УДК 681.513.3

АЛГОРИТМ ВЫЧИСЛЕНИЯ УГЛОВЫХ КООРДИНАТ ЛИНИИ ВИЗИРОВАНИЯ ОПЕРАТОРА В НАШЛЕМНОЙ СИСТЕМЕ ПОЗИЦИОНИРОВАНИЯ

Б. А. Алпатов, доктор техн. наук, профессор **О. Е. Балашов,** канд. техн. наук, доцент **А. И. Степашкин,** канд. техн. наук, доцент Рязанский государственный радиотехнический университет **Д. В. Трофимов,** начальник сектора НКЦ ВКТ ОАО «Государственный рязанский приборный завод»

Рассматривается один из возможных вариантов построения нашлемной системы обзора и целеуказания. Приводится алгоритм вычисления угловых координат линии визирования оператора с использованием светочувствительных линеек в качестве видеодатчиков.

Ключевые слова — нашлемная система целеуказания, измерение угловых координат, линейный видеодатчик.

Введение

Нашлемная система позиционирования (НСП) предназначена для измерения угловых и линейных перемещений шлема оператора (или его визирной линии, формируемой с помощью спецочков, жестко закрепленных на шлеме) в заданной системе координат, направление осей которой совпадает с направлением строительных осей носителя (самолета, вертолета и т. п.), привязанной к некоторой точке носителя [1, 2].

Принцип построения нашлемной системы позиционирования

Вариантов построения НСП достаточно много, нередко НСП является составной частью бортовых оптико-механических систем [3]. Рассмотрим НСП, в которой измерение угловых координат линии визирования производится с использованием линеек фоточувствительных элементов. При этом результатом измерений являются значения углов азимута, места и крена линии визирования. При таком варианте реализации НСП на шлеме пилота крепятся минимум три светодиода (точки *A*, *B* и *C* на рис. 1), которые образуют реперный треугольник. Измерение координат реперов осуществляется в блоке измерения координат (БИК). По координатам вершин реперного треугольника (с учетом информации о взаимном положении реперов на шлеме и визирной линии оператора) вычисляют текущее направление линии визирования оператора (см. рис. 1).

В рассматриваемой НСП БИК состоит из двух видеодатчиков (ВД), каждый из которых включает диафрагму и линейку фоточувствительных элементов (рис. 2). При этом оптические оси ВД и линейки фоточувствительных элементов расположены в одной плоскости (плоскость изображения) под углом а друг к другу. Каждый ВД снаб-

■ *Рис. 1.* Расположение светодиодов на шлеме пилота

жен объективом, выполненным в виде двух полуцилиндрических линз, соединенных плоскими поверхностями, на одну из которых нанесена щелевая диафрагма, продольная ось которой параллельна образующей цилиндра и перпендикулярна плоскости расположения фоточувствительных линеек [4]. Для БИК считаются известными расстояние L между оптическими центрами ВД, угол пересечения оптических осей α , количество светочувствительных элементов в линейках, ширина поля зрения ВД.

Модель изображения

Модель изображения, формируемая линейками светочувствительных элементов, установленными в НСП, может быть представлена следующим образом (рис. 3). В каждый светочувствительный элемент линейки попадают лучи света, проходящие через данный элемент и вертикальную щелевую диафрагму. Рассмотрим формирование сигнала в одном светочувствительном элементе D'. В D' попадают луч D'B', проходящий через оптический центр О, лучи D'A', D'C', лежащие в вертикальной плоскости (точки А', В', С' лежат на вертикальной прямой, параллельной продольной оси щелевой диафрагмы). Таким образом, светочувствительный элемент D' не может различить оптические лучи D'A', D'B' и D'C', можно сказать, что все пространство проецируется на плоскость изображения. В результате по номерам светочувствительных элементов линеек, в которые попадают лучи от реперных точек, вычисляют угловые координаты направлений на точки проекций реперов на плоскость изображения.

