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Introduction: Development of practical post-quantum signature schemes is a current challenge in the applied cryptography. 
Recently, several different forms of the hidden discrete logarithm problem were proposed as primitive of signature schemes 
resistant to quantum attacks. Purpose: Development of a new form of the hidden discrete logarithm problem set in finite 
commutative groups possessing multi-dimensional cyclicity, and a method for designing post-quantum signature schemes. 
Results: A new form of the hidden discrete logarithm problem is introduced as the base primitive of practical post-quantum 
digital signature algorithms. Two new four-dimensional finite commutative associative algebras have been proposed as algebraic 
support for the introduced computationally complex problem. A method for designing signature schemes on the base of the latter 
problem is developed. The method consists in using a doubled public key and two similar equations for the verification of the 
same signature. To generate a pair of public keys, two secret minimum generator systems <G, Q> and <H, V> of two different finite 
groups Γ<G, Q> and Γ<H, V> possessing two-dimensional cyclicity are selected at random. The first public key (Y, Z, U) is computed 
as follows: Y = Gy1Qy2, Z = Gz1Qz2β, U = Gu1Qu2, where the set of integers (y1, y2, α, z1, z2, β, u1, u2, γ) is a private key. The second 
public key (Y′, Z′, U′) is computed as follows: Y′ = Hy1Vy2, Z′ = Hz1Vz2β, U′ = Hu1Vu2γ. Using the same parameters to calculate 
the corresponding elements belonging to different public keys makes it possible to calculate a single signature which satisfies 
two similar verification equations specified in different finite commutative associative algebras. Practical relevance: Due to a 
smaller size of the public key, private key and signature, as well as approximately equal performance as compared to the known 
analogues, the proposed digital signature scheme can be used in the development of post-quantum signature algorithms.
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Introduction

Currently the most widely used public-key cryp-
toschemes exploit the computational complexity of 
the factoring problem (FP) [1, 2] and the discrete log-
arithm problem (DLP) [3, 4]. However, the expected 
breakthrough in quantum computing technology in 
the near future makes it extremely urgent to devel-
op cryptosystems that are resistant to attacks using 
quantum computers. Post-quantum public-key cryp-
tosystems should be based on computationally diffi-
cult problems other than FP and DLP, since efficient 
polynomial algorithms for solving FP and DLP on a 
quantum computer are known [5–7].

In the current field of development of public-key 
post-quantum cryptoschemes, considerable atten-
tion of the cryptographers is paid to the development 
of cryptoschemes on algebras [8, 9], on boolean func-
tions [10, 11], and on linear codes [12, 13].

One of attractive post-quantum primitives is the 
hidden discrete logarithm problem (HDLP) defined 
usually in non-commutative finite associative al-
gebras (FAAs). Different forms of the HDLP were 
proposed to develop signature schemes on non-com-

mutative FAAs [9, 14, 15]. For the first time, a 
signature scheme on a commutative FAA was pro-
posed in [16]. The interest in the HDLP problem is 
related to the fact that the HDLP-based signature 
schemes have relatively small sizes of the public key 
and signature. This area of research is quite new, 
and for a deeper and more complete understanding 
of the possibilities for the development of practical 
post-quantum HDLP-based, it is of significant in-
terest to search for new forms, especially for the 
case of using commutative FAAs as a carrier of the 
HDLP. 

In this paper, we propose a new form of setting 
the HDLP in commutative FAAs characterized in 
that the multiplicative group of the algebras pos-
sesses four-dimentional cyclicity in terms of the 
paper [17]: a finite commutative group whose min-
imum generator system includes  (2) elements 
that have the same order is called group with -di-
mensional cyclicity. The method of setting the pro-
posed form of the HDLP is fundamentally different 
from the method introduced earlier in the paper 
[16] for development of the HDLP-based signature 
on a commutative algebra. 
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Two commutative FAAs used 
as algebraic support

A finite m-dimensional vector space over the fi-
nite ground field GF(p), in which a vector multipli-
cation operation is defined additionally to the sca-
lar multiplication and addition operations, is called 
m-dimensional algebra, if the vector multiplication 
is distributive at the left and at the right relatively 
the addition. A vector A is presented as an ordered 
set of its coordinates: A  (a0, a1, …, am1) or as a sum 
of its components: A  a0e0 + a1e1 + … + am1em1, 
where ei (i  0, 1, …, m  1) are formal basis vectors. 
Defining additionally the operation of vector multi-
plication () possessing the property of the two-sid-
ed distributivity relatively the addition operation, 
one gets the finite m-dimensional algebra. 

