
ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2022 31

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

UDC 004.05
doi:10.31799/1684-8853-2022-6-31-40
EDN: OOCYPQ

Backend Bug Finder — a platform for effective compiler fuzzing
D. S. Stepanova, Senior Lecturer, orcid.org/0000-0003-1719-0325
V. M. Itsyksona, PhD, Tech., Professor, orcid.org/0000-0003-0276-4517, vlad@icc.spbstu.ru
aPeter the Great St. Petersburg Polytechnic University, 29, Politekhnicheskaia St., 195251, Saint-Petersburg,
Russian Federation

Introduction: The standard way to check the quality of a compiler is manual testing. However, it does not allow to cover a vast
diversity of programs that can be written in a target programming language. Today, in addition to manual written tests there are many
automated compiler testing methods, among which fuzzing is one of the most powerful and useful. A compiler fuzzer is a tool that
generates a random program in a target language and checks how the compiler works in this language. Purpose: To develop a platform
for compiler fuzzing and, based on it, to develop a tool for Kotlin compiler testing. Results: We have developed Backend Bug Finder which
is a platform for compiler fuzzing is. We have chosen a mutation-based approach as a method for generating random programs. First, an
existing program is entered to the mutator as the input to be then transformed in some way. Mutations can be both trivial, for example,
replacing arithmetic operators with others, and complex, changing the structure of the program. Next, the resulting program is fed to
the input of the compiler with the following check of its operation. The developed test oracle can detect three types of errors: crashes,
miscompilations, and performance degradations. If an error is detected, the test case is fed into the post-processing module, where
reduction and deduplication algorithms are applied. We have developed a tool for fuzzing the Kotlin language compiler based on the
platform for its approbation, which showed the applicability of the proposed approach for finding errors in modern compilers. Practical
relevance: Over a year and a half of work, our tool has found thousands of different Kotlin compiler bugs, more than 200 of which were
sent to the developers, and more than 80 have been fixed.

Keywordsǡ— fuzzing, compiler testing, compiler test generation, Kotlin, mutational fuzzing.

Articles

For citation: Stepanov D. S., Itsykson V. M. Backend Bug Finder — a platform for effective compiler fuzzing. Informatsionno-upravliaiush-
chie sistemy [Information and Control Systems], 2022, no. 6, pp. 31–40. doi:10.31799/1684-8853-2022-6-31-40, EDN: OOCYPQ

I ntroduction

Often, software developers are faced with situa-
tions when their programs do not compile, run ab-
normally slowly, or not as they should. Sometimes
these problems are results of compiler errors: bug
trackers of popular compilers (clang, gcc, javac, etc.)
contain tens of thousands of bugs found by users.
The quality and reliability of compilers is the prima-
ry target of language development teams. For exam-
ple, in the Kotlin (https://kotlinlang.org/) compiler
project bug tracker at the beginning of February
2022 there are 30,256 issues (https://youtrack.jet-
brains.com/issues?q=%23Kotlin). Most of them
were found by users of the language, who, with each
error they find, feel less and less desire to work with
the compiler. Despite the huge number of manually
written tests, compiler developers and testers can-
not cover all the use cases of the language, since the
number of possible programs is infinite.

How can we try to reduce the number of errors
faced by compiler users? This is where the methods
of automatic testing of compilers can help us, one of
the most popular of which is fuzzing. Fuzzing was
invented in 1988 at a Barton Miller seminar at the
University of Wisconsin [1]. Fuzzer was a program
that generated random sequences of characters and
fed them to the input of UNIX command line utilities
and see if the program crashed on the generated data

or not. It means that the compiler fuzzer should gen-
erate correct random programs in the target language
and check whether they will be compiled correctly.

In this paper we are presenting a platform for
compiler fuzzing, named Backend Bug Finder (BBF)
and the implementation on its basis of the Kotlin
compiler fuzzer. This tool is designed to find bugs
related to the correct work of the compiler, and to
its performance. Our fuzzer is mutational, it takes
manually written code as input and tries to modify
it in a non-trivial way. In addition to the test genera-
tion, BBF implements algorithms for bugs post-pro-
cessing: deduplication and reduction. The results of
the tool are highly appreciated by the language de-
velopment team and are useful in practice.

R elated works

Even before the fuzzing was coined, there were
various attempts to automatically test compilers
with randomly generated programs as early as
50 years ago. This section discusses the develop-
ment of compiler fuzzing area, as well as the most
popular approaches and tools. Сomprehensive over-
view of the compiler testing area is given in the ar-
ticle by Chen J. et al. [2].

