
ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202230

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

UDC 004.05
 doi:10.31799/1684-8853-2022-1-30-43

Kex: A platform for analysis of JVM programs
A. M. Abdullina,b, Post-Graduate Student, Assistant Professor, orcid.org/0000-0002-9669-2587
V. M. Itsyksona,b, PhD, Tech., Associate Professor, orcid.org/0000-0003-0276-4517, vlad@icc.spbstu.ru
aPeter the Great St.Petersburg Polytechnic University, 19, Politechnicheskaya St., 195251, Saint-Petersburg,
Russian Federation
bJetBrains Co. Ltd., 70, Building 1, Primorskiy Av., 197374, Saint-Petersburg, Russian Federation

Introduction: Over the last years program analysis methods were widely used for software quality assurance. Different types
of program analysis require various levels of program representation, analysis methods, etc. Platforms that provide utilities to
implement different types of analysis on their basis become very important because they allow one to simplify the process of
development. Purpose: Development of a platform for analysis of JVM programs. Results: In this paper we present Kex, a platform
for building program analysis tools for JVM bytecode. Kex provides three abstraction levels. First is Kfg, which is an SSA-based
control flow graph representation for bytecode-level analysis and transformation. Second is a symbolic program representation
called Predicate State, which consists of first order logic predicates that represent instructions of the original program, constraints,
etc. The final level is SMT integration layer for constraint solving. It currently provides an interface for interacting with three SMT
solvers. Practical relevance: We have evaluated our platform by considering two prototypes. First prototype is an automatic test
generation tool that has participated in SBST 2021 tool competition. Second prototype is a tool for detection of automatic library
integration errors. Both prototypes have proved that Kex can be used to implement competitive and powerful program analysis
tools.

Keywords — program analysis, analysis platform, test generation, symbolic execution.

Articles

For citation: Abdullin A. M., Itsykson V. M. Kex: A platform for analysis of JVM programs. Informatsionno-upravliaiushchie sistemy
[Information and Control Systems], 2022, no. 1, pp. 30–43. doi:10.31799/1684-8853-2022-1-30-43

 Introduction

Modern world is highly dependent on software:
it controls almost every part of human life. Thus,
errors in the modern-day software may lead to
fatal consequences. To address that problem IT-
industry adopts software quality assurance tech-
niques.

Software quality assurance techniques could be
divided into two main groups: manual techniques
and automatic ones. Manual quality assurance
techniques include software testing, code review,
audits, etc. Those techniques have proven their
effectiveness over time and are currently used in
everyday development processes. However, they
all share one significant weakness: manual quality
assurance is very hard and time-consuming work
[1].

Automatic software quality assurance tech-
niques are trying to overcome that weakness.
Alike manual techniques, automatic methods vary
on the level of complexity and depth of the analy-
sis: from simple and fast code smell detection [2]
to resource intensive verification [3]. Over the
last years, automatic quality assurance methods
were widely used for automatic testing, automat-
ic test generation, bug detection, etc. Most of the
automatic quality assurance techniques are based
on methods of static (e. g. symbolic execution [4,
5], bounded model checking [6], etc.) and dynamic

(e. g. fuzzing [7], dynamic symbolic execution [8],
concolic testing [9], etc.) program analysis. Many
IT-companies are currently using program analy-
sis methods as part of their everyday development
process [10, 11].

For most widely used programming languages
like Java, JavaScript, C/C++, etc. there already ex-
ists a large variety of tools for both static and dy-
namic analysis [12–15].

In this paper we present Kex (https://github.
com/vorpal-research/kex), a platform for building
various kinds of program analysis tools for Java
Virtual Machine (JVM) based languages. Kex con-
sists of three main components: Kfg library for
JVM bytecode analysis and transformations, in-
termediate representation called Predicate State
(PS) for symbolic program representation and con-
straint solving module based on satisfiability mod-
ulo theories (SMT) solvers. These modules allow one
to build different types of analyses on top of Kex,
both dynamic (based on bytecode instrumentation
and execution) and static (based on symbolic execu-
tion and constraint solving). To showcase capabil-
ities of Kex we have considered two prototypes of
analysis tools: one for automatic test generation for
Java language and the other for automatic integra-
tion errors detection. Evaluation results show that
Kex can successfully be used to analyze JVM based
languages on a variety of levels of depth, complexi-
ty and precision.

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 31

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

 Related work

As we have mentioned earlier, there already ex-
ists a number of tools and frameworks for analysis
of JVM bytecode. These frameworks differentiate
by analyses they support which the underlying mod-
el of program representation inherently limits. Let
us consider some of the most significant examples.

ASM [16] is an all-purpose Java bytecode anal-
ysis and manipulation framework that was intro-
duced in 2002. The project is still under active de-
velopment and the latest release of version 9.2 was
in the summer of 2021. ASM provides a set of byte-
code analyses and transformations and can be used
both to modify existing classes and to dynamically
generate new classes. ASM is focused on working
with low-level representation of compiled class-
es and therefore is mainly used by many projects
(https://asm.ow2.io/). The Kfg library also uses
ASM for working with JVM bytecode.

Soot [17] is a Java bytecode optimization frame-
work that was first introduced in 1999. Soot pro-
vides four intermediate representations for byte-
code: baf — simplified stack based bytecode, jim-
ple — 3-address code representation of bytecode,
shimple — static single assignment (SSA) variation
[18] of jimple and grimp — an aggregated version
of jimple suitable for decompilation and code in-
spection. Each representation is more suited for
its own kind of analyses and optimizations includ-
ing points-to analysis, call-graph construction,
data-flow analysis, etc. Both ASM and Soot are li-
braries which are mainly focused on bytecode-level
optimizations and do not provide tools for more in-
depth analysis.

Spoon [19] is a library for Java source code anal-
ysis and transformation. Spoon meta model con-
sists of three parts:

— structural part contains the declarations of
program elements (classes, interfaces, methods,
etc.);

— code part contains executable Java code in the
form of AST;

— reference part models references to program
elements.

Limitations of Spoon come from its meta mod-
el. First, as it works at the source code level, it is
only limited to work with one language, whereas
bytecode level frameworks can work with any JVM
based languages. Second, Spoon provides only
one program model — AST — which is not always
well-suited for various types of analyses.

JBSE [5] is a symbolic JVM for automated pro-
gram analysis, verification and test generation.
JBSE uses javassist [20] library to interact with the
target classes, provides its own API for working
with source code at a bytecode level and provides
an implementation of symbolic state that represents

the state of execution of a program. Symbolic state
can be transformed into an SMT formula in smtlib2
format [21], which is then sent to an SMT solver to
reason about reachability of that state. JBSE also
provides utilities for automatically generating test
cases that reach a given state using reflection [22].
Authors have also developed two tools on top of
JBSE. SUSHI [23] is an automatic test case gener-
ator for Java programs that uses JBSE for symbol-
ic execution and EvoSuite [24] for test generation,
which allows it to generate tests that do not use
reflection. TARDIS [25] is an extension of SUSHI
that uses JBSE to perform concolic testing. Those
tools confirm the applicability of JBSE; however,
it still has some limitations. First, JBSE does not
provide any utilities to work with more structured
program representation rather than stack-based by-
tecode; hence, the symbolic state is also very close
to low-level bytecode representation. Second, the
internal structure of JBSE is more suited for easy
usage of symbolic execution results, but it is hard
to extend it.

