УДК 519.2

ОЦЕНИВАНИЕ ВРЕМЕННОГО ПОЛОЖЕНИЯ ИМПУЛЬСНОГО СИГНАЛА

С. Н. Воробьёв, канд. техн. наук, доцент **Н. В. Гирина,** ассистент **И. В. Лазарев,** ассистент Санкт-Петербургский государственный университет аэрокосмического приборостроения

Формулируются условия решения задачи оценивания времени прихода импульсного сигнала. Общее решение анализируется для случая обработки измерительного импульсного сигнала колебательным звеном.

Ключевые слова — пересечения случайных траекторий, оценивание времени прихода, временная фиксация фронта, однократные пересечения, неоднократные пересечения, плотность распределения времени пересечения.

Введение

Пересечение случайными процессами неслучайных уровней настолько многообразно в научном и прикладном аспектах, что сформулированы самостоятельные проблемы выбросов, пересечений и точечных случайных процессов [1]. Одно из направлений теории пересечений — задачи, связанные с достижением случайной траекторией заданной границы. В частности, на них базируется оценивание временных параметров импульсных сигналов (времени прихода, длительности) — теоретическая основа импульсной дальнометрии, измерений, импульсной модуляции [2] и др.

Распространенный метод определения временного положения импульсного сигнала — фиксация времени первого пересечения его переднего или заднего фронта с заданным уровнем (временная фиксация [3]). Исчерпывающие сведения о времени первого пересечения могла бы дать плотность распределения, однако, она найдена только для случая марковского гауссова шума [4]. В общем случае стационарного гауссова шума могут быть получены лишь оценки снизу и сверху вероятности пересечения уровня [5].

Задача упрощается принципиально, если искать плотность распределения $f(\tau)$ времени пересечения τ уровня u(t), возможно, неоднократного [6].

Условная вероятность пересечения уровня сверху вниз гауссовой траекторией, начинающейся в точке $x_0 > u_0$, равна

$$p\{x(\tau) < u(\tau) | x_0\} = \Phi\left\{\frac{u(\tau) - m_x(\tau | x_0)}{\sigma_x(\tau | x_0)}\right\}, \qquad (1)$$

 $m_x(\tau \subset x_0) = x_0 R(\tau), \ \sigma_x^2(\tau | x_0) = \sigma^2 (1 - R^2(\tau))$ — условные математическое ожидание (МО) и дисперсия пересекающей траектории $x(t) \subset N(0, \ \sigma^2 R(v)); \ \sigma^2 R(v)$ — функция корреляции; $\Phi(x)$ — интеграл вероятности. Производная вероятности (1)

$$f(\tau|x_0) = \frac{\phi(\tau|x_0)}{\sqrt{2\pi}} \exp\left\{-\frac{(u(\tau) - m_x(\tau|x_0))^2}{2\sigma_x^2(\tau|x_0)}\right\}, \quad (2)$$
$$\phi(\tau|x_0) = \left(\frac{u(\tau) - m_x(\tau|x_0)}{\sigma_x(\tau|x_0)}\right)'.$$

Неравенство

$$\varphi(\tau|x_0) \ge 0 \tag{3}$$

есть необходимое и достаточное условие существования условной плотности распределения (2).

Пересечение снизу вверх описывается симметрично, условие (3) записывается $\phi(\tau \subset x_0) \leq 0$.

Усреднение по x_0 дает плотность распределения времени пересечения сверху вниз, возможно, неоднократного:

$$f(\tau) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} f(\tau | x_0) \exp\left(-\frac{x_0^2}{2\sigma^2}\right) dx_0 =$$
$$= \frac{u'(\tau)}{\sqrt{2\pi}} \exp\left(-\frac{u^2(\tau)}{2}\right). \tag{4}$$

9

Ο ΕΡΑΕΟΤΚΑ ИΗΦΟΡΜΑЦИИ И УΠΡΑΒΛΕΗИΕ

Плотность распределения времени пересечения снизу вверх

$$f(\tau) = -\frac{u'(\tau)}{\sqrt{2\pi}} \exp\left(-\frac{u^2(\tau)}{2}\right).$$
 (5)

Плотности (4) и (5) существуют на интервале времени, где производная u'(t) соответственно неотрицательна или неположительна.

Следует подчеркнуть независимость плотностей (4) и (5) от корреляционных свойств R(v) пересекающих траекторий. Существенны также следствия независимости, которые не были отмечены в работе [6].

1. Пересекающие траектории могут быть реализациями дифференцируемых или недифференцируемых процессов. Дифференцируемым должен быть пересекаемый уровень. В этом отличие от результатов теории выбросов или пересечений, полученных для дифференцируемых процессов [1, 5].