The purpose of any compiler fuzzer is to generate
a random, non-trivial, correct program and check

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202232

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

the compiler’s work on it. Why should generated
programs be non-trivial? Because bugs in all trivial
programs have long been fixed. And as the compil-
er develops, the complexity of error-containing pro-
grams increases. Why do generated programs need
to be correct? A syntactically incorrect program can
only test the parser. Semantically incorrect ones
can find compiler errors, but in practice such cas-
es will never occur and fixing such bugs will not
lead to a significant improvement in the quality of
the compiler. So automatic program generation for
compiler testing is a big problem. All approaches for
production of compiler tests can be divided into two
groups: generative and mutational ones. It follows
from the titles that generative approaches try to
generate programs in some way, while mutational
approaches modify existing ones.

At the beginning of the development of the com-
piler fuzzing area, the most obvious and simple
approach was implemented: the generation of code
based on grammar. Purdom implemented such a
generator in his work [3]. The algorithm consists in
iterating by the production rules of grammar, and
trying to compile the resulting code. This approach
is suitable only for testing parsers, since almost all
the code obtained in such a way is semantically in-
correct. After that, various researchers introduced
improved types of grammars, which allowed to add
semantic rules into the generation process (affix,
attribute, W-grammars) [4–6]. Unfortunately, for
modern programming languages, none of them al-
lows to generate non-trivial, semantically correct
programs.

The work of Kreutzer P. et al. [7] can be consid-
ered as one of the modern grammar-based approach-
es. The authors presented a language for describing
attribute grammars that contain both syntactic and
semantic rules of the target programming language
in a declarative way. The disadvantage of this ap-
proach is that in practice, it is hardly possible to
write such grammar covering all modern language
features and ways of their interaction. Therefore, in
practice, it is limited to a small subset of the lan-
guage.

In addition to grammar-based approaches, there
are methods that somehow use grammar to im-
prove the generation process (grammar-aided ap-
proaches). The most famous grammar-aided tool is
CSmith [8], designed for testing C/C++ compilers.
The difference between this tool and the approach-
es described above is that the program generation
rules are described manually in the source code.
The generation process consists of creating a set
of data structures and the main function, which
contains various scenarios of their use. Each gen-
eration step uses a grammar to understand which
production rule can be applied and performs a set
of checks to ensure that the resulting program is

correct and free from undefined behavior. Over the
years, the tool has found a large number of bugs in
the GCC and Clang compilers, which greatly helped
the developers.

Besides of the mentioned, there are a huge num-
ber of generative approaches that implement vari-
ous ideas, for example, deriving generation rules
from existing code in the target programming lan-
guage [9], using machine learning [10], testing cer-
tain compiler features in programming language
compilers by writing a generator of the necessary
expressions [11], etc.

As was written earlier, in addition to generative
approaches, there are also mutational approaches.
They differ from generative ones in that they use an
existing program in the target programming lan-
guage as an initial seed and try to somehow modify
part of it to get a new one. Mutational approaches
are divided into two groups: preserving and not pre-
serving the original semantics.

Semantic-preserving mutational approaches
are based on the equivalence modulo inputs [12].
The main idea of equivalence modulo inputs is that
two programs are equivalent to each other under a
set of input data if for each input of the set their
behavior is the same. It means that mutations by
construction should produce code that is semanti-
cally equivalent to the original one. Next, we check
that programs that are syntactically different but
semantically equivalent actually work the same
way. Examples of such mutations can be different:
changes to dead code that are not affected during
program execution, or, conversely, its insertion.
A more difficult example can be various options for
replacing random expressions in a program with
equivalent ones. Despite the shown efficiency and
usefulness, this type of mutation is not intended for
full-fledged testing of compilers, because it is very
limited.

Non-semantic-preserving mutations are those
that change the semantics of the program. It can
be anything: replacing the signs of arithmetic ex-
pressions, variables renaming, changing the class
hierarchy, etc. Such mutations do not guaran-
tee the semantic correctness of the resulting pro-
gram, so after each mutation it should be checked,
and, in case of incorrectness, it is necessary to roll
back to the previous correct state. Non-semantic-
preserving mutations can be performed on different
types of code representation: text, abstract syntax
tree (AST), control flow graph, etc. For example,
Chen et al. in their work [13] successfully used
129 non-semantic-preserving mutations to test va-
rious Java Virtual Machine (JVM) implementations
and found more than 50 bugs in it. Another good
example is Holler’s work on finding vulnerabilities
in the JavaScript (JS) interpreter of Mozilla Firefox
[14]. The main idea is to replace non-terminal sym-

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2022 33

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

bols with non-terminals of the same type, but from
other programs. In order to increase the probability
of producing correct code, the authors implemented
a set of heuristics, such as changing variable names,
etc.