Рис. 3. Модель формирования изображения

Алгоритм вычисления угловых координат линии визирования оператора по азимуту

При использовании ВД со светочувствительными линейками и щелевыми диафрагмами можно считать, что ВД измеряют угловые координаты (направления) точек, лежащих в плоскости изображения, которые являются проекциями точек пространства.

На рис. 4 показано измерение координат вершины A реперного треугольника ABC в системе координат O_1XYZ , ось O_1X которой проходит через оптические центры ВД S_1 и S_2 (центры щелевых диафрагм), центр системы координат O_1 расположен посередине между центрами S_1 и S_2 , ось O_1Z лежит в одной плоскости с оптическими осями ВД и делит угол пересечения оптических осей а пополам, ось O_1Y перпендикулярна плоскости изображения и направлена вверх.

Координаты точки $A_1(x_{A1}, z_{A1})$ на плоскости изображения могут быть вычислены методом триангуляции по известному расстоянию между оптическими центрами ВД, известному углу между оптическими осями ВД, измеренным первым и вторым ВД угловым координатам точки A_1 (проекции точки A на плоскость изображения).

В результате измерений угловых координат реперных точек A, B, C получим координаты проекций реперов $(x_A, z_A), (x_B, z_B), (x_C, z_C)$ на плоскость изображения O_1XZ . Координаты проекций реперов по оси O_1Y равны нулю.

Угловые координаты линии визирования вычисляются по расположению реперного треугольника в пространстве (рис. 5). Введем систе-

■ *Рис.* 4. Измерение координат реперов

му координат EUVW, жестко связанную с реперным треугольником, точка Е лежит посередине между реперами А и В, ось ЕU направлена вдоль отрезка АВ, ось ЕШ направлена вдоль отрезка EC, ось EV перпендикулярна осям EU и EW. Таким образом, текущие угловые координаты реперного треугольника удобно описать тремя углами Эйлера, определяющими поворот системы координат EUVW относительно начального положения (угол θ — поворот вокруг оси *EV*, угол ϕ — поворот вокруг оси *EU*, угол ψ — поворот вокруг оси ЕШ) [5]. Примем за начальную ориентацию реперного треугольника ориентацию, соответствующую нулевым угловым координатам линии визирования ($\theta = 0, \phi = 0, \psi = 0$) (см. рис. 5). При этом направления соответствующих осей систем координат EUVW и O1XYZ совпадают.

Рассмотрим алгоритм измерения угловых координат реперного треугольника (см. рис. 1). Будем считать, что БИК расположен перед оператором, реперный треугольник — в лобовой части шлема, реперы всегда видны ВД (не заслоняются и находятся в поле зрения ВД), оператор способен поворачивать голову так, что положение реперного треугольника изменяется в следующих пределах:

$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \quad \varphi \in \left(0, \frac{\pi}{2}\right); \quad \psi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \tag{1}$$

Диапазоны измерения углов могут быть легко изменены корректировкой положения реперов на шлеме и блока БИК в кабине оператора. Расширить диапазоны можно путем добавления реперов и выбора реперного треугольника для измерения угловых координат линии визирования.

При изменении углов поворота головы оператора в пределах ограничений (1) угол поворота системы координат EUVW по азимуту θ совпадает с углом между проекцией оси EW на плоскость O_1XZ и осью O_1Z . Угол θ можно вычислить как угол между вектором E_1C_1 (проекция вектора \overline{EC} на плоскость O_1XZ) и осью O_1Z , направление которой можно описать единичным базисным вектором \overline{z} с координатами [0 0 1] по выражению

$$\theta = \operatorname{acos} \frac{\left(\overline{E_1 C_1}, \overline{z}\right)}{\left|\overline{E_1 C_1}\right| \left|\overline{z}\right|},\tag{2}$$

где вектор E_1C_1 вычисляется по известным координатам точек E_1 и C_1 .