JDQL [26] is a framework for Java static anal-
ysis that uses Datalog [27] query language for au-
tomatically detecting bad patterns in the program
source code. JDQL works both with Java source
code and JVM bytecode, provides utilities to per-
form flow analysis and intra-procedural analysis,
and it is easy to extend with new error detectors.
However, JDQL is limited in a sense that it is only
suitable for a lightweight pattern recognition based
static analysis and does not allow performing more
precise and complex types of analyses.

As one can see, there already exist many frame-
works for analysis of JVM programs (both on by-
tecode and source code level). Existing frameworks
are well suited for building analysis tools at one
specific program representation level. For example,
symbolic execution engines do not provide access to
underlying source code and bytecode analyses and
manipulation frameworks do not provide utilities
for more in-depth analysis. This limitation of the
existing frameworks has inspired us to develop a
new platform that will:

— provide utilities for various types of analyses
(both static and dynamic);

— allow multi-level analysis;
— provide application programming interface

(API) for constraint solving.

Kex in detail

Kex is a platform for analysis of JVM based lan-
guages. It takes a set of compiled classes and pro-
vides utilities to perform transformation and anal-
yses on multiple levels of program representation:
control flow graphs, PS and SMT formulae. Kex as-

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202232

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

sumes a closed-world model during analysis, i. e., it
has full access to all possible types, functions, etc.
A high-level overview of Kex architecture can be
found in Fig. 1. In this section we give a detailed
description of every module of Kex.

 Kfg: control flow graph for JVM bytecode
Program analysis requires having an informa-

tive and easy-to-use program model. JVM combines
in itself features of stack machine and register ma-
chine: each execution frame has an operand stack
and an array of local variables. The operand stack
is used to provide operands for bytecode instruc-
tions and to receive results of their computations.
The local variables array serves the same purpose
as processor registers: to store quickly accessible
data and to pass arguments for methods. While
that model of computation is very effective for JVM
purposes, it is not fitted for purposes of program
analysis.

Kfg (https://github.com/vorpal-research/kfg) is
a library for JVM bytecode analysis and transfor-
mation. Kfg builds control flow graphs (CFG) in SSA
form [18] for each method of the target program. Kfg
also provides utilities to create and modify classes
and fields of a project. Kfg is built on top of the lat-
est ASM version 9.2 — an all-purpose Java bytecode
manipulation and analysis framework — and pro-
vides an API to directly access ASM representation
for more low-level features. Currently Kfg supports
JVM bytecode version 62 and lower (which corre-
sponds to JVM version 18). Let us now consider the
internal structure of Kfg in more detail.

 Class management
The key concept of the Kfg is the ClassManager,

which stores all the information about available
classes and allows one to access those classes. Classes
are the essential part of JVM and, therefore, Kfg:
every project consists of a set of classes. Each class
contains the following list of information: modifi-
ers, superclass, interfaces, methods, etc. Each class
also stores an instance of ClassNode — an ASM rep-
resentation of class — allowing it to make low-level
transformations.

Kfg preserves connection between each class
and its actual bytecode stored in the file system,
thus allowing creating, modifying and updating
the bytecode both on singular class level and on pro-
ject level (e. g. modify jar files or directories with
compiled sources). That connection is implemented
through Containers.

To build a precise model of a project one needs
to have access to all the libraries that it depends
on. However, building that model for a large-
scale project with many dependencies can be very
resource intensive and even redundant in some
cases. To have an ability to analyze projects with-
out access to full class path, Kfg introduces an
idea of OuterClass: a class which bytecode Kfg
cannot access. When working with instances of
ConcreteClass (i.e. class whose bytecode that Kfg
has access to), Kfg checks validity and correctness
of all operations. Downside of the OuterClass idea
is that Kfg cannot guarantee correctness of the re-
sulting bytecode and relies on the user to ensure
it.

 Fig. 1. A high level overview of Kex

jarjarJar

Instrumenting

Inlining

Loop unrolling

Kfg PS SMT

Bytecode level
transformations

...

Aliasing

Slicing

Memspacing

Symbolic
transformations

...

Inputs

Type inference

Error detection

Test generation

Constraint
solving

...

SMT
model

Test suite

Test inputs

Error report

...

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 33

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

Type system of Kfg directly corresponds to JVM
type system described in the JVM specification
[28] and consists of integrals (boolean, byte, char,
short, int and long), floating points (float and dou-
ble), references (classes, arrays and null) and void
type. Let us now consider the details of the control
flow graph.

 Methods and CFG
For each method of each ConcreteClass available

to ClassManager Kfg builds a CFG in SSA form.
An example of CFG built by Kfg is shown in Fig. 2.
A control flow graph consists of basic blocks — a
sequence of instructions that are executed one af-
ter other without any branching. Each basic block

ends with terminating instruction; it can be simple
jump, branching, return or throw. As one can see,
basic blocks %entry0, %bb0, %bb1 could have been
united to a single basic block as they do not have
any branching and seemingly are always directly
following each other. However, CFG for JVM by-
tecode is more complex, as the instructions (and,
therefore, basic blocks) of JVM bytecode may have
hidden connections to exception catch blocks. JVM
specification defines all the instructions that can
potentially throw exceptions. Each basic block of
Kfg ends either with branching instruction or with
an exception throwing instruction. Figure 2 shows
the examples of both of this cases: blocks %bb2 and
%bb4 end with branch instruction (if — else); blocks

 Fig. 2. An example of CFG built by Kfg

%bb5: %if.else1
 throw %17

%if.then1: %bb2
 return

example/ListExample::foo(java/util/List): void

%entry0:
 goto %bb0

%bb0: %entry0
 %6 = interface arg$0.iterator()
 goto %bb1

%if.then0: %bb4
 goto %label0

%label0: %bb1, %if.then0
 %3 = interface %6.hasNext()
 goto %bb2

%if.else1: %bb4
 %17 = new java/lang/IllegalStateException
 special %17.<init>()
 goto %bb5

%label1: %bb3
 %12 = static ListExample$Point.access$000(%10)
 goto %bb4

%bb4: %label1
 %14 = (%12 != 10)
 if (%14) goto %if.then0 else %if.else1

%bb2: %label0
 %5 = (%3 == false)
 if (%5) goto %if.then1 else %if.else0

%if.else0: %bb2
 %8 = interface %6.next()
 goto %bb3

%bb3: %if.else0
 %10 = (example/ListExample$Point) %8
 goto %label1

%bb1: %bb0
 goto %label0

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202234

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

%bb0 and %label0, for example, end with simple
jump instruction but the last “meaningful” instruc-
tion they contain is the call instruction, which po-
tentially can throw an exception. To express those
hidden connections, basic blocks also store a set of
handler blocks in addition to a set of predecessors,
successors and instructions. Basic blocks them-
selves are also divided into two categories:

— BodyBlock — default block that forms the
CFG;

— CatchBlock — special block that handles
thrown exceptions; that block does not have usu-
al predecessors but a set of thrower blocks that it
catches from; also, CatchBlock stores information
about the catched exception type.