As can be seen from this section, compiler test-
ing is a very big and practically useful scientific area
separate from classic fuzzing. Each of the tools given
as an example found a big number of errors. Ideally,
a compiler fuzzer should be used in the development
of any programming language, regardless of the ap-
proach that it implements, as practice shows, it will
find some errors and help users to use the program-
ming language more safely. Unfortunately, almost
all tools are designed to test a specific programming
language or even specific compiler, so creating one
for Kotlin is an actual task.

B BF in detail

Backend Bug Finder is a platform for finding
bugs in the programming languages compilers.
Its development began in 2019 and is still ongo-
ing. Project is open source and available on Github
(https://github.com/DaniilStepanov/bbfgradle). In
this section we will consider in detail its structure
and operation principle: from methods for producing
test cases to post-processing of results.

BBF overview
Our platform for compiler fuzzing (Fig. 1) con-

sists of a number of components. In this section, we
will consider the purpose and algorithm of each of
them.

Test generator is responsible for test generation.
From all the existing approaches, we decided to im-
plement non-semantic-preserving mutations that
are applied in random order to a random test from
the initial test suite. The output of the test genera-
tor is a mutant program to check the correctness of
the compiler. The mutation process is directed us-
ing the information received from the compilation
checker, which allows one to understand that the
current mutant is incorrect or meaningless and do
not work with it further.

A component called compilation checker, also
known as a test oracle, is responsible for exchanging
information with the compiler. The input for this
component is a mutant program, which it sends to
the compiler for execution and analyzes the output,
which is then passed to the test generator to direct
its work. If a bug was found, then it is transferred to
the bug manager for post-processing.

Bug manager is the component responsible for
the found bugs post-processing. Usually, it includes
algorithms for deduplication, reduction and iso-
lation of errors. The output of this component is a
well-formatted and minimized test containing a bug
previously not found in the compiler, ready to be au-
tomatically or manually submitted to the appropri-
ate bug tracker.

Test generator
As mentioned earlier, non-semantics-preserv-

ing mutations were chosen for implementation in
the BBF. The grammar-based approach is not very
suitable for testing common language compilers due
to their complexity. A large number of different fea-
tures are implemented in the language, and manual
description of the rules for its generation requires
too much time with no guarantee of results.

Mutations in the BBF can be as diverse as pos-
sible: from simple ones like swap random lines or
replace plus to minus to complicated mutations with
class hierarchy modifications. In addition to such
mutations, the platform also provides the ability to
write partial generation: for example, random func-
tions or classes.

All mutations are applied in random order and
with different probabilities to provide a variety of
resulting mutants. It is important to note that since
our mutations do not guarantee the preservation
of the semantics and correctness of the test, after
each of them a check is necessary: if the resulting
mutant is incorrect, a rollback to the previous state
is performed. We get such information from the or-
acle after compilation and execution of the obtained
mutant.

As input, the test generator takes a random test
from the compiler’s test seed, which is usually man-
ually written by developers or testers. To improve

 Fig. 1. Backend Bug Finder overview

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202234

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

the quality of fuzzing, they should be diverse and
cover all language features and constructions. All
tests must have a single structure: at the beginning,
a set of various data structures, functions, and oth-
er top-level objects is defined, after which a function
is declared that contains different scenarios for us-
ing the previously described components.

Mutations can be performed over two types of
source code representation: textual and abstract
syntax tree (AST). The textual representation can
be used for simple mutations using regular expres-
sions or line-level modifications. The AST is used
for more complex transformations, such as chang-
ing the structure and architecture of tests. For ex-
ample, when modifying a function argument, you
have to modify all the call places. To improve the
mutation process, the AST can be extended with
various semantic information obtained from code
analysis: types, descriptors, and so on.