2. Плотности (4) и (5) есть плотности распределения функции $y = \psi(x)$ стандартной нормальной величины $x \subset N(0, 1)$ с обратной функцией — пересекаемым уровнем x = u(t). Известная нормальная аппроксимация плотности с дисперсией $\sigma_{\tau}^2 = \sigma^2 / k^2$, σ^2 — дисперсия нормального шума, k — крутизна уровня [7], в этой интерпретации для линейного уровня получается сразу. Принцип линеаризации уровня при большом отношении сигнал/шум использован и в монографии [7].

3. Условие (3) может нарушаться, если уровень флюктуирует быстрее пересекающего процесса. В реальных системах скорость флюктуаций шума и сигнала одного порядка, поэтому ограничение (3) при исследованиях пересечений уровней фронтами импульсных сигналов не является существенным.

Кроме того, введенное в статье [6] ограничение применимости результатов к классу гауссовых последовательностей избыточно — плотности (4) и (5) получены для процессов непрерывного времени.

Важно, что при реальной (достаточно большой) крутизне уровня — фронта импульсного сигнала — вследствие инерционности процессов вероятность неоднократных пересечений невелика и при рабочих значениях отношения сигнал/шум d > 5становится незначимой. Таким образом, плотность (4) при расчетах реальных импульсных систем является приемлемой моделью плотности распределения времени первого пересечения.

Цель работы — применение уточненных результатов работы [6] к общему расчету измерительной системы, близкой к реальной. В частности, представляет интерес информативность фронтов импульсного сигнала. Реальная система ниже описывается моделью колебательного звена.

Колебательное звено

Пусть на колебательное звено с весовой функцией [8, 9]

$$h(t) = \frac{2\sigma}{\beta} \sqrt{lpha(lpha^2 + eta^2)} \exp(-lpha t) \sin(eta t), \ t \ge 0$$

воздействует белый шум с единичной дисперсией и прямоугольный сигнал длительностью T_c с амплитудой A, так что отношение сигнал/шум $d_{\rm BX} = A$. Параметры $\alpha \leq \beta$ определяют его малую добротность. Функция корреляции шума на выходе

$$R(\tau) = \sigma^2 \exp(-\alpha |\tau|) \left(\cos\beta\tau + \frac{\alpha}{\beta} \sin\beta |\tau| \right), \quad (6)$$

спектр мощности шума

$$G(f) = 4 \int_{0}^{\infty} R(\tau) \cos 2\pi f \tau d\tau =$$

$$= \frac{8\alpha\sigma^{2}(\alpha^{2} + \beta^{2})}{\left\{\alpha^{2} + (\beta - 2\pi f)^{2}\right\} \left\{\alpha^{2} + (\beta + 2\pi f)^{2}\right\}}.$$
(7)

Далее положено $\sigma^2 = 1$.

Сигнал на выходе y(t) при $0 \le t < T_c;$

$$t) = \begin{cases} y(t) - y(t - T_c) & \text{при } t \ge T_c, \\ y(t) - y(t - T_c) & \text{при } t \ge T_c, \end{cases}$$

$$y(t) = A(1 - R(t));$$
 (8)

производная сигнала

s(

$$s'(t) = \begin{cases} y'(t) \text{ при } 0 \le t < T_c; \\ y'(t) - y'(t - T_c) \text{ при } t \ge T_c, \end{cases}$$
(9)

$$y'(t) = A \frac{\alpha^2 + \beta^2}{\beta} \exp(-\alpha t) \sin \beta t, \ t \ge 0.$$

Колебательное звено достаточно универсально: параметры $\alpha = 2$, $\beta = 2\pi$ задают резонансную систему с собственной частотой $f_0 \approx 1$ Гц, параметры $\alpha = 6$, $\beta = 2\pi$ — фактор низких частот типа фильтра Баттерворта с частотой среза $F_0 \approx 1$ Гц. На рис. 1 показаны сигналы (8), рассчитанные с интервалом дискретизации $\Delta = 0,01$, соответствующие этим параметрам звена. Сигналы достигают максимума при $t = T_c$ и состоят из переднего и заднего фронтов. Значения частоты $f_0 \approx 1$ Гц и длительности $T_c = 0,5$ с условны и могут быть пересчитаны в другие диапазоны. Значения параметра затухания $\alpha < 2$ не рассматриваются, так как флюктуации заднего фронта становятся слишком продолжительными.