 Values and instructions
Instructions of the Kfg operate on Values: rep-

resentation of program variables. Values are divid-
ed into four categories: this reference, arguments,
constants and instructions. Instruction set of Kfg
is corresponding one-to-one to the instruction set of
JVM bytecode with two exceptions:

— JSR instruction [28] is inlined before CFG
building and therefore is not present in Kfg in-
structions set;

— Kfg adds a new phi instruction — a special
instruction that represents function of SSA form.

C FG analysis and modification
Along with the API to build a CFG model of a

project and translate it back to JVM bytecode, Kfg
provides an API to perform various analyses and
transformations with the built model.

Kfg uses a visitor [29] pattern and provides a
NodeVisitor, a ClassVisitor and a MethodVisitor al-
lowing one to traverse all the classes, fields, meth-
ods and instructions of a project. In addition, Kfg
also provides loop analysis for all of the methods of
a project: information about each loop of a method
is stored in a graph form. To simplify the work with
loops Kfg also provides a LoopVisitor: an extension
of MethodVisitor that allows to traverse all the loops
of a method. Pipelines allow combining a set of visi-
tors into a single instance that will apply each visitor
to all the classes of ClassManager one after another.

At the instruction and value level Kfg imple-
ments the “user” pattern: each instruction, value
and basic block contains a set of objects that it is
used by. Any class that uses CFG elements should
implement BlockUser or ValueUser interfaces. That
idea was inspired by LLVM [30].

Kex currently uses Kfg for:
— loop canonicalization [31];
— loop unrolling;
— bytecode instrumentation on various levels;
— bytecode modification (e. g. all the

System.exit() calls are replaced with a special

SystemExitCallException to prevent JVM stopping
during dynamic analysis);

— CFG modification, etc.

P redicate State representation
Predicate State is Kex’s intermediate rep-

resentation that is used to perform various types of
analysis and that is designed to be easily converted
into an SMT formula. This section describes details
of PS implementation.

B asic PS structure
Predicate State is designed as a directed acyclic

graph because SMT formulae cannot express loops.
PS was originally introduced in Borealis bound-
ed model checker [32]. Kex has adapted PS from
Borealis and extended it to support Kfg instruc-
tions.

Predicate State is built from CFG and, therefore,
CFG should be preprocessed in order to be converti-
ble to PS. Preprocessing consists of two main steps:

— loop canonicalization;
— loop unrolling.
These two steps allow presenting a CFG in a

form that is directly convertible to PS. Both of
these operations are implemented as Kfg loop visi-
tors. The format of PS in Backus — Naur form [33]
is shown in listing 1 and an example of PS is shown
in listing 2.

As one can see from listing 1, PS has three types:
— BasicState — PS represents a single basic

block, basically just a list of predicates;
— ChoiceState — PS that represents branching,

contains a list of branches (as PS);
— ChainState — PS that combines two states

into a sequence, used to create full program rep-
resentation from BasicState and ChoiceState.

Listing 1. PS format.
<PredicateState> ::= ChainState head:<PredicateState>
tail:<PredicateState>
 | ChoiceState choices:<ListOfPredicateStates>
 | BasicState data:<ListOfPredicates>

 < ListOfPredicateStates> ::= <PredicateState>
<ListOfPredicateStates> | <empty>

 < Predicate> ::= ArrayInitializerPredicate arrayRef:<Term>
value:<Term>
 | ArrayStorePredicate arrayRef:<Term> value:<Term>
 | CallPredicate lhv:<Term> call:<Term>
 | CatchPredicate throwable:<Term>
 | DefaultSwitchPredicate cond:<Term> cases:<ListOfTerms>
 | EnterMonitorPredicate monitor:<Term>
 | EqualityPredicate lhv:<Term> rhv:<Term>
 | ExitMonitorPredicate monitor:<Term>
 | FieldInitializerPredicate field:<Term> value:<Term>
 | FieldStorePredicate field:<Term> value:<Term>
 | GenerateArrayPredicate lhv:<Term> length:<Term>
generator:<Term>
 | InequalityPredicate lhv:<Term> rhv:<Term>

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 35

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

 | NewArrayPredicate lhv:<Term> dimensions:<ListOfTerms>
elementType:<Type>
 | NewPredicate lhv:<Term> type:<Type>

< Term> ::= ArgumentTerm index:Int type:<Type>
 | ArrayContainsTerm array:<Term> value:<Term>
 | ArrayIndexTerm array:<Term> index:<Term>
 | ArrayLengthTerm array:<Term>
 | ArrayLoadTerm arrayRef:<Term>
 | BinaryTerm op:<BinaryOp> lhv:<Term> rhv:<Term>
 | CallTerm owner:<Term> method:<Method>
arguments:<ListOfTerms>
 | CastTerm term:<Term>
 | CmpTerm op:<CmpOp> lhv:<Term> rhv:<Term>
 | ConstTerm
 | EqualsTerm lhv:<Term> rhv:<Term>
 | ExistsTerm start:<Term> end:<Term> body:<Term>
 | FieldTerm owner:<Term> fieldName:String
 | FieldLoadTerm field:<Term>
 | ForAllTerm start:<Term> end:<Term> body:<Term>
 | InstanceOfTerm term:<Term> type:<Type>
 | IteTerm cond:<Term> trueValue:<Term> falseValue:<Type>
 | LambdaTerm arguments:<ListOfTerms> body:<Term>
 | NegTerm term:<Term>
 | ReturnValueTerm method:<Method>
 | StaticClassRefTerm klass:<Type>
 | ValueTerm type:<Type> name:String

 < ListOfTerms> ::= <Term> <ListOfTerms> | <empty>

 Listing 2. PS example.
(
 @S kotlin/jvm/internal/Intrinsics.checkNotNullParameter(arg$0, ‘a’)
 @S %1 = arg$0.size()
 @S %3 = %1 != 2
 @P %3 = false
 @S %5 = arg$0.get(0)
 @S %7 = (%5 as example/ListExample$Point)
 @S %9 = %7.getX()
 @S %11 = %9 != 10
 @S %11 = false
 @S %13 = arg$0.get(1)
 @S %15 = (%13 as example/ListExample$Point)
 @S %17 = %15.getY()
 @S %19 = %17 != 11
 @S %19 = false
 @S %24 = new java/lang/IllegalStateException
 @S %23 = ‘a’.toString()
 @S %24.<init>(%23)
 @S %26 = (%24 as java/lang/Thowable)
)

 One may notice that current implementation
of PS is limited because it does not handle try/
catch blocks, i. e. exception handling is not sup-
ported. Potentially it can be implemented by add-
ing ChoiceState at each predicate that leads to two
branches: one to the next predicate in the program
and one to a catch block that handles the exception.
However, that will lead to an exponential growth of
the state size. We consider adding exception control
flow handling into PS as a part of our future work.