Compilation checker
The compilation checker is used to determine

that the compiler is not working correctly. To do
this, the program obtained from the test generator
is compiled and executed, after which the result of
compiler work is analyzed. In terms of fuzzing, the
compiler is a program under test (PUT) and the
compilation checker is a test oracle. According to
the type of information received from the compil-
er, test oracles are divided into black-box, gray-box
and white-box. In the case of black-box oracle, we
only get information from the program I/O stream,
which does not allow us to direct the fuzzing pro-
cess in any way. The gray-box oracle receives addi-
tional information from the PUT, usually its cover-
age, which is then used to target the fuzzing pro-
cess to cover necessary source code. In white-box
testing, a PUT model is built, on which symbolic
execution methods are used to generate new input
test data.

In terms of getting information from the compil-
er, BBF is a black-box fuzzer — we work only with
the information received from compiler I/O. The
generation of tests for compiler testing is very dif-
ferent from generation of not structured input data
for other programs, and in the case of target compil-
er testing, using coverage information as in general
fuzzing will not give an increase in testing quality.
Also, practice shows that prioritization of various
mutations also does not increase the quality of com-
mon compiler fuzzing. Work on using compiler cov-
erage information to improve the quality of target
fuzzing is one of the directions for future work.

Regarding the types of bugs we are searching for,
compilers are large and diverse software projects, so
errors are not limited to crashes. This section dis-
cusses the types of bugs we are looking for and how
we detect them.

Compiler crashes are the most common and easi-
ly detected kind of errors. To find bugs of this type,
we just need to parse the message that the compil-
er ends with. This type of error occurs most often.
With such an error, you will not be able to run the
resulting code, because the compiler for some rea-
son could not compile it.

The next type of bug is much more dangerous
and is called “miscompilation”. This situation oc-
curs when the compiler works correctly, but the be-
havior of the program does not correspond to the
semantics of the language. To search for this type
of errors we need to compile the program with dif-
ferent compilers (or different versions or modes of
the same compiler), instrument the compiled code
and check its behavior at runtime. If the behavior
of the program compiled in one of the modes or by
one of the compilers differs from the others, then at
least we have found an interesting situation, and as
a maximum this situation turns out to be a bug.

Last but not least are performance bugs. This
type of error is associated either with too long com-
pilation time, or, more seriously, with abnormally
high execution time. Such errors are also detected
using the “voting” system, but the whole difficulty
lies in measuring the program running time, since
the measurement error usually makes it difficult to
separate bugs from false positives. BBF deals with
such situations by adjusting the number of test runs
until the measurement error becomes negligible.

Of course, considered bug types list is not final.
The types of bugs to be found are limited only by
the developer’s imagination. As a part of the project,
work was done to find errors in the Kotlin language
compiler plugin, in application binary interface, cer-
tain components of the compiler, etc.

Bug manager
Practice shows that without this component it is

impossible to effectively test the compiler. For ex-
ample, usually, in a few hours of work, fuzzer finds
more than a hundred bugs, almost all of which are
duplicates. In addition to a large number of du-
plicates, test cases that lead to an error contain a
large amount of irrelevant information, the manual
removal of which takes a lot of time. It means that
any fuzzing platform should contain post-process-
ing algorithms. They typically include reduction,
deduplication, and isolation algorithms.

Reduction is designed to remove information ir-
relevant to error from the test. Practice shows that
most often the minimized test takes less than 10 lines,
while the generated one is many times larger. To re-
duce tests in BBF, we implemented a hybrid approach:
several language-agnostic methods and infrastruc-
ture to implement language-specific transformations.
Language-specific transformations are intended for
complex changes in the structure of the code that can-

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2022 35

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

not be done using automatic methods, for example,
when removing a function argument, you must re-
move it in all call sites. Transformations run one after
another until the test is no longer minimized. Reducer
overview is shown in Fig. 2.

Hierarchical delta debugging [15] and static
backward slicing [16] were chosen as language-in-
dependent methods that remove most of informa-
tion irrelevant to error. The hierarchical delta de-
bugging algorithm is based on the idea that on each
level of the AST, representing the code with a bug,
we are looking for the minimum set of vertices on
which the desired error continues to be reproduced,
and the vertices that do not affect this are deleted.

Slicing creates a program slice that contains only
code that affects a slicing criterion. In our case, the
slicing criteria are the variables found in the line
of the test that contains the error. There are sev-
eral types of slicing with different complexity and
quality of work, we chose static backward slicing,
which works at the intraprocedural, function and
class levels.

As a result, the reduction algorithm removes
significant amount of information irrelevant to the
bug and greatly improves the manual processing of
fuzzing results.