Соответствующие спектры мощности (7) показаны на рис. 2, *a*, *б*. Дисперсия (мощность) шума равна $\sigma^2 = 1$. На рис. 2, *в*, *г* показаны сигналы и производные (9). Расчетные плотности (5) для пе-

10

Ο ΕΡΑΕΟΤΚΑ Η ΦΟΡΜΑЦИИ Η ΥΠΡΑΒΛΕΗΜΕ

s

■ Рис. 2. Спектры мощности шума (a, b); сигналы и и производные 2 (в, г): d = 5, T_c = 0,5

редних фронтов существуют на интервале (0–0,5), для задних фронтов — на интервале (0,5–1).

Пересечению уровня u_0 сигналом s(t) эквивалентно пересечение нулевого уровня разностью $s(t) - U_0$, поэтому при расчете плотностей (4) и (5) задается уровень $u(t) = s(t) - U_0$. Соответственно при моделировании фиксируются пересечения случайной траектории с нулевым средним и уровнем u(t).

Уровни для фронтов сигнала показаны на рис. 3, *a*, *b*, на рис. 3, *б*, *c* — плотности распределения. Средние значения и среднеквадратическое отклонение (СКО) представлены в табл. 1.

Средние $m_1 \approx \tau_1$, $m_2 \approx \tau_2$. Пересечение задних фронтов фиксируется с меньшим разбросом за счет их большего размаха и большей крутизны (см. рис. 1). Следовательно, задний фронт сигнала на выходе колебательного звена более информативен, и время прихода сигнала следует измерять по его заднему фронту.

■ Рис. 3. Плотности времени пересечения: уровни $U_{01} = s_{max}/2$ для переднего (а) м $U_{02} = (s_{min} + s_{max})/2$ для заднего (в) фронтов сигнала; плотности распределения (4) (б) и (5) (г): $d = 5, T_c = 0.5$

	Таблица	1
--	---------	---

$\alpha = 2; \tau_1 = 0,2213, \tau_2 = 0,7214$				
<i>m</i> ₁	σ ₁ m ₂		σ_2	
0,2221	0,0482	0,7219	0,0343	
$\alpha = 6; \tau_1 = 0,1852, \tau_2 = 0,6702$				
<i>m</i> ₁	σ1	$m_2^{}$	σ_2	
0,1727	0,0571	0,6699	0,0546	

Моделирование пересечений включало генерирование N = 3000 последовательностей X отсчетов (траекторий) шума с интервалом дискретизации Δ и корреляционной матрицей, соответствующей функции корреляции (6), суммирование траекторий с векторами сигнала $\mathbf{Z} = \mathbf{X} + \mathbf{S}$, фиксирование точек пересечения векторов $\mathbf{Z} - u_0$ с нулевым уровнем. Генерирование траекторий выполнялось методом сингулярного разложения корреляционной матрицы [8]. Учитывались тра-

s

Ο ΕΡΑΕΟΤΚΑ ИΗΦΟΡΜΑЦИИ И УΠΡΑΒΛΕΗИΕ

ектории, пересекающие фронт один раз (их количество N_1, N_2). Точки пересечения отмечались индикатором (рис. 4)

$$\operatorname{ind} = \operatorname{diff}(\operatorname{sign}(Z - U_0)),$$

время пересечения *i*-й траекторией $\hat{\tau}_i = n_i \Delta$, $n_i = =$ ind.

Массивы оценок $\hat{\tau}_1$, $\hat{\tau}_2$ в виде гистограмм, мало отличающихся от плотностей (см. рис. 3), показаны на рис. 5. В табл. 2 приведены оценки

🗖 Таблица 2

$\alpha = 2$				
m_1	<i>m</i> ₁ <i>m</i> ₂		\hat{m}_2	
0,2221	0,2249	0,7219	0,7241	
σ1	$\hat{\sigma}_1$	σ_2	$\hat{\sigma}_2$	
0,0482	0,0482	0,0343	0,0343	
$\alpha = 6$				
<i>m</i> ₁	\hat{m}_1	$m_2^{}$	\hat{m}_2	
0,1727	0,1753	0,6699	0,6730	
σ1	$\hat{\sigma}_1$	σ_2	$\hat{\sigma}_2$	
0,0571	0,0620	0,0546	0,0615	

 \hat{m}_1 , \hat{m}_2 , $\hat{\sigma}_1$, $\hat{\sigma}_2$, полученные по массивам $\hat{\tau}_1$, $\hat{\tau}_2$ ($d = 5, T_c = 0, 5$).