The design of PS is closer to SMT formulae than
CFG and it introduces some of the concepts that are
later passed on to an SMT solver. First, the PS mod-

el introduces a memory concept and explicitly sepa-
rates expressions that change the memory from ones
that do not: predicates and terms correspondingly.
Thus, predicates are used to express actions that
change the state and the memory of a program, e. g.
FieldStorePredicate that writes value to some field.
However, there are also predicates that allow us to
express some additional constraints for a program.
The type of predicate determines those properties:

— state — usual predicate that changes the state
(and, therefore, the memory) of program;

— path — predicate that expresses the current
path condition;

— assume — predicate that carries some addi-
tional information that Kex can assume is true;

— axiom — predicate that encodes some axioms
that are always true (e. g. a class reference always
being not null);

— require — predicate that encodes some prop-
erties that Kex should check for correctness.

The PS definition shows that most of the pred-
icates directly correspond to Kfg instructions.
However, there are some exceptions. For example,
FieldInitializerPredicate that allows initializing
the value of a field before actual program execution.

Terms mainly represent Kfg values and opera-
tions that do not change the memory state, e. g. ar-
guments, constants, array index reads, etc. In JVM
bytecode there are no ways to reference the memory
address that holds the value of a field or an element
of an array, one can only read the value stored in
that location. However, during analysis one needs
to differentiate between memory location and the
value that it stores. For that reason, Kex adds
two special pointer terms: ArrayIndexTerm and
FieldTerm. To receive the value stored in a given lo-
cation one needs to explicitly specify memory load
action with ArrayLoadTerm and FieldLoadTerm
correspondingly.

Type system of Kex extends the type system of
Kfg by supporting special typing ArrayIndexTerms
and FieldTerms. The type system consists of:

— integrals: bool, byte, char, short, int, long;
— reals: float and double;
— pointers — an equivalent of Kfg references:

○ object pointers;
○ array pointers;
○ references — types of array indexes and

fields;
○ null;

— void.

P S modification and analysis
Analysis of a program suggests that one has

an ability to traverse and modify the model, i. e.
Predicate State. Kex provides a Transformer inter-
face to traverse PS and a RecollectingTransformer
interface to modify it. Transformer implements

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202236

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

CRTP pattern [34] and provides an API to disman-
tle each component of the PS and build it up again
with the same or new structure. PS and its com-
ponents are immutable and therefore if any trans-
former changes the state it returns a new copy
of it.

Kex provides a set of transformer implementa-
tions:

— Stensgaard alias analysis [35];
— static backward slicing [36];
— constant propagation;
— inlining of various types: static fields ini-

tialization inlining, static method inlining, virtual
method inlining (requires type resolving);

— reflection info inlining (e. g. Kotlin reflection
provides a lot of useful type and nullity informa-
tion);

— external information provider: e. g. annota-
tion info inliner that adds method invocation info
from JetBrains annotations (https://github.com/
JetBrains/java-annotations), etc.

S ymbolic execution using SMT solver
Kex uses SMT solvers for constraint solving and

currently supports three solvers: Z3 [37], Boolector
[38] and STP [39]. To simplify work with multiple
solvers Kex uses automatically generated unified

wrapper classes. Example of SMT wrapper API can
be found in Fig. 3.

To add the new solver to Kex one needs to provide
implementations of three classes: Engine, Solver
and Unlogic. Engine class should provide bindings
to the API of the solver. Solver class should imple-
ment methods that perform a query and return a
model. Unlogic class should provide an interface to
convert received model back into terms and predi-
cates of PS.

In this section we will describe the model that
Kex uses to express queries over PS in the SMT for-
mula. First, however, let us describe the steps Kex
uses to prepare PS.

P reparing PS
Predicate State preparation consists of two

steps: reifying PS with additional information and
complementing PS with necessary type informa-
tion for SMT solving. The first step is optional and
only used to give solver more information on the
constraint solving: it inlines resolvable methods,
includes available reflection and annotation infor-
mation, propagates constants, etc. The result of the
first step is the PS and the query over that state.

The main goal of the second step is to simplify
the PS and the query so that SMT solver will be able

 Fig. 3. Z3 solver wrapper classes

Z3SMTExpr

Z3ValueExpr

Z3Bool Z3BV Z3DoubleZ3Float Z3Array<Element, Index>

Z3BV32 Z3BV64

VersionedMemory<T> Z3Memory<Index, Element>

Z3SMTMemory

Z3SMTExprFactory Z3SMTContext Z3SMTConverter

MemoryContext

Z3FunctionExpr

Z3ExprFactory Z3Context Z3Conterter

Human provided classes

Z3Engine Z3Unlogic

Z3Solver

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 37

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

to solve it faster. It uses two techniques to reach its
goal: memory spacing [40] and slicing.

Memory spacing is a technique that allows split-
ting all memory used in a program into a disjoint
set of sub-memories. Each sub-memory is independ-
ent from the others and can be modeled separate-
ly. Each sub-memory is assigned a unique index,
pointers referencing this memory are identified by
the mentioned index. This reduces the complexity
of solving the resulting formulae, as the disjoint set
of memories decreases the search space SMT solver
needs to work with.

Slicing is used to reduce the overall size of the
PS. The main idea is to remove terms and predicates
that are not “interesting” w.r.t. query from PS. The
term is considered “interesting” if it affects or ali-
ases any of the interesting terms. Aliasing is cur-
rently determined by Stensgaard alias analysis.
Initial set of “interesting terms” contains all the
variable (i. e. non-constant) terms from the query.

These preparation steps allow us to reinforce PS
with additional information and simplify it w.r.t.
SMT solving. Let us now consider how PS are en-
coded into an SMT formula.

M odeling program in SMT formulae
To be able to use SMT solver for constraint solving

one needs to define a memory model suitable for rep-
resenting the program and its variables as SMT for-
mulae. In Kex we have used a memory model inspired
by the work on bounded model checker Borealis. We
have adapted its memory model to JVM and PS.

As was mentioned earlier, PS (like JVM byte-
code) has several primitive data types: booleans,
integers, floating point numbers. Each variable of
a given type can be represented as an expression of
corresponding SMT theory: booleans for boolean,
bitvectors [41] for integers, floating point numbers
[42] for float and double.

The more complex part, however, is modeling
non-primitive data types: objects and arrays. To
represent references in the heap we use a “proper-
ty-based” memory model: memory is encoded as a
collection of SMT arrays [43], each array corre-
sponding to a disjoint partition of heap objects defi-
nitely not aliasing objects from other partitions.
SMT arrays are immutable and each store operation
returns a new version of the array. Therefore the
memory model allows one to work with versioned
memory i. e. one can potentially get the whole mem-
ory state of a program after execution of each in-
struction. Initial memory of the program is emp-
ty, it can be filled with special FieldInitializer and
ArrayInitializer predicates.

This allows it to encode object references as 32-
bit bitvector indices into their partition; arrays are
represented as continuous chunks, with array ref-
erence pointing to its start index.

Object fields are represented in a similar fashion,
using “property memories”: each field is mapped to
a separate SMT array, indexed by object references;
to access field x.y one needs to work with property
memory typeOf(x).y by index x.