По выражению (2) можно вычислить только абсолютное значение угла поворота, направление поворота можно определить, анализируя ко-

ординату $x_{E_1C_1}$ вектора $\overline{E_1C_1}$. В результате для вычисления азимута получим следующее выражение:

$$\theta = \begin{cases} \operatorname{acos} \frac{\left(\overline{E_{1}C_{1}}, \overline{z}\right)}{\left|\overline{E_{1}C_{1}}\right|\left|\overline{z}\right|}, & \operatorname{если} x_{E_{1}C_{1}} \ge 0; \\ -\operatorname{acos} \frac{\left(\overline{E_{1}C_{1}}, \overline{z}\right)}{\left|\overline{E_{1}C_{1}}\right|\left|\overline{z}\right|}, & \operatorname{иначе.} \end{cases}$$
(3)

Алгоритм вычисления угловых координат линии визирования оператора по углу места

Для вычисления угла места φ осуществим параллельный перенос вектора \overline{EC} вдоль оси O_1Y на $-y_E$ (y_E — координата точки \underline{E} по оси O_1Y), в результате получим вектор $\overline{E_1C'}$, отличающийся от вектора \overline{EC} только точкой приложения. Из образовавшегося треугольника $E_1C'C_1$ угол места вычисляется как угол между прилежащим катетом и гипотенузой в прямоугольном треугольнике (угол E_1C_1C' прямой, так как точка C_1 является проекцией точки C' на плоскость O_1XZ) по выражению

$$\varphi = \operatorname{acos} \frac{\left|\overline{E_1 C_1}\right|}{\left|\overline{E_1 C'}\right|}.$$
(4)

Длина вектора $\overline{|E_1C'|}$ считается известной и измеряется на этапе изготовления НСП.

Для вычисления угла крена у рассмотрим систему координат реперного треугольника EUVW, описывающую текущее положение реперов в пространстве. Обозначим начальное положение системы координат реперного треугольника, соответствующего нулевым углам поворота (см. рис. 5), как $EU_0V_0W_0$. Организуя последовательный поворот системы координат $EU_0V_0W_0$ на углы Эйлера θ , φ , ψ , перейдем в систему координат EUVW. Угол поворота реперного треугольника по крену удобно вычислять в системе координат $EU_1V_0W_1$, повернутой относительно $EU_0V_0W_0$ на угол θ (повернув $EU_1V_0W_1$ на углы φ, ψ, перейдем в EUVW). Чтобы получить координаты точки (вектора) в системе координат $EU_1V_0W_1$, необходимо координаты точки (вектора) в системе координат $EU_0V_0W_0$ умножить на матрицу преобразования координат М₁(θ), описывающую в данном случае поворот на угол θ . Чтобы осуществить перевод координат из системы координат EUVW в $EU_1V_0W_1$, необходимо координаты точки (вектора) в системе координат EUVW умножить на матрицу преобразования координат M₂(ϕ , ψ), описывающую поворот на углы ψиφ.

Рассмотрим вектор AB, координаты которого в системе координат $O_1 XYZ$ и $EU_0 V_0 W_0$ по осям $O_1 X$ и $O_1 Z$ совпадают с координатами вектора

$$\overline{A_1B_1} = \begin{bmatrix} u_{A_1B_1} & v_{A_1B_1} & w_{A_1B_1} \end{bmatrix}^{\mathrm{T}},$$

являющегося проекцией вектора AB на плоскость O_1XZ ($v_{A_1B_1} = 0$). Координаты вектора A_1B_1 в системе координат O_1XYZ и $EU_0V_0W_0$ определяются по координатам реперов, измеренным ВД. В системе координат $EU_1V_0W_1$ вектор A_1B_1 имеет следующие координаты:

$$\begin{bmatrix} u'_{A_{1}B_{1}} \\ v'_{A_{1}B_{1}} \\ w'_{A_{1}B_{1}} \end{bmatrix} = \mathbf{M}_{1}(\theta) \begin{bmatrix} u_{A_{1}B_{1}} \\ v_{A_{1}B_{1}} \\ u_{A_{1}B_{1}} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} u_{A_{1}B_{1}} \\ v_{A_{1}B_{1}} \\ u_{A_{1}B_{1}} \end{bmatrix}.$$
(5)