Practice of applying any compiler fuzzing shows
that without deduplication, manual processing of
found bugs takes too much time. It should be noted
that the algorithms described in this section do not
completely solve the problem of duplicates, allowing
both false-positive and false-negative situations, but
still significantly reduce the time of manual pro-
cessing of results.

The first idea that comes to mind for filtering
duplicates is that the same bugs have similar stack-
traces. So, we decided to compare them. For this
purpose, we are using Myer’s difference algorithm
[17]. The result of the algorithm is a similarity co-
efficient (0 <= k <= 1). If the coefficient exceeds a
previously empirically selected threshold, then the
bugs are considered duplicates. Algorithm is shown
in Fig. 3, a.

As is clear from the description, stacktraces are
required for this algorithm to work, but they are
available only in case of a compiler crash. What
about other types of bugs when we don’t have any-
thing to compare? The solution to this problem lies
in the scientific field called “Bug Isolation” [18]. The
task of bug isolation algorithms is to determine the
place in the source code of the PUT, which is the
cause of the error. The result of the algorithm is a
set of files sorted by the probability of containing
bug in it. The main idea of our method is the hy-
pothesis that bugs are duplicates if they are in the
same place in the compiler source code. To deter-
mine the source of the error, the method of gener-
ating witness programs described in the article by

Chen et al. [19] is used. Scheme of the algorithm is
shown in Fig. 3, b.

K otlin compiler fuzzing tool
implementation

Based on the platform described in the previous
section, we have implemented a tool for the Kotlin
compiler fuzzing. In this section we would like to
discuss some of the more interesting implementa-
tion details.

Working with Kotlin
To implement our tool, we need to be able to build

a structural representation of Kotlin code, be able to
modify it, and also effectively test the compiler on
it. All the necessary tools are already implemented
inside the Kotlin compiler, so we decided to build a
tool on top of it. In order not to be part of a huge pro-
ject, we decided to use the necessary compiler mod-
ules as libraries. However, this solution also has a
drawback –when updating the compiler version, the
versions of the libraries do not always remain com-
patible, which makes the update impossible.

 Fig. 2. Reducer overview

 Fig. 3. Bug deduplication algorithms: a — using
stacktraces comparison; b — using bug isolation tech-
niques

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202236

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

The compiler infrastructure also allows us to
use the Program Structure Interface (PSI) trees
(https://plugins.jetbrains.com/docs/intellij/psi.
html) — traditional concrete syntax tree imple-
mentation used in JetBrains IntelliJ Platform.
PSI is a standard way of representing structured
code inside a Kotlin compiler. In addition to syn-
tactic information, the tree contains information
obtained from code analysis: types, descriptors,
and so on. PSI makes it easier to perform the
modification of the code and allows you to make
changes that cannot be made with only syntactic
information.

Also, using the compiler as a library makes it
possible to compile code much more efficiently due
to the lack of overhead for running compilation ex-
ternally. But it is worth noting that in the case of
the Kotlin compiler, after a few hours it starts to
work more and more slowly, so sometimes the fuzz-
ing process needs to be restarted.

Test generator implementation
For the Kotlin language we have implemented

more than 50 mutations that are performed over
two types of code representation: text and PSI. In
this section, examples of interesting and diverse
mutations will be given; a complete list can be found
in the source code of the tool. To improve the muta-
tion process, a random type generator and a gener-
ator of random expressions of the given types were
implemented. It is also possible to work with the
Kotlin standard library or use external ones.

The initial seed for the test generator is tests for
the Kotlin compiler, written manually by the devel-
opers (https://github.com/JetBrains/kotlin). There
are quite a lot of them (6000+), they are diverse
and cover all language features and constructions.
Tests have a single structure: at the beginning, a
set of various data structures, functions, and other
top-level objects is defined, after which a function
named box is declared that contains different sce-
narios for using the previously described compo-
nents.

PSI modifier
This mutation is designed to modify the PSI with-

out using any semantic information. Nodes in the
tree can be swapped, added, removed, or changed to
nodes of the same type from other tests. Let’s con-
sider the last item in more details. An example of
such an operation is shown in Fig. 4. For this muta-
tion to work, first of all, it is necessary to collect a
database of trees and their node types. After that,
we take a random test case, select a random node
and search for nodes of the same type from other
tests, take a random one and try to make a replace-
ment: if the resulting test turns out to be correct,
then we accept the transformation and continue to

mutate the new test, if not, we roll back to the pre-
vious state.