Property memories also have one additional
use case: they are used to calculate runtime type
information of pointers. Resolving runtime type
information is very important because it not only
may affect control flow of a program (e. g. through
instanceof instructions) but also is used to resolve
virtual method calls. Each pointer variable of the
program is assigned a special “type” property: each
reference may be used as an index to this property
memory to get its type. Kex analyses the program
as a closed world model, therefore it can assign a
constant to each defined type and encode subtyping
via SMT axioms over a special isSubtype uninter-
preted function:

 is a subtype of

, otherwise

(,) ,
,

(,)

isSubtype a b true

a b types if a b

isSubtype a b false

 All type-related operations in the program are
expressed through isSubtype: casts and instanceo f
checks impose new constraints on the “type” prop-
erty of the corresponding variable. That, togeth-
er with the subtyping axioms, gives SMT solver
enough information to correctly analyze types.

We have given a description of the memory
model that Kex uses for symbolic execution. Given
that, PS is a directed acyclic graph; its trans-
lation into SMT formula is straightforward, as
predicates can be directly mapped to correspond-
ing SMT expressions. One may vary the precision
and complexity of SMT formulae by changing the
depth of inlining and loop unrolling. An example
of PS, query and corresponding SMT formula can
be found in Fig. 4.

After encoding PS and query as SMT formulae
Kex performs a request to SMT solver. SMT solver
can return three types of answers:

— SAT — formula is satisfiable, solver also re-
turns an SMT model containing counterexample
that makes formula satisfiable;

— UNSAT — formula is unsatisfiable, solver
also may return an unsatisfiable core [44], i. e. a
minimal set of clauses that makes the formulae un-
satisfiable;

— UNKNOWN — unknown result, returned if
solver is terminated by timeout.

Depending on the query type, these results can
be interpreted differently. However, if the formula
is satisfiable, one needs to be able to raise the pro-
gram state encoded in the SMT model to a higher
level. Let us now describe how that is performed.

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202238

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

 Fig. 4. An example of PS, query and SMT formula

(
 @A this != null
 @A arg$0 != null
 @S %1 = arg$0.length
 @A %1 >= 0 = true
 @S %3 = %1 <= 10
 @P %3 = false
 @S %5 = *(this.field)
 @S %7 = %5 >= 0
 @P %7 = false
 @A 0 <= arg$1 = true
 @A arg$1 < arg$0.length = true
 @S %10 = *(arg$0[arg$1])
 @S %11 = *(this.field)
 @S %13 = %10 != %11
)

Predicate State

(
 @P %13 = false
)

Query

&&

(declare-fun isSubtype ((_ BitVec 32) (_ BitVec 32)) Bool)
(declare-fun __word__property__type0!0 () (Array (_ BitVec 32) (_ BitVec 32)))
(declare-fun arg$0 () (_ BitVec 32))
(declare-fun __word__property__length0!3 () (Array (_ BitVec 32) (_ BitVec 32)))
(declare-fun |int[]!2| () (_ BitVec 32))
(declare-fun this () (_ BitVec 32))
(declare-fun PSExample!1 () (_ BitVec 32))
(declare-fun %13 () Bool)
(declare-fun %11 () (_ BitVec 32))
(declare-fun %10 () (_ BitVec 32))
(declare-fun __word__property__PSExample.field0!4 () (Array (_ BitVec 32) (_ BitVec 32)))
(declare-fun arg$1 () (_ BitVec 32))
(declare-fun __array__0!5 () (Array (_ BitVec 32) (Array (_ BitVec 32) (_ BitVec 64))))
(declare-fun %7 () Bool)
(declare-fun %5 () (_ BitVec 32))
(declare-fun %3 () Bool)
(declare-fun %1 () (_ BitVec 32))
(assert
 (and (not (= this #x00000000))
 (not (= arg$0 #x00000000))
 (= %1 (select __word__property__length0!3 arg$0))
 (bvsle #x00000000 %1)
 (= %3 (bvsle %1 #x0000000a))
 (not %3)
 (= %5 (select __word__property__PSExample.field0!4 this))
 (= %7 (bvsle #x00000000 %5))
 (not %7)
 (bvsle #x00000000 arg$1)
 (not (bvsle (select __word__property__length0!3 arg$0) arg$1))
 (= %10 ((_ extract 31 0) (select (select __array__0!5 arg$0) arg$1)))
 (= %11 (select __word__property__PSExample.field0!4 this))
 (= %13 (not (= %10 %11)))
 (bvsle #x00000000 (select __word__property__length0!3 arg$0))
 (not (bvsle #x000003e8 (select __word__property__length0!3 arg$0)))
 (bvsle #x00000000 this)
 (or (= this #x00000000)
 (= (select __word__property__type0!0 this)
 PSExample!1))
 (bvsle #x00000000 (select __word__property__type0!0 this))
 (not (bvsle #x3fffffff this))
 (bvsle #x00000000 arg$0)
 (or (= arg$0 #x00000000)
 (= (select __word__property__type0!0 arg$0) |int[]!2|))
 (bvsle #x00000000 (select __word__property__type0!0 arg$0))
 (bvsle #x00000000 (select __word__property__length0!3 arg$0))
 (not (bvsle #x3fffffff arg$0))
)
)
(assert (and true
 (= (isSubtype PSExample!1 PSExample!1) true)
 (= (isSubtype PSExample!1 |int[]!2|) false)
 (= (isSubtype |int[]!2| PSExample!1) false)
 (= (isSubtype |int[]!2| |int[]!2|) true))
)
(assert (not %13))
(check-sat)

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 39

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

In terpreting SMT model
An SMT model allows one to evaluate concrete

values of formula expressions. In the context of pro-
gram analysis those concrete values describe some
interesting program state: counterexample that
triggers a bug, test case that covers some branch,
etc. Thus, to be useful, the SMT model eventually
needs to be converted into Java objects or Java code
that creates those objects. In Kex that conversion
process consists of two steps: translating the mod-
el into terms and building Java objects from those
terms.

The first step is straightforward: using special
unlogic functions of each solver, Kex converts con-
stants from the SMT model into constant terms.
Kex model consists of three components:

— assignments — a map where each variable of
a program is assigned a constant value evaluated
from SMT model;

— memory shapes — each shape contains two
memory states: initial and final. Each memory
state maps concrete integer addresses into con-
stants;

— type map — a map where each type of a pro-
gram is assigned constant integer value. Type map
is later used to evaluate runtime types of variables
from type property memory.

An example of the Kex model corresponding to
the SMT model is given in listing 3.

Listing 3. An example Kex model.
Model {
 this = 32768
 arg$0 = 1
 %1 = 35
 %3 = false
 %5 = -1
 this.field = 32768
 %7 = false
 arg$1 = 0
 %10 = -1
 %11 = -1
 %13 = false
 (1)<0> = 0
 (32768)<0> = 0
 (1073741823)<0> = 0
 PSExample.field(32768)<0> = -1
 length(1)<0> = 35
 type(1)<0> = 3
 type(32768)<0> = 4
 type(1073741823)<0> = 2
}

A lthough the Kex model is not very illustrative,
it still captures the whole program state. For fur-
ther transformation and analysis, Kex transforms
SMT model into descriptors. Descriptors are used
to represent the object shape; one may consider
them trees that capture (nested) object states. The
descriptor format for the JVM platform is given in
listing 4.