В силу вида матрицы $\mathbf{M}_1(\theta)$ координаты вектора $\overline{A_1B_1}$ в системе координат $EU_1V_0W_1$ по осям EU_1 и EW_1 не зависят от координаты $v_{A_1B_1}$, поэтому координаты вектора \overline{AB} по осям EU_1 и EW_1 в системе координат $EU_1V_0W_1$ равны соответственно координатам вектора $\overline{A_1B_1}$.

Координаты вектора \overline{AB} в системе координат EUVW равны $[u_{AB} v_{AB} w_{AB}]^{\mathrm{T}} = [D_1 \ 0 \ 0]^{\mathrm{T}}$, где D_1 расстояние между реперами A и B, измеренное на этапе изготовления НСП. В системе координат $EU_1V_0W_1$ вектор \overline{AB} имеет следующие координаты:

$$\begin{bmatrix} u'_{AB} \\ v'_{AB} \\ w'_{AB} \end{bmatrix} = \mathbf{M}_{2}(\varphi, \psi) \begin{bmatrix} u_{AB} \\ v_{AB} \\ w_{AB} \end{bmatrix} = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \cos(\varphi)\sin(\psi) & \cos(\varphi)\cos(\psi) & \sin(\varphi) \\ -\sin(\varphi)\sin(\psi) & -\sin(\varphi)\cos(\psi) & \cos(\varphi) \end{bmatrix} \begin{bmatrix} D_{1} \\ 0 \\ 0 \end{bmatrix}.$$
 (6)

В системе координат $EU_1V_0W_1$ координаты вектора \overline{AB} по осям EU_1 и EW_1 , полученные по выражениям (5) и (6), равны, так как являются координатами одного и того же вектора. В результате получим следующие тождества:

$$u'_{A_{1}B_{1}} = u_{A_{1}B_{1}}\cos(\theta) + w_{A_{1}B_{1}}\sin(\theta) \equiv D_{1}\cos(\psi);$$

$$w'_{A_{1}B_{1}} = -u_{A_{1}B_{1}}\sin(\theta) + w_{A_{1}B_{1}}\cos(\theta) \equiv$$

$$\equiv -D_{1}\sin(\phi)\sin(\psi).$$
(7)

Из (7) угол поворота реперного треугольника по крену у можно вычислить как

$$\psi = \begin{cases} \operatorname{acos} \left(\frac{u_{A_1 B_1} \cos(\theta) + w_{A_1 B_1} \sin(\theta)}{D_1} \right), \\ \operatorname{если} u_{A_1 B_1} \sin(\theta) - w_{A_1 B_1} \cos(\theta) \ge 0; \\ -\operatorname{acos} \left(\frac{u_{A_1 B_1} \cos(\theta) + w_{A_1 B_1} \sin(\theta)}{D_1} \right), & \text{иначе.} \end{cases}$$
(8)

Выражение (8) справедливо при $\phi \in (0, \pi/2)$ [ограничения (1)]. При $\phi = 0$ можно найти абсолютное значение угла поворота ψ , но невозможно определить знак угла поворота вследствие особенностей построения линейных видеодатчиков с щелевой диафрагмой.

Для вычисления углов поворота нашлемной системы относительно БИК (носителя), т. е. решения задач, возложенных на НСП, выберем в декартовой системе координат O₁XYZ единичные векторы i, j, k в качестве базиса. По вычисленным углам поворота θ , ϕ и ψ системы координат реперного треугольника EUVW, повернутой относительно системы координат O_1XYZ , найдем координаты базисных векторов i, j, k в системе координат EUVW. Вычислим координаты полученных базисных векторов в системе координат шлема. Углы поворота системы координат реперного треугольника относительно системы координат шлема считаются известными и измеряются на этапе производства НСП. Таким образом, в системе координат шлема получим координаты единичных векторов i, j, k.