При $\alpha = 2$ оценки СКО отличаются от расчетных в третьем-четвертом десятичном знаке при $d \ge 5$ и $T_c = 0,5$. Оценки МО с такой же погрешностью превышают расчетные на величину $\Delta/2$ за счет алгоритма функции diff. При $\alpha = 6$ оценки СКО несколько превышают расчетные. Оценки $\hat{\tau}_1$ и $\hat{\tau}_2$ слабо коррелированы, поэтому их усреднение не приведет к увеличению точности.

Колебательное звено с параметром затухания $\alpha = 2$ по дисперсии оценивания и по близости теоретической плотности распределения к экспериментальным наблюдениям (см. табл. 2) предпочтительно. Зависимость СКО от длительности сигнала T_c и отношения сигнал/шум d показана на рис. 6: сплошные кривые — оценивание по переднему, пунктирные — по заднему фронту сигнала.

При $T_c < 1/4$ точнее оценка по переднему фронту, при $T_c > 1/4$ — по заднему.

Результаты анализа зависимости времени пересечения заднего фронта от параметров сигнала представлены на рис. 7.

Амплитуда A сигнала уменьшается при уменьшении длительности T_c сигнала и отношения сигнал/шум d (уменьшается с 10, рис. 7, a, 1, до 5, рис. 7, a, 2 с шагом $\Delta d = 1$). Рабочие значения длительности $T_c > 0,12$ соответствуют амплитуде $A \ge 5$ (пунктир), при меньшем отношении сигнал/шум вероятность «квазиизмерений» в отсутствие сигнала (дисперсия шума на выходе $\sigma^2 = 1$) может стать недопустимой. Длительность сигнала $T_c = 1/4$ при d = 5 становится минимальной, следовательно, в реальных условиях оценивать время пересечения следует по заднему фронту сигнала.

Амплитуда сигнала определяется длительностью *T_c* и отношением *d*:

 $A \approx 1,368 d \sin(\pi T_c).$

Соответствующие уровни пересечения (рис. 7, б)

 $U_0 = (s_{\min} + A) / 2 \approx 0.432 d \sin(\pi T_c).$

Длительность заднего фронта определяется параметром β и во всех случаях равна $T_2 = 0,5$. Оценка времени прихода «центра тяжести» сигнала $t_0 = T_c / 2$ (см. рис. 1) связана с оценкой $\hat{\tau}_2$ (см. рис. 6) соотношением

$$\hat{t}_0 = \hat{\tau}_2 - T_c / 2 - T_2.$$

Среднеквадратическое отклонение времени пересечения зависит только от амплитуды сигнала (рис. 7, *e*, 1):

Puc. 7. Зависимость времени пересечения от параметров сигнала: а — амплитуда; б — уровни пересечения; в — СКО времени пересечения; г — среднее время пересечения: α = = 2, β = 2π

точные значения СКО — на рис. 7, *в*, 2. Среднее время пересечения (смещение оценки времени прихода по отношению к началу сигнала)

$m_{ au} \approx 0,412 + 0,619T_c$

в области рабочих значений длительности T_c от отношения сигнал/шум практически не зависит (рис. 7, c).

Плотности (4), (5) отличаются от нормальных, и для расчета вероятностей попадания оценок \hat{t}_0 в заданные интервалы значений σ_{τ} недостаточно. Интегрирование плотностей затруднительно. Анализ функций распределения, полученных численным интегрированием, показывает, что интервалы Δ_p , в которые попадают оценки $\hat{\tau}_2$ с вероятностями p = 0.9995 - 0.0005 = 0.999 и p = 0.99, можно с некоторым избытком положить равными $\Delta_{0.999} = 7\sigma$, $\Delta_{0.99} = 5.5\sigma$.

Можно привести некоторые примеры практической интерпретации полученных результатов.

1. Оценка расстояний. Пусть измерительный импульс близок к прямоугольному с длительностью $T_c = 0,5$ мкс. Если отраженный сигнал обрабатывается колебательным звеном с собственной частотой $f_0 = 1$ мГц, то при отношении сигнал/шум $d \ge 5$ СКО оценки времени прихода по заднему фронту $\sigma_\tau \le 0,0344$ мкс, что соответствует $\sigma_R \approx 10$ м. С вероятностью p = 0,999 оценка дальности $\hat{R} \approx R \pm 36$ м. Такова потенциальная точность измерений дальности без учета погрешностей высокочастотного тракта и других инструментальных погрешностей.

2. Время-импульсная модуляция (ВИМ). Оценка временного положения т $\subset T$ стандартного импульса на интервале наблюдения T в принципе не отличается от оценки расстояний. Другая трактовка ВИМ: стандартные сигналы длительности T_c классифицируются по одному из n фиксированных временных положений с вероятностью ошибки p (рис. 8, сигналы с положениями $t_1 - t_8$ по уровню $U_0 = 2,6452$).