Listing 4. JVM descriptor format.
<Descriptor> ::= “CostantDescriptor”
 | “ObjectDescriptor” fields:<ListOfFields>
 | “ArrayDescriptor” elements:<ListOfElements>
 | “StaticFieldDescriptor” field:<Field>

< C onstantDescriptor> ::= “NullDescriptor”
 | “BoolDescriptor” value:Boolean
 | “ByteDescriptor” value:Byte
 | “ShortDescriptor” value:Short
 | “CharDescriptor” value:Char
 | “IntDescriptor” value:Int
 | “LongDescriptor” value:Long
 | “FloatDescriptor” value:Float
 | “DoubleDescriptor” value:Double

< F ield> ::= name:String klass:Class value:<Descriptor>

< E lement> ::= index:Int value:<Descriptor>

< L istOfFields> ::= <Field> <ListOfFields> | <empty>

< L istOfElements> ::= <Element> <ListOfElements> | <empty>

A dditionally Kex is able to build Java objects
from the descriptors if needed. Kex collects all
the variables from the program and builds Java
objects for those projects using following algo-
rithm:

— if a variable has primitive type, create a prim-
itive Java variable with corresponding value;

— if a variable is an object, resolve its runtime
type (using type map) and create Java object of re-
solved type (using Java reflection utilities);

— if a variable is an array, resolve its runtime
type (using type map) and create Java array of re-
solved type (using Java reflection utilities);

— if a variable is a field, recursively create a
Java object corresponding to its value and set the
field value of an object (using Java reflection util-
ities);

— if a variable is an array element, recursively
create a Java object corresponding to its value and
set the element value of an array (using Java reflec-
tion utilities).

Kex also has techniques to generate a test case
that recreates a program state corresponding to the
SMT model, but its implementation details are left
outside of this work.

Ev aluation of Kex platform

The evaluation of our platform consists of two
parts. First part is the qualitative comparison of
Kex platform with other analogues considered ear-
lier. Second part is the evaluation of Kex applica-
bility for developing program analysis tools. In this
part we will consider two prototypes of program
analysis tools that were developed based on Kex
platform.

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202240

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

Qualitative comparison with analogues
To evaluate our platform we decided to compare

it with five other analogues, that were previously
considered, based on seven criteria:

— source artifact: what artifacts does the tool
takes as an input;

— source manipulation and transformation:
does the tool provides utilities for transformation
of the input sources;

— behavioral representation: whether tool pro-
vides behavioral program representation (like CFG,
SSA, etc.) rather than simple stack-based bytecode;

— symbolic representation: does the tool pro-
vide a symbolic representation of a program that
can be used for more in-depth analysis;

— constraint solving: does the tool provides API
to work with any kind of constraint solvers;

— static analysis utilities: does the tool has built
in utilities for static program analysis;

— dynamic program analysis: does the tool has
built in utilities for static program analysis.

The results of the comparison can be found in
the Table. As one can see from the results, ASM
and Soot frameworks are libraries which are
mainly focused on bytecode-level optimizations
and do not provide tools for more in-depth analy-
sis. Spoon is similar to ASM and Soot except that
is concentrates on the Java source code analysis.
JBSE is similar to Kex in almost every criteria;
however, its main weakness is that it does not pro-
vide any utilities to work with behavioral program
representations like CFG. JDQL is only tool that
supports both source code and bytecode analysis
and allows one to solve queries over program var-

iables using Datalog. However, it is only suitable
for a lightweight pattern recognition based static
analysis and does not allow performing more pre-
cise and complex types of analyses. Judging by the
results Kex is the tool that fits the most criteria;
the only weakness is that Kex does not support
source code analysis. That decision was intention-
al, because as source code analysis may provide
more information about program (e. g. generics),
it bounds the tool to only one programming lan-
guage (or requires too much infrastructure for
working with multiple languages).

Evaluation of prototypes
To evaluate our platform we have implemented

a prototype of an automatic test generation tool
for Java language based on Kex infrastructure.
The prototype uses symbolic execution to analyze
control flow graphs of the program under test
(PUT) and produces interesting symbolic inputs
for each basic block of PUT. Those symbolic inputs
are then converted into JUnit test cases (either in
Java or in Kotlin language). Prototype currently
supports two modes of test case generation: basic,
which generates reflection based test cases, and
advanced, that tries to generate test cases using
only public API’s of the PUT. We have participated
in the SBST 2021 Tool Competition [45, 46] with
the described prototype. With an overall score of
44.21, Kex ranked fifth. Thorough analysis of the
results has shown that the prototype had many
technical issues due to a low degree of maturity
of the project. On the guava project, Kex was able
to reach ~20% line coverage, which is competitive

 Qualitative comparison of Kex with analogues

 Criteria ASM Soot Spoon JBSE JDQL Kex

Source artifact
JVM

bytecode
JVM

bytecode
Java

JVM
bytecode

Java or JVM
bytecode

JVM bytecode

Source manipulation
and transformation

+ + + + – +

Behavioral
representation

– + – – – +

Symbolic
representation

– – – + – +

Constraint solving – – –
SMTLib2

formulae for
SMT solvers

Datalog
queries

API for Z3,
Boolector and STP

SMT solvers

Static analysis
utilities

– – – + + +

Dynamic analysis
utilities

– – – + – +

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 41

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

with the results of other participating tools. After
resolving all the technical issues with the proto-
type, it was able to reach ~25% average line cov-
erage on the whole SBST 2021 competition bench-
mark (https://github.com/vorpal-research/kex/
tree/sbst-21). We consider that as significant im-
provement.

Another application of Kex platform is Spider
[47]. The authors had built a tool that allows them
to find library integration errors using static anal-
ysis methods. Authors enrich the source code of
external libraries with formal specifications writ-
ten in LibSL specification language [48]. They use
Kfg library to inject specification automata in-
to the original library classes. All the necessary
checks are marked with calls to a Kex intrinsics
(https://github.com/vorpal-research/kex-intrin-
sics) library. Implemented analysis module finds
the library API function calls and checks their con-
ditions. If the condition can be false then intrinsic
call is reachable, and the error occurs.

We conclude that Kex is an applicable and ex-
tendable platform for building various types of pro-
gram analysis, both static and dynamic.

 Conclusion

In this paper we presented a platform for analy-
sis of Java programs called Kex. We have described
all the main components of Kex, their implementa-
tion details and external APIs. Kex can be used to
build tools for various types of program analysis,
both lightweight and complex. During evaluation,
we have considered two prototypes of program
analysis tools: one for automatic test generation
and one for integration errors detection. Evaluation
has shown that Kex is applicable for creating pro-
gram analysis tools for JVM platform.