Координаты векторов i, j, k в системе координат шлема можно вычислить по координатам векторов в системе координат O_1XYZ и матрице $\mathbf{M}(\theta_1, \phi_1, \psi_1)$, описывающей поворот системы координат шлема относительно системы координат O_1XYZ :

$$\overline{i_1} = \mathbf{M}(\theta_1, \phi_1, \psi_1) \overline{i}; \quad \overline{j_1} = \mathbf{M}(\theta_1, \phi_1, \psi_1) \overline{j};$$
$$\overline{k_1} = \mathbf{M}(\theta_1, \phi_1, \psi_1) \overline{k}. \tag{9}$$

Поскольку векторы \overline{i} , \overline{j} , \overline{k} единичные, то (9) можно записать в виде [5]

$$\overline{i_{1}} = \begin{bmatrix}
\cos(\psi_{1})\cos(\theta_{1}) - \sin(\psi_{1})\sin(\theta_{1})\sin(\phi_{1}) \\
-\cos(\phi_{1})\sin(\theta_{1}) \\
\cos(\theta_{1})\sin(\psi_{1}) + \cos(\psi_{1})\sin(\theta_{1})\sin(\phi_{1}) \\
\vdots \\
\overline{j_{1}} = \begin{bmatrix}
\cos(\psi_{1})\sin(\theta_{1}) + \cos(\theta_{1})\sin(\psi_{1})\sin(\phi_{1}) \\
\cos(\phi_{1})\cos(\theta_{1}) \\
\sin(\theta_{1})\sin(\psi_{1}) - \cos(\psi_{1})\cos(\theta_{1})\sin(\phi_{1}) \\
\vdots \\
\overline{k_{1}} = \begin{bmatrix}
-\sin(\psi_{1})\cos(\phi_{1}) \\
\sin(\phi_{1}) \\
\cos(\psi_{1})\cos(\theta_{1})
\end{bmatrix},$$
(10)

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ

10

Nº 6, 2012

Ο ΕΡΑ ΕΟΤΚΑ Η ΦΟΡΜΑЦИИ Η ΥΠΡΑΒΛΕΗΝΕ

Из (10) легко могут быть найдены углы θ_1 , ϕ_1 и ψ_1 , являющиеся искомыми углами поворота шлема оператора относительно носителя.

Заключение

Таким образом, решена задача измерения угловых координат линии визирования операто-

ра. Использование НСП в бортовых оптико-электронных комплексах позволяет расширить возможности последних, повысить точность решения задачи автоматического сопровождения объектов, уменьшить нагрузку на оператора.

Исследования выполнены при поддержке Министерства образования и науки, государственный контракт № 14.740.11.1083.

Литература

- Балашов О. Е., Степашкин А. И. Нашлемная система обзора и целеуказания // Вестник Рязанского государственного радиотехнического университета. Рязань, 2011. Вып. 4 (38). С. 40–44.
- 2. Алпатов Б. А., Балашов О. Е., Степашкин А. И., Трофимов Д. В. Алгоритм измерения угловых координат линии визирования оператора // Информационно-управляющие системы. 2012. № 3. С. 18–21.
- 3. Алпатов Б. А., Балашов О. Е., Степашкин А. И. Управление приводами гиростабилизированной

платформы в видеокомпьютерной системе сопровождения объектов // Вестник Рязанской государственной радиотехнической академии. Рязань, 2003. Вып. 12. С. 38–41.

- Патент Российской Федерации № 2168152, G01C21/00, G01C21/12, G01B11/26, G01S5/16, 2001 г.
- Бесекерский В. А., Фабрикант Е. А. Динамический синтез систем гироскопической стабилизации. — Л.: Судостроение, 1968. — 351 с.