,029 \lg[S^{2-}][B];$$
 (7)

$$\phi_4 = -0.074 - 0.029 lg[HS^-] - 0.029 pH [B].$$
 (8)

Результатом решения полученной системы уравнений является выражение, отражающее связь между потенциалами электродов:

$$E(Ag_2S) = -208 + E(Pt).$$
 (9)

Отклонения от данной зависимости свидетельствуют о присутствии в биосубстрате других сильных восстановителей помимо ионов гидросульфида, прежде всего ионов Fe^{2+} . Таким образом, существует возможность построить, опираясь на зависимость (9), методику распознавания видов интоксикации.

В теории оксредметрии [3, 4] известно, что обратимые органические окислительно-восстановительные системы проявляют одно общее свойство: их окислительный потенциал определенным образом зависит от рН. В результате исследования на большом статистическом массиве выявлена линейная зависимость для здорового организма:

$$E_{Pt} = 202,56 - 33,48 \text{pH}.$$
 (10)

Поэтому физиологическое значение имеет не абсолютное значение электродного потенциала, а его отклонение от величины (10):

$$\Delta Pt = Pt_{\phi a \kappa \tau} - (202,56 - 33,48 \text{pH}) \text{[mB]}.$$
 (11)

Сопоставляя значения данной величины с показаниями Ag_2S -электрода, можно провести распознавание таких опасных патологий, как HS^{-} интоксикация и интоксикация катионами Fe^{2+} .

Таким образом, при анализе результатов измерений при мониторинге больных с подозрением на воспалительный процесс следует оперировать не абсолютными значениями потенциалов, а значениями отклонений от зависимости (9):

$$\Delta pS = EAg_2S_{\phi a \kappa T} - (-208 + Pt_{\phi a \kappa T}) [MB].$$
 (12)

Если эта величина меньше нуля, то имеет место интоксикация организма ионами $\rm HS^-$. При значениях потенциала $\rm Ag_2S$ больше $-300~\rm mB$ патологии не наблюдается (концентрация $\rm HS^-$ в пределах нормы):

$$\Delta pS = E_{Ag_2S, \text{измер}} - (-208 + E_{Pt, \text{измер}}) >$$
$$> 0 \rightarrow Fe^{2+}$$
-интоксикация; (13)

$$\Delta pS = E_{Ag_2S, \text{ измер}} - (-208 + E_{Pt, \text{ измер}}) \le \le 0 \rightarrow HS^{-}$$
интоксикация
при $E_{Ag_2S, \text{ измер}} < -300$ мВ. (14)

Присутствие в моче Fe^{2+} подтверждено качественной реакцией по методике Лурье [5]. Розовое окрашивание образца мочи наблюдается только после его подкисления HNO₃, добавки H_2O_2 ($Fe^{2+} \rightarrow Fe^{3+}$) и NH₄NCS. Здесь уместно отметить, что содержание железа в моче очень мало — 0,7–5,7 нмоль/сут (0,04–0,3 мкг) [6], и это количество не может быть уловлено обычными методами. Такая возможность контроля появляется только после приема железосодержащих препаратов или комплексообразователя, который способствует выведению железа с мочой.

Известно, что при изменении pH субстрата изменяется диссоциация FeS-протеиновых комплексов. При высоких значениях водородного показателя в контролируемой среде появляются OH⁻ и наблюдается денатурация белков, которую мы можем зафиксировать по появлению сульфидных ионов в моче с помощью Ag_2S -электрода. Поэтому основу эксперимента составляло титрование проб мочи с помощью раствора NaOH.

Анализ результатов экспериментальных исследований

Экспериментальные исследования проводились на базе городской больницы № 26 Санкт-Петербурга. Всего было обследовано 1884 чел., проанализировано 7785 проб мочи, из них 1242 измерения относятся к обследуемым, считающим себя здоровыми, 2432 измерения выполнены для пациентов с распространенными форма-

44

ΜΟΔΕΛИΡΟΒΑΗИΕ СИСТЕМ И ПРОЦЕССОВ

ми ракового заболевания, 120 зафиксировано для пациентов с летальным исходом. Для измерений были использованы следующие электроды:

электрод pH-селективный: E = 380 - 56,5 pH;

 Ag_2S -электрод: $E = -688 - 29lg[S^{-2}];$

Pt-электрод: $E_{Pt} = 201,8 - 33,4$ pH;

электрод сравнения ЭВЛ-1М1 (ЗИП, Гомель). Для измерений использовались пробы мочи, параллельно велся учет данных анамнеза и ха-

рактера проводимой терапии. Классификация измерений была выполнена при помощи нейронной сети Кохонена формата 37 × 4. Для интерпретации результатов полученная топологическая карта была подвергнута факторному анализу. На рис. 1 представлена проекция полученного четырехмерного пространства на плоскость *F*1–*F*4, на которую также нанесены проекции векторов исходных параметров. Можно видеть, что нейроны, характеризующиеся наличием HS⁻- или Fe²⁺-интоксикации, группируются в две непересекающиеся области. Из рисунка также видно, что все нейроны с данными патологическими отклонениями лежат в области низких значений как для Ag₂S-электрода, так и для Pt-электрода. Разделительная линия, проведенная на рисунке, является весьма условной, поскольку, как показали наши дальнейшие исследования, имеется единство этиологии воспалительных процессов, и такой границы теоретически не существует.