Usually, the multiplication of two vectors 
1

0
m

i ii a
A e  and 

1
0

m
j jj b

B e  is defined by the 

followi ng formula: 
1 1

0 0 ,m m
i j i jj j a b 

  A B e e   

where the coordinates ai and bi are multiplied as 
elements of the field GF(p) and every the product 
of two formal basis vectors is to be replaced by an 
one-component vector indicated in a cell at the in-
tersection of the i-th row and j-th column of so called 
basis vector multiplication table, for example, see 
Table 1 [16]. Each of these tables defines a four-di-
mensional commutative FAA, multiplicative group 
of which has order  that can be computed as num-
ber of invertible vectors. Consider, for example, the 
algebra defined by Table 1. 

The unit element of this commutative FAA is the 
vector E  (0, 0, 1, 0). If for some vector A the vector 
equation 

 AX  E  (1)

has a unique solution, then the vector A is called 
invertible. For a fixed invertible vector A the 
vector equation AX  E has a unique solution 
denoted as A1 (called inverses of A). Evidently, 
AA1  A1A  E. An invertibility condition can 
be derived from equation (1) that can be reduced 

to the following system of four linear equations, 
where the unknowns are coordinates of the vector 
X  (x0, x1, x2, x3):
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The main determinant of the system (2) is
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The case   0 defines the following invertibility 
condition:

 
   

2 22 2 2 2
0 1 2 3 0 3 1 24 0.a a a a a a a a        

 
 (3)

The case   0 defines the following non-inverti-
bility condition:

 
   

2 22 2 2 2
0 1 2 3 0 3 1 24 .a a a a a a a a          (4)

Proposition 1. Suppose the structural constant 
 is a quadratic non-residue in GF(p). Then the 
number of different non-invertible vectors in the 

  Table 1. Setting the multiplication operation in the 
first used FAA multiplicative group of which possesses 
multi-dimensional cyclicity (  0)

 e0 e1 e2 e3

e0 e2 e3 e0 e1

e1 e3 e2 e1 e0

e2 e0 e1 e2 e3

e3 e1 e0 e3 e2
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four-dimensional FAA set by Table 1 is equal to 
  2p2  1. 

Proof: The non-invertibility condition (4) sets 
the following two cases:

i) 2 2 2 2
0 1 2 3 0 3 1 22 2a a a a a a a a        

   2 2
0 3 1 2 ;a a a a   

ii) 2 2 2 2
0 1 2 3 0 3 1 22 2a a a a a a a a         

   2 2
0 3 1 2 .a a a a   

If the structural constant  is a quadratic 
non-residue modulo p, then for the first case the 

equality holds true only if    2 2
0 3 1 2 0.a a a a     

This gives p different sets of coordinates a0 and a1 
and p different sets of coordinates a2 and a3, in-
cluding the zero vector (0, 0, 0, 0). Totally, in the 
first case we have p2  1 non-inverible vectors. 
In the second case the equality holds true only if 

   2 2
0 3 1 2 0.a a a a     This defines other p2 

sets of coordinates a0, a1, a2, and a3, including 
(0, 0, 0, 0). Therefore we have   2p2  1. Proposition 1 
is proven.

Proposition 2. Suppose the structural constant 
 is a quadratic non-residue in GF(p). Then the or-
der of the multiplicative group of the FAA set by the 
Table 1 is equal to   (p2  1)2.

Proof: Among p4 different vectors of the algebra 
you have   2p2  1 non-invertible ones, therefore 
  p4    (p2  1)2. Proposition 2 is proven.

Proposition 3. Suppose the structural constant  
is a quadratic residue in GF(p). Then the number of 
non-invertible vectors in the four-dimensional FFA 
set by Table 1 is equal to   4p3  6p2 + 4p2  1. 