Expression replacer
This transformation selects a random expression

and replaces it with another of the same type that
is available in the current scope. The expression we
are replacing can be a property, a parameter, a lo-
cal variable, or a function call that returns a value
of the compatible type. An example of applying this
transformation is shown in Fig. 5. The original pro-
gram P1 is shown in Fig. 5, a, suppose we choose to
replace the b property initializer of type Int shown
in Fig. 5, b. Further, for the place where the change
will be made, we calculate the scope, for example,
this will be a and result of calling the getSum func-
tion. After that, we select a random element of the
same type from the scope and make a replacement.
However, when choosing getSum, we need to gen-
erate a call to this function. And when generating
a call, variables from the current scope can also be
used. The generation result is shown in Fig. 5, c.

 Fig. 4. Example replacing of PSI node to the node
from another tree

 Fig. 5. Expression replacer mutation example: a —
P1; b — P2; c — P3

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = 1
return if (a == b) "OK" else "ERROR"

}

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = [Int]
return if (a == b) "OK" else "ERROR"

}

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = getSum(a, 9)
return if (a == b) "OK" else "ERROR"

}

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2022 37

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

Random component generator
This transformation represents the generative

part of the tool. To increase the diversity and com-
plexity of tests, a generator of random data struc-
tures was implemented. This generator allows you
to create interfaces, abstract classes, objects and
standard classes of all kinds. A class can contain
properties, functions, or nested classes. They can al-
so be inherited from others while maintaining code
correctness. To implement this generator, a random
type generator was also implemented, which takes
into account the context and the Kotlin standard
library. Generation of non-trivial function bodies is
a complex and time-consuming task and one of the
primary directions of future work. An example of
the generated class is shown in Listing 1. In addi-
tion to adding classes, the generator can insert var-
ious properties and functions into existing classes.

Listing 1. Example of generated class
open class A {
 private val a: Int = 1
 public inline val b: List<Int>
 get() = listOf()
 open fun c(): A = TODO()
 inner class B : A() {
 val a: Double = 0.0
 override fun c(): A = A()
 }
}

Compilation checker
To implement an oracle for the Kotlin compiler,

first we need to understand what we are testing,
what kind of errors we can look for and how to de-
tect them. The main platform for Kotlin compiler
is the JVM, but there are also backends that allow

compiling Kotlin to JS and to native binaries, which
can run without a virtual machine. At this moment
our tool supports JVM and JS backends. Adding a
native backend is considered future work. In addi-
tion to the release versions of the compiler, we are
testing various dev-builds for pre-release testing of
new functionality.

The first type of errors we look for are crashes,
and it’s quite easy to define them: their messages
have a specific format that is easy enough to parse.
Listing 2 shows an example of the crash message for
the Kotlin compiler.

Listing 2. Example of Kotlin compiler crash mes-
sage

Exception in thread “main” org.jetbrains.
kotlin.codegen.CompilationException: Back-
end (JVM) Internal error: wrong bytecode
generated

 L0
 LINENUMBER 6 L0
 NOP
File being compiled: (1,1) in /File.kt The

root cause
…
Detecting miscompilations is a task of a different

complexity. To search for miscompilations, we need
to compile the instrumented program with different
backends or in different modes of the same back-
end and compare their behavior. This is done using
the voting method, the scheme of which is shown in
Fig. 6. And it is important to take into account the
specifics of the backend, for example, in JS division
by 0 is undefined, and in the JVM it is an exception.
For such situations, we have implemented a set of
filters that help save time on manual processing of
such cases.

 Fig. 6. Voting system for the Kotlin compiler

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202238

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

Bug manager implementation
The bug manager is used to reduce the time for

manual processing of found bugs. All algorithms and
approaches described in the previous section are suit-
able for Kotlin compiler bugs post-processing. To im-
prove the quality of reduction algorithms, more than
thirty Kotlin specific transformations were implement-
ed on two types of code representation: text and PSI.
Examples of text transformations are: deleting text in-
side a balanced pair of brackets, deleting text between
two dots, replacing while with if, etc. PSI based trans-
formations, which are intended for complex modifica-
tions can be divided into the following groups:

— expression simplification (replace expression
to constant of same type, simplification of if state-
ments, loops, elvis operator, etc.);

— removal of unneeded components (imports,
function arguments, etc.);

— simplification of interdependencies (removal
of inherited properties and functions, replacement
of function bodies with TODO(), etc.);

— miscellaneous (comment deletion, formatting,
etc.).