Сходная картина была получена по результатам анализа экспериментального массива с помощью сети Коханена формата 20×5 с архитектурой СОКК 8:8–100:1. Нейроны 0, 1, 16, 20, 21, 88 отражают интоксикацию, связанную с катионами Fe²⁺, а нейроны 17, 22, 28, 40, 41 – HS⁻-интоксикацию. Совместное расположение этих нейронов на плоскости «Pt – Ag» представлено на рис. 2. На рисунке хорошо прослеживается разделение наблюдений теоретической линией по модели (9), хотя и отмечается некоторое отклонение в области высоких значений потенциалов электродов.

Исследование функциональных связей между выходной функцией ∆pS и входными параметрами Na, pH, Ag₂S выполнено с помощью ОРНС 3:3-495-2-1:1. Исследованный массив составил 987 наблюдений, непосредственно связанных с воспалительными процессами, диагностированны-

Рис. 1. Проекция многофакторного пространства на плоскость F1-F4, отражающая расположение нейронов воспалительного процесса

45

ΜΟΔΕΛИΡΟΒΑΗИΕ СИСТЕМ И ПРОЦЕССОВ

Scatterplot (date_04_07_gleb_snn_Cl_prin.sta6_patol 24v*172c) AG_COR = -210,3831+4,2956*x+0,0266*x^2+6,3028E-5*x^3+5,2732E-8*x^4

■ *Рис.* 2. Характеристика Fe²⁻- и HS⁻-интоксикации по расположению нейронов на плоскости «Pt – Ag»

ми с помощью Pt-, Ag_2S -электродами и pH. Критерием сортировки исходного массива принято значение Pt-электрода < -50 мB. Результаты модели представлены в табл. 1.

Результаты анализа чувствительности по входным параметрам даны в табл. 2, оценки регрессии — в табл. 3.

Представленная на рис. З поверхность отклика проявляет главные особенности развития интоксикации в ходе воспалительного процесса. В области ацидоза развивается Fe-интоксикация, в области алкалоза — HS-интоксикация. Снижение натриевого потенциала увеличивает вероятность развития воспалительного процесса типа Fe-интоксикации.

Результаты выполненных исследований позволили предложить алгоритм распознавания и лечения данной патологии (рис. 4), основанный на только что приведенных теоретических предпосылках.

■ Таблица 2. Анализ чувствительности — 2 (date_ HS_Fe patologij_cor-50_St6.sta)

Характеристика	Na	pH	Ag_2S		
Отношение	1,15	1,30	1,45		
Ранг	3	2	1		

 Таблица 3. Регрессия (2) (date_HS_Fe_patologij_ cor-50_St6.sta)

Характеристика	Значение		
Среднее данных	60,60		
Статистическое отклонение данных	150,11		
Среднее ошибки	-0,70		
Статистическое отклонение ошибки	104,75		
Среднее абсолютной ошибки	71,71		
Отношение статистического отклонения	0,70		
Корреляция	0,72		

Таблица 1. Подробные результаты моделей (date_HS_Fe_patologij_cor-50_St6.sta)

Архитектура	Производитель- ность обучения	Контрольная производитель- ность	Тестовая произ- водительность	Ошибка обучения	Контрольная ошибка	Тестовая ошибка	Примечания	Входы	Скрытые (1)	Скрытые (2)
OPHC 3:3-495-2-1:1	0,39	0,90	0,91	0,003	0,006	0,006		3	495	2

ΜΟΔΕΛИΡΟΒΑΗИΕ СИСТЕМ И ПРОЦЕССОВ

 Puc. 4. Алгоритм диагностики и лечения интоксикаций организма ионами HS⁻ и Fe²⁺ В алгоритме учтена возможность протекания у пациента воспалительного процесса в форме HS-интоксикации либо интоксикации катионами Fe²⁺. Соответственно, проводится дифференциация этих двух состояний на основе значений параметра ΔpS с последующим уточнением окончательного диагноза. Если $\Delta pS < 0$ и $E_{Ag_2S} > -300$, делается вывод об отсутствии у пациента патологии. Дополнительно учитывается присутствие факторов, способных оказать влияние на показания электродов: прием пациентом железосодержащих препаратов (в случае если $\Delta pS > 0$) либо наличие у пациента цистита или цистэктомии (в случае если $\Delta pS < 0$ и $E_{Ag_2S} < -300$).

Заключение

В результате выполненных исследований была предложена электрохимическая модель принятия решений по виду интоксикации организма ионами HS⁻ и Fe²⁺, основанная на реакции Ptи Ag₂S-электродов в присутствии сульфгидрильных соединений. Достоверность предложенной модели была подтверждена экспериментально. На основе модели был разработан алгоритм распознавания интоксикаций, учитывающий возможность наличия у пациента сопутствующих патологий и содержащий рекомендации по возможным способам их лечения. Предложенные модель принятия решений и алгоритм распознавания интоксикаций позволяют повысить эффективность послеоперационного сопровождения пациентов.

Литература

- Машевский Г. А. Исследование влияния ионов фторида и фосфата на состояние организма человека с помощью LaF₃-электрода // Биомедицинская радиоэлектроника. 2010. № 11. С. 69–73.
- Машевский Г. А., Юлдашев З. М. Оценка энергетического потенциала организма человека по данным ионометрии мочи // Биомедицинская радиоэлектроника. 2009. № 11. С. 40-44.
- Михаэлис Л. Окислительно-восстановительные потенциалы и их физиологическое значение. — М.: ОНТИ. Гл. ред. хим. лит., 1936. — 284 с.
- 4. Никольский Б. П., Пальчевский В. В., Пенжин А. А. и др. Оксредметрия. Л.: Химия, 1975. 304 с.
- Лурье Ю. Ю. Унифицированные методы анализа вод. — М.: Химия, 1973. — 376 с.
- Анализы. Полный справочник. М.: Эксмо, 2008. — 767 с.