Proof: Since the structural constant  is a quad-
ratic residue, formula (4) defines the following two 
cases:

i)    
2 2

0 3 1 2 0 3a a a a a a         

 1 2 ;a a  

ii)    
2 2

0 3 1 2 0 3a a a a a a         

 1 2 .a a  

Sets of coordinates (a0, a1, a2, a3) satisfying one 
of four conditions defined by the said two cases rep-
resent non-invertible vectors. The following Table 2 
shows the number of vectors coordinates of which 
satisfy a condition indicated in the left column. 

Totally, we have

   2 22 2

3 2

2 1 2 1

4 6 4 1.

p p p p p p

p p p

       

   

Proposition 3 is proven.

Proposition 4. Suppose the structural constant  
is a quadratic residue in GF(p). Then the order of the 
multiplicative group of the FAA set by the Table 1 is 
equal to   (p  1)4.

Proof: Among p4 different vectors of the algebra 
you have   4p3  6p2 + 4p2  1 non-invertible ones, 
therefore   p4    p4  (4p3  6p2 + 4p2  1) 
 (p  1)4. Proposition 4 is proven.

Thus, if the structural constant  is equal to a 
quadratic residue modulo p, then the multiplicative 
group of the considered algebra has order (p  1)4 
and possesses four-dimensional cyclicity [16]. If 
the structural constant  is equal to a quadratic 
non-residue modulo p, then the multiplicative group 
of the considered algebra has order (p2  1)2 and 
possesses two-dimensional cyclicity [16]. 

In the developed signature scheme, it is assumed 
that the first commutative FAA is set by Table 1, 
where  is equal to a quadratic residue, and the char-
acteristic of the field GF(p) is a prime having the 
following structure p 2q + 1 with 256-bit prime q. 
In this case the integer q divides p  1 and one can 
generate a minimum generator system <G, Q>, 
where G and Q are vectors of the order q, which sets 
a two-dimensional cyclicity subgroup of order q2. 

We also use another commutative FAA possess-
ing the properties similar to that of the algebra set 
by Table 1. The second used commutative FAA is 
set by basis vector multiplication table represent-
ed as Table 3, where  is equal to a quadratic res-
idue, and includes the unit vector E  (0, 0, 0, 1). 
Consideration of the number of invertible vectors 
in the second commutative FAA shows that for the 
latter the Propositions 1 to 4 are also true. Thus, we 
have two different commutative FAAs multiplica-
tive group each of which possesses four-dimension-
al cyclicity. The latter group contains a large num-

  Table 2. Number of non-invertible vectors relating to 
different subsets for the case when  is a quadratic 
residue

Condition

# of different combinations 

of coordinates (a0, a1, a2, a3) 

satisfying the condition 

at the left

0 3 1 2 0a a a a      p2 including (0, 0, 0, 0)

0 3 1 2 0a a a a      p2 including (0, 0, 0, 0)

 0 3 1 2 0a a a a       2p(p  1)2

 0 3 1 2 0a a a a       2p(p  1)2
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ber of two-dimensional cyclicity subgroups of the 
order q2. 

Example 1. In the case of the first FAA with 
p 2q + 1  307771779467 (prime q  153885889733) 
and   3 (quadratic residue) one can select the fol-
lowing minimum generator system <G, Q, H, V> 
setting a primary group <G,Q,H,V> of the order 
<G,Q,H,V>  q4  5607834646621019342722268060
80639851841841521:

G  (0, 0, 3, 0); Q  (0, 2, 5, 0); H  (2, 7, 3, 0); 

V  (13, 12, 10, 17).

For   2 (quadratic non-residue) one can se-
lect the following minimum generator system 
<G, Q> setting a primary group <G,Q> of the order 
<G,Q>  q2 94723468236283682804089: 

G  (0, 0, 3, 0) and Q  (0, 1, 2, 0).