Временное положение регистрируется по заднему фронту. Необходимо минимизировать общую протяженность интервала наблюдений

$$T = T_c + (n-1)\Delta_p + T_2.$$

При ограниченном значении *n* задача решается минимизацией длительности T_c . В табл. 3 приведены значения интервалов *T* для n = 8, p = 0,99. При $d \ge 7$ оптимальная длительность сигнала $T_c = 1/3$, при d < 7 интервал наблюдений минимизирует сигнал с длительностью $T_c = 1/2$.

Альтернативой классификации по временному положению заднего фронта сигнала могла бы быть *n*-канальная согласованная фильтрация. Расчеты и моделирование первого канала, согласованного с первым сигналом (см. рис. 8, 1), пока-

Рис. 8. Сигналы с фиксированным временным положением

Таблі	іца З	
1		

d					
5	6	7	8	9	10
2,3244	2,0934	1,9317	1,8123	1,7200	1,6468
2,3691	2,0958	1,9110	1,7724	1,6646	1,5799
2,6403	2,5865	2,0629	1,8935	1,7587	1,6547
	5 2,3244 2,3691 2,6403	5 6 2,3244 2,0934 2,3691 2,0958 2,6403 2,5865	5 6 7 2,3244 2,0934 1,9317 2,3691 2,0958 1,9110 2,6403 2,5865 2,0629	a 5 6 7 8 2,3244 2,0934 1,9317 1,8123 2,3691 2,0958 1,9110 1,7724 2,6403 2,5865 2,0629 1,8935	a 5 6 7 8 9 2,3244 2,0934 1,9317 1,8123 1,7200 2,3691 2,0958 1,9110 1,7724 1,6646 2,6403 2,5865 2,0629 1,8935 1,7587

зывают, что его собственная статистика $\alpha_1|s_1 \subset N$ (86,7368; 9,3133), статистика, порождаемая вторым сигналом (см. рис. 8, 2), $\alpha_1|s_2 \subset N$ (47,935; 9,3133). При этом вероятность ошибки p = 0.98,

Литература

- 1. Тихонов В. И., Хименко В. И. Проблема пересечений уровней случайными процессами // Радиофизические приложения. Радиотехника и электроника. 1998. Т. 43. № 5. С. 501–523.
- Волков Л. Н. и др. Основы цифровой радиосвязи: базовые методы и характеристики. — М.: Эхо трендз, 2005. — 392 с.
- Митяшев Б. Н. Определение временного положения импульсов при наличии помех. — М.: Сов. радио, 1962. — 199 с.
- 4. Воробьев С. Н. Пересечение гауссовым марковским процессом детерминированного уровня // Информационно-управляющие системы. 2004. № 2. С. 16–20.
- Семаков С. Л. Выбросы случайных процессов: приложения в авиации. — М.: Наука, 2005. — 200 с.

т. е. согласованная фильтрация и оценивание временного положения сигнала — методы одного класса точности.

Следует отметить, что колебательное звено является довольно общей моделью линейной системы. Результаты моделирования, например фильтра Баттерворта [6, 8], принципиально не отличаются от приведенных.

Заключение

Плотность распределения f(t) времени пересечения стационарным гауссовым процессом уровня U(t) не связана с корреляционными свойствами процесса и может быть рассчитана стандартным методом теории вероятностей как плотность функции нормальной величины с $\varphi^{-1}(x) = U(t)$, $x \subset N(0, 1)$. Если уровень достаточно крутой, например, фронт импульсного сигнала, f(t) становится моделью плотности распределения времени первого пересечения, приемлемой для инженерных расчетов.

Применение описанной методики расчета и моделирования плотности к конкретному примеру сигнала на выходе колебательного звена показывает адекватность расчетных и экспериментальных данных. Косвенный признак адекватности — близость моделей согласованной фильтрации и оценивания временного положения сигналов по их заднему фронту.

- 6. Воробьев С. Н. Пересечение гауссова процесса с неслучайным уровнем // Информационно-управляющие системы. 2007. № 2. С. 2–11.
- Тихонов В. И. Нелинейные преобразования случайных процессов. М.: Радио и связь, 1986. 296 с.
- Воробьев С. Н. Эффективное обнаружение детерминированных сигналов: монография / СПбГУАП. СПб., 2003. 139 с.
- 9. Воробьев С. Н., Гирина Н. В. Пересечение стационарных гауссовых последовательностей с неслучайными уровнями // Информационно-управляющие системы. 2009. № 3. С. 7–12.

14