More details about the Kotlin program reducer
and its results can be found in the article [20]. In
general, a complex approach using language-agnos-
tic methods and language-specific transformations
gives a good result. In practice, more than 90% of
irrelevant information is removed from programs
that lead to erro rs.

Kotlin compiler fuzzer evaluation

Active use of the tool has been going on for more
than a 1.5 years. To estimate the effectiveness,

we have been collecting statistics and logs all this
time. To fuzz the Kotlin compiler, we did not use
any big computing power, because, despite the effi-
cient work of post-processing algorithms, filtering
uninteresting results and sending them to devel-
opers takes a lot of time. All interesting bugs were
sent to Kotlin bug tracker — YouTrack (https://
youtrack.jetbrains.com/issues/KT?q=%23found-by-
fuzzer%20). Evaluation was mainly performed on
a single computer with Intel(R) Core(TM) i7-8700K
CPU@3.70 HGz and 32 GB RAM. The compiler
version has always been kept up to date. As an in-
itial seed for mutation, we selected a compiler test
suite, consisting of more than 6000 files. Mostly
fuzzing was done for the JVM backend, but for sev-
eral months we were looking for bugs in the JS. It
is also worth noting that BBF has been constantly
improving during this time: new mutations and ora-
cles have appeared, because without improvements
at some point fuzzing stops working.

Figure 7 shows the number of bugs posted per
month for all time of fuzzing. The first results
began to be transferred to developers in August
2020. At that time, the compiler was not yet as re-
liable and stable as it is now. In November 2020,
the Type Centric Enumeration approach [21] was
implemented, which led to a significant increase in
bugs found. After that, BBF interested the compil-
er development team and a lot of effort was spent
to make the tool from research to practical. There
were few launches during the rework, so there
were few bugs before July 2021. In July 2021, the
practice-oriented BBF went live and brought a lot
of practical value. Developers often asked to test
certain components of the compiler that were un-
der development, which also influenced the general

  Fig. 7. Number of bugs posted per month

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2022 39

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

trend towards an increase in the number of bugs
found.

Table shows statistics on the distribution of
found bugs. A total of 208 bugs have been submit-
ted as of this writing. Not specified bugs that do not
fall into any category are either duplicates or not in-
teresting from the developer’s point of view. To bet-
ter understand our impact, during the experiment,
about 13% of the total number of bugs in the JVM
backend was found using BBF. The total number of
errors found is several thousand, but most of them
are caused by semantically incorrect code. These
bugs get a low priority and are unlikely to ever be
fixed, so the decision was made not to send such bug
reports to the developers.

Conclusion

In this work, we have presented a platform for
finding bugs in the programming language com-
pilers — Backend Bug Finder. After reviewing the
compiler fuzzing area and choosing the methods
to be implemented, we considered all the ideas and
principles implemented in the tool. On the basis of
the developed platform, a fuzzer was implemented
for the compiler of the Kotlin programming lan-
guage. The results of fuzzing shows that the use of
the fuzzer greatly improves the quality of the com-
piler: we published about 13% of the total number
of bugs in the JVM backend reported during our
experiment.

How difficult is it to adapt the platform to anoth-
er programming language? It is pretty easy to make
a naive fuzzer, which will probably find some errors.
But for deep and complete testing of the compiler,
efforts will have to be made to write language-spe-
cific transformations, reduction algorithms and in-
frastructure for the efficient execution of generated
programs.

As for future work, the BBF will improve both in
practical and theoretical terms. In practical side, we
plan implement a parallelling of the fuzzing process.
In theoretical side, we will move towards gray-box
fuzzing and other methods of program generation
for compiler testing purposes.

  Found bugs statistic

Bug status Critical Major Normal Minor
Not

specified

Fixed 2 45 18 5 19

Open 0 11 12 2 16

In
progress

0 1 2 0 1

Other 0 2 3 2 0

References

1. Miller B. P., Koski D., Lee C. P., Maganty V., Murthy R.,
Natarajan A., & Steidl J. Fuzz revisited: A re-exami-
nation of the reliability of UNIX utilities and services.
Computer Sciences Department University of Wiscon-
sin, 1995. Available at: https://minds.wisconsin.edu/
bitstream/handle/1793/59964/TR1268.pdf (accessed
16 August 2022).