Example 2. In the case of the second FAA 
with p 2q + 1  273413518347119 (prime q 
 136706759173559) and   2 (quadratic residue) one 
can select the following minimum generator system 
<G, Q, H, V> setting a primary group <G,Q,H,V> of 
the order <G,Q,H,V>  q4  34926892817234073926
007473842204106 8655028853953782643361:

G  (0, 0, 0, 2); Q  (0, 0, 1, 2); H  (0, 1, 4, 7); 

V  (1, 3, 7, 10).

For   13 (quadratic non-residue) one can se-
lect the following minimum generator system 
<G, Q> setting a primary group <G,Q> of the order 
<G,Q>  q2  18688738003737457800684726481: 

G  (0, 189, 0, 222) and Q  (0, 0, 0, 2).

Consider a method for generating a minimun 
generator system of a two-dimensional cyclicity 
subgroup of order q2. The following procedure out-
puts a random vector of the order q: 

1. Generate a random vector R and compute the 
vector Q  R2.

2. If Q  E, then output Q. Else go to step 1.

The next probabilistic procedure outputs the 
minimum generator system:

1. Generate a uniformly random vector G of 
prime order q.

2. Generate a uniformly random vector Q of or-
der q.

The multiplicative group of the algebra con-
tains q4  1 vectors of order q. The cyclic group 
generated by the vector G includes q  1 vectors 
of order q, therefore, probability that the vector 
Q is an element of the cyclic group generated by 
the vector G is equal approximately to q3. In an-
other case the pair of vectors <G, Q> represents a 
minimum generator system of a primary subgroup 
of order q2 that is contained in the multiplicative 
group of the algebra. For the case of 256-bit prime 
q the probability q3 that the latter procedure fails 
is negligible.

A new HDLP-based signature scheme

In the developed signature scheme a 256-bit col-
lision-resistant hash function fH is assumed to be 
used. Computation of the public key is proposed as 
the following procedure.

Public-key generation algorithm.
1. Generate at random a minimum generator 

system <G, Q> of the group of order q2, which is 
contained in the first commutative FAA.

2. Generate at random integers y1 < q, y2 < q, and 
 < p, where  is a primitive element in GF(p). Then 
calculate the vector Y  Gy1Qy2.

3. Generate at random integers z1 < q, z2 < q, and 
 < p, where  is a primitive element in GF(p). Then 
calculate the vector Z  Gz1Qz2.

4. Generate at random integers  < p, u1 < q, and 
u2 < q, such that non-equality z1u2  z2u1 holds true 
and  is a primitive element in GF(p). Then calculate 
the vector U  Gu1Qu2.

5. Generate at random a minimum generator 
system <H, V> of the group of order q2, which is 
contained in the second commutative FAA.

6. Calculate the vectors Y  Hy1Vy2, Z  Hz1Vz2, 
and U  Hu1Vu2.

7. Output the public key in the form of two tri-
ples of vectors: (Y, Z, U) and (Y, Z, U).

In the developed signature scheme, we use the 
idea of doubling the signature verification equation 
connected with doubling the public key. Therefore, 
the triple (Y, Z, U) will be called in this paper the 
first public key. Respectively, the triple (Y, Z, U) 
will be called the second public key. Each of the 
public keys has been calculated with using the same 
private key representing nine 256-bit integers (y1, 
y2, , z1, z2, , u1, u2, ) and the same formulas. 
The first (second) public key is computed in the 
first (second) commutative FAAs. The size of each 

  Table 3. Setting the second used FAA (  0)

 e0 e1 e2 e3

e0 e3 e2 e1 e0

e1 e2 e3 e0 e1

e2 e1 e0 e3 e2

e3 e0 e1 e2 e3
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of public keys is equal to 384 bytes, and the size of 
doubled public key equals to 768 bytes.

The vectors G, Q, H, and V are secret, but the 
developed signature scheme offers the possibility 
to choose one of two signature generation proce-
dures. In the first one, only four exponentiation 
operations are executed in FAAs, however, the 
vectors G, Q, H, and V must be stored by the own-
er of the public key (the person who generated the 
public key) as additional elements of his private 
key. In this case the size of private key is equal to 
704 bytes.