In the future we plan to further work on improv-
ing capabilities of Kex. In terms of capabilities of
Kex as a platform, we want to implement an excep-
tion handling mechanism in PS and improve lamb-
da function support both on PS level and on SMT
formulae level. Another area of our future work is
the development of tools based on Kex. Currently
we have two main priorities for the future: improve
our automatic test generation tool for Java language
and participate in the SBST 2022 competition and
develop a concolic testing tool based on Kex.

References

1. Sharma R. M. Quantitative analysis of automation
and manual testing. International Journal of Engi-
neering and Innovative Technology, 2014, no. 1,
pp. 252–257.

2. De Stefano M., Gambardella M. S., Pecorelli F., Pal-
omba F., De Lucia A. cASpER: A Plug-in for automat-
ed code smell detection and refactoring. Proceedings
of the International Conference on Advanced Visual
Interfaces, 2020, pp. 1–3. doi:10.1145/3399715.
3399955

3. Jhala R., Majumdar R. Software model checking.
ACM Computing Surveys (CSUR), 2009, no. 4,
pp. 1–54. doi:10.1145/1592434.1592438

4. Zhang T., Wang P., Guo X. A survey of symbolic exe-
cution and its tool KLEE. Procedia Computer Science,
2020, pp. 330–334. doi:10.1016/j.procs.2020.02.090

5. Braione P., Denaro G., Pezzè M. JBSE: A symbolic ex-
ecutor for Java programs with complex heap inputs.
Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engi-
neering, 2016, pp. 1018–1022. doi:10.1145/2950290.
2983940

6. Gadelha M. R., Menezes R. S., Cordeiro L. C. ESBMC
6.1: automated test case generation using bounded
model checking. International Journal on Software
Tools for Technology Transfer, 2021, no. 6, pp. 857–
861. doi:10.1007/s10009-020-00571-2

7. Klees G., Ruef A., Cooper B., Wei S., Hicks M. Evalu-
ating fuzz testing. Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communica-

tions Security, 2018, pp. 2123–2138.
doi:10.1145/3243734.3243804

8. Zhang L., Xie T., Zhang L., Tillmann N., De Halleux J.,
Mei H. Test generation via dynamic symbolic execu-
tion for mutation testing. 2010 IEEE International
Conference on Software Maintenance, 2010, pp. 1–10.
doi:10.1109/icsm.2010.5609672

9. Sen K. Concolic testing. Proceedings of the twen-
ty-second IEEE/ACM International Conference on
Automated Software Engineering, 2007, pp. 571–572.
doi:10.1145/1321631.1321746

10. Ayewah N., Pugh W., Hovemeyer D., Morgenthaler J.
D., Penix J. Using static analysis to find bugs. IEEE
Software, 2008, no. 5, pp. 22–29. doi:10.1109/
ms.2008.130

11. Calcagno C., Distefano D., Dubreil J., Gabi D., Hooimei-
jer P., Luca M., O’Hearn P., Papakonstantinou I., Pur-
brick J., Rodriguez D. Moving fast with software veri-
fication. NASA Formal Methods Symposium, Cham,
2015, pp. 3–11. doi:10.1007/978-3-319-17524-9_1

12. Nielsen B. B., Møller A. Value Partitioning: A light-
weight approach to relational static analysis for Ja-
vaScript. 34th European Conference on Object-Orient-
ed Programming (ECOOP 2020), 2020, pp. 16:1–
16:28.

13. Böhme M., Pham V. T., Nguyen M. D., Roychoudhury
A. Directed greybox fuzzing. Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2017, pp. 2329–2344. doi:10.
1145/3133956.3134020

14. Kroening D., Tautschnig M. CBMC–C bounded model
checker. International Conference on Tools and Algo-

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202242

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

rithms for the Construction and Analysis of Systems,
Berlin, 2014, pp. 389–391. doi:10.1007/978-3-642-
54862-8_26

15. Visser W., Pǎsǎreanu C. S., Khurshid S. Test input
generation with Java PathFinder. Proceedings of the
2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2004, pp. 97–107.
doi:10.1145/1007512.1007526

16. Bruneton E., Lenglet R., Coupaye T. ASM: А code ma-
nipulation tool to implement adaptable systems. Ad-
aptable and Extensible Component Systems, 2002,
no. 19. Available at: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.117.5769 (accessed
5 December 2021).

17. Vallée-Rai R., Co P., Gagnon E., Hendren L., Lam P.,
Sundaresan V. Soot: A Java bytecode optimization
framework. CASCON First Decade High Impact Pa-
pers, 2010, pp. 214–224. doi:10.1145/1925805.1925818

18. Cytron R., Ferrante J., Rosen B. K., Wegman M. N.,
Zadeck F. K. Efficiently computing static single as-
signment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 1991, no. 4, pp. 451–490.
doi:10.1145/115372.115320

19. Pawlak R., Monperrus M., Petitprez N., Noguera C.,
Seinturier L. Spoon: A library for implementing anal-
yses and transformations of java source code. Soft-
ware: Practice and Experience, 2016, no. 9, pp. 1155–
1179. doi:10.1002/spe.2346

20. Shigeru C. Load-time structural reflection in Java.
14th European Conference on Object-Oriented Pro-
gramming (ECOOP 2000), 2000, pp. 313–336.
doi:10.1007/3-540-45102-1_16

21. Barrett C., Stump A., Tinelli C. The SMT-LIB Stand-
ard: Version 2.0. Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories, Edin-
burgh, 2010. 14 p.

22. Demers F. N., Malenfant J. Reflection in logic, func-
tional and object-oriented programming: А short
comparative study. Proceedings of the IJCAI, 1995,
pp. 29–38.

23. Braione P., Denaro G., Mattavelli A., Pezzè M. SU-
SHI: a test generator for programs with complex
structured inputs. 2018 IEEE/ACM 40th Internation-
al Conference on Software Engineering: Companion
(ICSE-Companion), 2018, pp. 21–24. doi:10.1145/
3183440.3183472

24. Fraser G., Arcuri A. Evosuite: automatic test suite
generation for object-oriented software. Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software En-
gineering, 2011, pp. 416–419. doi:10.1145/2025113.
2025179

25. Braione P., Denaro G. SUSHI and TARDIS at the
SBST2019 tool competition. 2019 IEEE/ACM 12th In-
ternational Workshop on Search-Based Software Test-
ing (SBST), 2019, pp. 25–28. doi:10.1109/sbst.2019.
00016

26. Saxena A., Soundrapandian P. D., Sharma V. S., Kau-
lgud V. JDQL: A framework for Java Static Analysis.
Proceedings of the 9th India Software Engineering
Conference, 2016, pp. 136–140. doi:10.1145/2856636.
2856645

27. Huang S. S., Green T. J., Loo B. T. Datalog and emerg-
ing applications: an interactive tutorial. Proceedings
of the 2011 ACM SIGMOD International Conference
on Management of Data, 2011, pp. 1213–1216.
doi:10.1145/1989323.1989456

28. Lindholm T., Yellin F., Bracha G., Buckley A. The
Java virtual machine specification. Pearson Educa-
tion, 2014. Available at: https://docs.oracle.com/ja-
vase/specs/jvms/se8/html/index.html (accessed
5 December 2021).