In the second version of the signature generation 
procedures, six exponentiation operations are to be 
performed in FAAs, but the vectors G, Q, H, and V 
are not needed and the set of nine integers (y1, y2, 
, z1, z2, , u1, u2, ) represent the full private key 
having the size equal to 192 bytes.

Usually, finding the integer x satisfying the 
exponential equation Y  Gx, where Y and G are 
known group elements, which is set in a finite cyclic 
group is called discrete logarithm problem. If one 
of the elements Y and G or both of them is not di-
rectly given, then we have a number of problems we 
call HDLPs. Different forms of the HDLP are con-
sidered in [9, 15]. The HDLP form exploited in the 
present paper is defined as follows:

Given a triple of vectors (Y, Z, U) contained in 
the first FAA and a triple of vectors (Y, Z, U) con-
tained in the second FAA. Find the set of integer 
powers (y1, y2, z1, z2, u1, u2) and the set of scalars 
(, , ) such that equations Y  Gy1Qy2, Z  Gz1Qz2, 
U  Gu1Qu2 (in the first FAA), Y  Hy1Vy2, 
Z  Hz1Vz2, and U  Hu1Vu2 (in the second FAA) 
hold true for i) some secret vectors G and Q generat-
ing two different cyclic groups of prime order q in 
the first FAA; ii) some secret vectors H and V gen-
erating two different cyclic groups of prime order q 
in the second FAA. 

One can easily show that, due to using random 
vectors G and Q (H and V) and scalar multiplica-
tions, the vectors Y, Z, and U (Y, Z and U) com-
pose a basis of a three-dimensional cyclicity group 
in the first (second) FAA. Therefore the vector Y 
(Y) cannot be represented as a product of some pow-
ers of the vectors Z and U (Z and U) and a periodic 
function set on the base of the known parameters 
has periods defined by the order of the public key 
elements, i. e., by the prime q. The latter means that 
the Shor quantum algorithm [5] is not applicable to 
find one of the values y1, y2, z1, z2, u1, and u2.

The said computationally complex problem un-
derlying the developed signature scheme is a new 
one and currently the authors have no proposal for 
solving it (except exhaustive search). However, 
the importance of finding effective solutions al-
lows us to hope that this article will stimulate 
independent researchers to address this issue. 

At the moment, the authors expect that choosing 
a 256-bit prime number q will provide a 128-bit 
level of security for the proposed signature algo-
rithm. 

The first signature generation algorithm.
1. Generate three uniformly random integers 

k < q, t < q, and  < p.
2. Calculate the vector R  GkQt.
3. Calculate the vector R  HkVt.
4. Compute the first signature element e that is a 

hash-function value calculated from the document 
M to be signed, to which the vectors R and R are 
concatenated: e  fH(M, R, R).

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the 
following system of two linear equations:

 

1 1 1

2 2 2

mod
.

mod
z s u d k ey q

z s u d t ey q

  
   

  (5)

It is easy to get the following formulas for com-
putation of the second and third signature elements:

 

   2 1 1 2

1 2 2 1
mod ;

u k ey u t ey
s q

z u z u

  



  (6)

 

   1 2 2 1

1 2 2 1
mod .

z t ey z k ey
d q

z u z u

  



  (7)

6. Compute the fourth signature element  
esd.

The output signature is four 256-bit numbers 
(e, s, d, ) with total size equal to 128 bytes.

The second signature generation algorithm.
1. Generate four uniformly random integers 

a < q, b < q, c < q, and  < p.
2. Calculate the vector R  YaZbUc.
3. Calculate the vector R  YaZbUc.
4. Compute the first signature element e that is a 

hash-function value calculated from the document 
M to be signed, to which the vectors R and R are 
concatenated: e  fH(M, R, R).

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the 
system (5) and can be computed by formulas (6) and 
(7), substituting the following values of the rand-
omization integers k and t:

k  ay1 + bz1 + cu1 mod q and 

t  ay2 + bz2 + cu2 mod q.

6. Compute the fourth signature element  
aebscd.

The main contribution to the computational 
complexity of the signature generation procedure 
is introduced by the exponentiation operations. 
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The exponentiation in each of the four-dimen-
sional FAAs takes about 6144 multiplications 
in GF(p). One exponentiation in GF(p) takes on 
the average about 384 multiplications. One can 
roughly estimate the execution time of the first 
and second signature generation procedures as 
25728 and 38016 multiplications in GF(p), corre-
spondingly.

The signature verification algorithm.
1. Calculate the vector R*  YeZsUd.
2. Calculate the vector R*  YeZsUd.
3. Compute the hash-function value from the 

document M to which the vectors R* and R*are 
concatenated: e*  fH(M, R*, R*).

4. If e*  e, then the signature is accepted as a 
genuine one, otherwise the signature is rejected as 
a false one.

One can roughly estimate the computational 
complexity (execution time) of the signature verifi-
cation procedure as six exponentiations in the used 
four-dimensional algebras or as 37248 multiplica-
tions in GF(p).

Signature scheme correctness proof.
To prove correctness of the introduced signature 

scheme, consider a signature (e, s, d, ) computed in 
full correspondence with the first signature gener-
ation procedure when using the correct signer’s pri-
vate key. When, submitting the signature (e, s, d, ) 
to the input of the verification procedure, we have 
the following proof of the correctness of the pro-
posed signature scheme with the first signature 
generation algorithm [take into account formulas 
in the system (5)]:

   

1 2 1 2 1 2

1 1 1 2 2 2

1 1 2 2

;

* e s d

ey ey e sz sz s du du d

ey sz du ey sz du e s d

ey k ey ey t ey e s d e s d

k t
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G Q
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;

*
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k t

e e

   

      

     

     

     

       

  

    

R Y Z U

H V H V H V

H V

H

H R

R R R R

The final equality means the input signature 
passes the verification procedure as a genuine 
signature, i. e., the signature scheme performs 
correctly. The correctness proof of the signature 
scheme with the second signature generation algo-
rithm is similar to the presented one. 

Discussion

The fact that the same signature satisfies two 
similar, but different, verification equations is en-
sured by the same pairs of powers (y1, y2), (z1, z2), 
and (u1, u2) and the same multipliers , , and , 
which are used to compute the corresponding ele-
ments of the first (Y, Z, U) and second (Y, Z, U) 
public keys. The public keys are computed after se-
lection random minimum generator systems <G, Q> 
(in the first FAA) and <H, V> (in the second FAA) 
which are secret. Every of the element of the first 
(second) public key is calculated as an element of 
the two-dimensional cyclicity group <G,Q> (<H,V>), 
which is multiplied by a random scalar. After sca-
lar multiplication we get with a high probability a 
vector outside the group <G,Q> (<H,V>). Thus, the 
elements of the first (second) public key are not ele-
ments of the group <G,Q> (<H,V>).

Suppose a vector W is an element of the group 
<G,Q>. The problem of finding the powers w1 and 
w2 such that W  Gw1Qw2 is called discrete loga-
rithm problem in a two-dimensional cyclicity group 
<G,Q>. In this paper we assume that a potential 
signature forger can efficiently solve this problem, 
i. e., if a minimum generator system is given, then a 
forger can efficiently express any group element as 
product of some powers of two generators. 

Consider an arbitrary minimum generator sys-
tem <Gi, Qi> of the primary group of order q2 in 
the first algebra. The forger can generate random 
integers i, i, i and efficiently compute the values 
(yi1, yi2, zi1, zi2, ui1, ui2) such that Yi

1  Gi
yi1Qi

yi2, 
Zi

1  Gi
zi1Qi

zi2, and Ui
1  Gi

ui1Qi
ui2. Then, using 

the formulas (6) and (7), he can compute a signature 
satisfying the first verification equation. However, 
this signature will satisfy the second verification 
equation only if the primary group of order q2 of 
the second algebra contains a minimum genera-
tor system <Hi, Vi> such that Yi

1  Hi
yi1Vi

yi2, 
Zi

1  Hi
zi1Vzi2, and Ui

1  Hi
ui1Vi

ui2. However, in 
fact, the fixed four values (yi1, yi2, zi1, zi2) define 
one minimum generator system <Hi, Vi> (that can 
be supposedly computed) such that Yi

1  Hi
yi1Vi

yi2 
and Zi

1  Hi
zi1Vi

zi2. For the fixed values of the vec-
tors Hi and Vi one will get Ui

1  Hi
ui1Vi

ui2, where 
the values ui1 and ui2 are random. Since the first 
and second commutative FAAs are independent, 
the equalities ui1  ui1 and ui2  ui2 of two pairs of 
256-bit numbers can take place only at random with 
probability about 2512. 