29. Palsberg J., Jay C. B. The essence of the Visitor pat-
tern. Proceedings. The Twenty-Second Annual Inter-
national Computer Software and Applications Confer-
ence (Compsac’98), 1998, pp. 9–15. doi:10.1109/
cmpsac.1998.716629

30. Lattner C., Adve V. LLVM: A compilation framework
for lifelong program analysis & transformation. In-
ternational Symposium on Code Generation and Opti-
mization, 2004, pp. 75–86. doi:10.1109/cgo.2004.
1281665

31. Kaushik M. D. Loop Fusion in LLVM Compiler. Bach.
of eng. Diss., Visvesvaraya Technological University,
2015. 39 p.

32. Akhin M., Belyaev M., Itsykson V. Borealis bounded
model checker: The coming of age story. Present and
Ulterior Software Engineering, Cham, 2017, pp. 119–
137. doi:10.1007/978-3-319-67425-4_8

33. McCracken D. D., Reilly E. D. Backus-naur form
(bnf). Encyclopedia of Computer Science, 2003,
pp. 129–131.

34. Coplien J. O. Curiously recurring template patterns.
C++ gems, May 1996, pp. 135–144.

35. Steensgaard B. Points-to analysis in almost linear
time. Proceedings of the 23rd ACM SIGPLAN-SI-
GACT Symposium on Principles оf Programming Lan-
guages, 1996, pp. 32–41. doi:10.1145/237721.237727

36. Weiser M. Program slicing. IEEE Transactions on
Software Engineering, 1984, no. 4, pp. 352–357.
doi:10.1109/tse.1984.5010248

37. De Moura L., Bjørner N. Z3: An efficient SMT solver.
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Berlin,
2008, pp. 337–340. doi:10.1007/978-3-540-78800-
3_24

38. Niemetz A., Preiner M., Biere A. Boolector 2.0. Jour-
nal on Satisfiability, Boolean Modeling and Computa-
tion, 2014, no. 1, pp. 53–58. doi:10.3233/sat190101

39. Ganesh V., Dill D. L., A decision procedure for bit-vec-
tors and arrays. Computer Aided Verification, 19th
International Conference, Berlin, 2007, pp. 519–531.
doi:10.1007/978-3-540-73368-3_52

40. Kapus T., Cadar C. A segmented memory model for
symbolic execution. Proceedings of the 2019 27th

ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 1, 2022 43

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 774–784. doi:10.
1145/3338906.3338936

41. Jha S., Limaye R., Seshia S. A. Beaver: Engineering
an efficient SMT solver for bit-vector arithmetic. In-
ternational Conference on Computer Aided Verifica-
tion, Berlin, 2009, pp. 668–674. doi:10.1007/978-3-
642-02658-4_53

42. Rümmer P., Wahl T. An SMT-LIB theory of binary
floating-point arithmetic. International Workshop on
Satisfiability Modulo Theories (SMT), 2010, p. 151.

43. Stump A., Barrett C. W., Dill D. L., Levitt J. A deci-
sion procedure for an extensional theory of arrays.
Proceedings 16th Annual IEEE Symposium on Logic
in Computer Science, 2001, pp. 29–37. doi:10.1109/
lics.2001.932480

44. Guthmann O., Strichman O., Trostanetski A. Mini-
mal unsatisfiable core extraction for SMT. 2016 For-
mal Methods in Computer-Aided Design (FMCAD),
2016, pp. 57–64. doi:10.1109/fmcad.2016.7886661

45. Panichella S., Gambi A., Zampetti F., Riccio V. SBST
tool competition 2021. 2021 IEEE/ACM 14th Interna-
tional Workshop on Search-Based Software Testing
(SBST), 2021, pp. 20–27. doi:10.1109/sbst52555.
2021.00011

46. Abdullin A., Akhin M., Belyaev M. Kex at the 2021
SBST tool competition. 2021 IEEE/ACM 14th Inter-
national Workshop on Search-Based Software Testing
(SBST), 2021, pp. 32–33. doi:10.1109/sbst52555.
2021.00014

47. Feofilaktov V., Itsykson V. M. SPIDER: Specifica-
tion-based integration defect revealer. International
Conference on Tools and Methods for Program Analy-
sis, Tomsk, 2021. Available at: https://arxiv.org/
abs/2202.03943 (accessed 9 February 2021).

48. Itsykson V. Partial specifications of libraries: Appli-
cations in software engineering. International Con-
ference on Tools and Methods for Program Analysis,
Cham, 2019, pp. 3–25. doi:10.1007/978-3-030-71472-
7_1

УДК 004.05
doi:10.31799/1684-8853-2022-1-30-43

Kex: платформа для анализа JVM-программ

А. М. Абдуллина,б, аспирант, ассистент, orcid.org/0000-0002-9669-2587
В. М. Ицыксонa,б, канд. техн. наук, доцент, orcid.org/0000-0003-0276-4517, vlad@icc.spbstu.ru
аСанкт-Петербургский политехнический университет Петра Великого, Политехническая ул., 19,
Санкт-Петербург, 195251, РФ
бJetBrains Co. Ltd., Приморский пр., 70, к. 1, Санкт-Петербург, 197374, РФ

Введение: методы статического и динамического анализа программ все чаще используются для проверки качества програм-
много обеспечения. Однако разные виды анализа программ требуют работы с разными моделями представления программ, метода-
ми анализа и т. д. Возросла важность платформ для создания инструментов анализа программ, так как они позволяют упростить и
ускорить процесс разработки. Цель: разработать платформу для анализа JVM-программ. Результаты: разработана платформа Kex
для построения инструментов анализа программ, компилирующихся в JVM-байткод. Kex предоставляет три уровня абстракции.
Первый уровень — библиотека Kfg — реализует граф потока управления в форме статического однократного присваивания для
анализа и трансформации JVM-байткода. Второй уровень — символьное представление программы, называемое Predicate State,
которое состоит из предикатов логики первого порядка, соответствующих инструкциям программы, контрактам, дополнитель-
ным ограничениям и т. д. Третий уровень — интерфейс для создания и работы с SMT-формулами, позволяющий решать задачи
выполнимости. Интерфейс в данный момент поддерживает взаимодействие с тремя SMT-решателями. Практическая значимость:
платформа Kex использовалась при разработке двух инструментов: автоматической генерации тестов для языка Java, который
был подан на соревнования SBST 2021, и автоматического поиска ошибок интеграции библиотек. Оба этих прототипа показали,
что платформа Kex может быть использована для разработки инструментов автоматического анализа программ.

 Ключевые слова — анализ программ, платформа для анализа программ, автоматическая генерация тестов, символьное ис-
полнение.

Для цитирования: Abdullin A. M., Itsykson V. M. Kex: A platform for analysis of JVM programs. Информационно-управляющие
системы, 2022, № 1, с. 30–43. doi:10.31799/1684-8853-2022-1-30-43
For citation: Abdullin A. M., Itsykson V. M. Kex: A platform for analysis of JVM programs. Informatsionno-upravliaiushchie sistemy
[Information and Control Systems], 2022, no. 1, pp. 30–43. doi:10.31799/1684-8853-2022-1-30-43