Therefore, we expect that the signature forger is 
unable to find efficiently the required alternative 
pair of vectors <Gi, Qi> or to guess the secret ele-
ments <G, Q>. A quantum computer will not pro-
vide much help to the forger, since the discrete log-
arithm problem that arises is hidden (the “bases” of 
logarithms, i. e., <G, Q> and <H, V> are unknown). 
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In fact, breaking the proposed signature scheme is 
to find two minimum generator systems of two dif-
ferent two-dimensional cyclicity groups (contained 
in two different FAAs) which are consistent with 
each other. These two minimum generator systems 
are connected by the mechanism of doubling the 
verification equation, i. e., by a single digital signa-
ture, which must satisfy the verification equation 
given in two different independent commutative 
FAAs.

One can note, that the method [18, 19] of the re-
ductionist security proof that was applied to the 
Schnorr signature algorithm [20] can be also ap-
plied to the proposed signature scheme. Indeed, an 
assumption that a signature forger is able to calcu-
late a signature equally well for six different hash 
functions leads to potential possibility to compute 
the private key (y1, y2, , z1, z2, , u1, u2, ). 

Indeed, like in [19], suppose a potential signa-
ture forger can compute signatures for different 
hash functions, when the values of the randomiza-
tion parameters are k, t, and  are fixed. For four 
different hash functions he computes the signa-
tures (e1, s1, d1, 1), (e2, s2, d2, 2), (e3, s3, d3, 3), 
and (e4, s4, d4, 4). Then the signature forger com-
poses the following system of eight linear equations 
with eight unknowns y1, y2, z1, z2, u1, u2, k, and t 
[see (5)]:

1 1 1 1 1 1

2 1 2 1 1 2

1 2 1 2 2 1

2 2 2 2 2 2

1 3 1 3 3 1

2 3 2 3 3 2

1 4 1 4 4 1

2 4 2 4 4 2

mod
mod
mod
mod

.
mod
mod
mod
mod

z s u d k e y q

z s u d t e y q

z s u d k e y q

z s u d t e y q

z s u d k e y q

z s u d t e y q

z s u d k e y q

z s u d t e y q

  
   
   


  
   
   


  
   

Note,  the probability that the main determinant 
of his system of equations equals to zero is negli-
gibly small (q1). Solving the latter system one can 
get the values of y1, y2, z1, z2, u1, and u2. It easy 
to show that, using the formulas i  eisidi for 
i  1, 2, 3, 4 (see step 6 in the first signature gen-
eration algorithm) and finding roots from different 
ratio values i/j in GF(p), one can calculate the val-
ues of scalars , , and . Thus, taking into account 
that operations of finding roots in GF(p), where 
p 2q + 1, have polynomial computational complex-
ity, one can conclude that a polynomial algorithm 
for forging a signature is reducible to a polynomial 
algorithm of solving the HDLP underlying the in-
troduced signature scheme.

The above provides a general idea for construct-
ing a signature scheme and a general justification 
for its resistance to attacks using conventional and 

quantum computers. Detailed consideration of the 
security issue and obtaining detailed estimates is a 
separate independent task for the new study.

It is important that the proposed fundamen-
tally new method for setting the HDLP can be im-
plemented in numerous different ways. The most 
obvious is the use of different pairs of finite asso-
ciative algebras. In particular, pairs of algebras of 
different orders, different types and structures can 
be used. In particular, is interesting to consider the 
following versions:

i) one algebra is commutative and the other one 
is non-commutative;

ii) one algebra is defined over a ground finite 
field GF(p), and the other one is defined over a finite 
extension of the binary field GF(2s).

The introduced design method opens up quite 
wide possibilities for implementing various design 
variants of digital signature schemes. The intro-
duced signature scheme suites well for software 
implementation, since it uses only additions, mul-
tiplications, exponentiations and inversions (mod p 
and mod q). 

Currently, the NIST competition [21] for the 
development of post-quantum public-key crypto-
systems has entered the final stage [22]. The final-
ists in the category of post-quantum signatures 
were Falcon [23] and Crystals-Dilithium [24], and 
Rainbow [25]. It is interesting to compare the pro-
posed signature scheme with the finalists and with 
other HDLP-based signatures. A rough comparison 
is presented in Table 4.

Conclusion

A new design method and a practical HDLP-
based post-quantum signature scheme have been 
introduced. The proposed method is quite simple to 
understand and has fundamental differences from 

  Table 4. Comparison with some known post-quantum 
signature schemes

Signature

scheme 

Signa-

ture size, 

byte

Public 

key size, 

byte

Rate of 

signature 

generation, 

arb. un.

Rate of 

signature 

verification, 

arb. un.

Falcon 1280 1793 50 25

Crystals-

Dilithium
2701 1472 15 2

Rainbow 64 150 000 – –

[15] 192 768 50 80

[16] 192 512 40 80

Proposed 128 768 70 80



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 2, 202150

ЗАЩИТА ИНФОРМАЦИИ

other known methods of designing post-quantum 
digital signature schemes. This reduces the com-
plexity of the further stage of a detailed study of 
the security of the developed signature scheme. 
Another important advantage of the proposed 
method is that it opens up the possibility of devel-

oping a new class of practical post-quantum cryp-
tosystems. The latter is of particular importance 
in the light of the widely conducted researches on 
the development of post-quantum digital signature 
standards.
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Постквантовая схема цифровой подписи на группе с четырехмерной цикличностью
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Введение: разработка практичных постквантовых схем подписи является одним из вызовов прикладной криптографии. Не-
сколько различных форм скрытой задачи дискретного логарифмирования были предложены недавно в качестве примитива схем 
подписи, стойких к квантовым атакам. Цель: разработка новой формы скрытой задачи дискретного логарифмирования, заданной 
в коммутативной группе, обладающей многомерной цикличностью, и метода построения постквантовых схем подписи. Резуль-
таты: предложена новая форма скрытой задачи дискретного логарифмирования в качестве базового примитива для практичных 
постквантовых алгоритмов цифровой подписи. Представлены две новые четырехмерные конечные коммутативные ассоциатив-
ные алгебры в качестве алгебраического носителя предложенной новой вычислительно трудной задачи. Разработан метод постро-
ения схем подписи на основе последней. Суть метода состоит в использовании удвоенного открытого ключа и двух одинаковых 
уравнений для проверки подлинности одной и той же подписи. Для генерации пары открытых ключей выбираются случайным 
образом два базиса <G, Q> и <H, V> двух различных конечных групп <G, Q> и <H, V>, обладающих двумерной цикличностью. 

Первый открытый ключ (Y, Z, U) вычисляется следующим образом: Y  Gy1Qy2, Z  Gz1Qz2, U  Gu1Qu2, где набор целых чисел 
(y1, y2, , z1, z2, , u1, u2, ) является секретным ключом. Второй открытый ключ (Y, Z, U) вычисляется следующим образом: 
Y  Hy1Vy2, Z  Hz1Vz2, U  Hu1Vu2. Использование одинаковых параметров для вычисления соответствующих друг другу эле-
ментов, принадлежащих разным открытым ключам, обеспечивает возможность вычисления единой подписи, удовлетворяющей 
двум сходным проверочным уравнениям, заданным в различных конечных коммутативных ассоциативных алгебрах. Практи-
ческая значимость: предложенная схема цифровой подписи представляет практический интерес для разработки постквантовых 
алгоритмов подписи, обладающих сравнительно малыми размерами подписи, открытого и секретного ключей.

Ключевые слова — постквантовые криптосхемы, компьютерная безопасность, электронная цифровая подпись, задача дис-
кретного логарифмирования, конечные коммутативные группы, ассоциативные алгебры, многомерная цикличность.
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