2. Chen H., Pendleton M., Njilla L., & Xu S. A survey of
compiler testing. ACM Computing Surveys (CSUR),
2020, vol. 53, no. 1, pp. 1–36. doi:10.1145/3363562

3. Purdom P. A sentence generator for testing parsers.
BIT Numerical Mathematics, 1972, vol. 12, no. 3,
pp. 366–375. doi:10.1007/BF01932308

4. Hanford K. V. Automatic generation of test cases.
IBM Syst. J., 1970, vol. 9, no. 4, pp. 242–257. doi:10.
1147/sj.94.0242

5. Duncan A. G., Hutchison J. S. Using attributed gram-
mars to test designs and implementations. Proc. of the
5th Intern. Conf. on Software Engineering, 1981,
pp. 170–178.

6. A. van Wijngaarden. Orthogonal Design and Descrip-
tion of a Formal Language. Stichting Mathematisch
Centrum, 1965.

7. Kreutzer P., Kraus S., Philippsen M. Language-ag-
nostic generation of compilable test programs. 2020

IEEE 13th Intern. Conf. on Software Testing, Valida-
tion and Verification (ICST), 2020, pp. 39–50.
doi:10.1109/ICST46399.2020.00015

8. Yang X., Chen Y., Eide E., Regehr J. Finding and un-
derstanding bugs in C compilers. Proc. of the 32nd
ACM SIGPLAN Conf. on Programming Language De-
sign and Implementation, 2011, pp. 283–294. doi.
org:10.1145/1993498.1993532

9. Bastani O., Sharma R., Aiken A., Liang P. Synthesiz-
ing program input grammars. ACM SIGPLAN Notic-
es, 2017, pp. 95–110. doi:10.1145/3140587.3062349

10. Cummins C., Petoumenos P., Murray A., Leather H.
Compiler fuzzing through deep learning. Proc. of the
27th ACM SIGSOFT Intern. Symp. on Software Test-
ing and Analysis, 2018, pp. 95–105. doi:10.1145/
3213846.3213848

11. Nagai E., Awazu H., Ishiura N., Takeda N. Random
testing of C compilers targeting arithmetic optimiza-
tion. Workshop on Synthesis and System Integration of
Mixed Information Technologies (SASIMI 2012),
2012, pp. 48–53. doi:10.1145/3428264

12. Le V., Afshari M., Su Z. Compiler validation via equiv-
alence modulo inputs. ACM Sigplan Notices, 2014,
pp. 216–226. doi:10.1145/2594291.2594334

13. Chen Y., Su T., Sun C., Su Z., Zhao J. Coverage-direct-
ed differential testing of JVM implementations. Proc.
of the 37th ACM SIGPLAN Conf. on Programming

ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202240

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

Language Design and Implementation, 2016, pp. 85–
99. doi:10.1145/2908080.2908095

14. Holler C., Herzig K., and Zeller A. Fuzzing with code
fragments. Proc. of the 21st USENIX Conf. on Security
Symp., 2012, pp. 445–458. doi:10.5555/2362793.
2362831

15. Misherghi G., Su Z. HDD: Hierarchical delta debug-
ging. Proc. of the 28th Intern. Conf. on Software Engi-
neering, 2006, pp. 142–151. doi:10.1145/1134285.
1134307

16. Weiser M. Program slicing. IEEE Transactions on
Software Engineering, 1984, vol. SE-10, iss. 4,
pp. 352–357. doi:10.1109/TSE.1984.5010248

17. Myers E. W. AnO (ND) difference algorithm and its
variations. Algorithmica, 1986, no. 1, pp. 251–266. doi:
10.1007/BF01840446

18. Wong W. E., Gao R., Li Y., Abreu R., Wotawa F. A sur-
vey on software fault localization. IEEE Transactions

on Software Engineering, 2016, vol. 42, pp. 707–740.
doi:10.1109/TSE.2016.2521368

19. Chen J., Han J., Sun P., Zhang L., Hao D., Zhang L.
Compiler bug isolation via effective witness test pro-
gram generation. Proc. of the 27th ACM Joint Meeting
on European Software Engineering Conf. and Symp.
on the Foundations of Software Engineering, 2019,
pp. 223–234. doi:10.1145/3338906.3338957

20. Stepanov D., Akhin M., Belyaev M. ReduKtor: How
we stopped worrying about bugs in kotlin compiler.
2019 34th IEEE/ACM Intern. Conf. on Automated
Software Engineering (ASE), 2019, pp. 317–326.
doi:10.1109/ASE.2019.00038

21. Stepanov D., Akhin M., Belyaev M. Type-centric Kot-
lin compiler fuzzing: Preserving test program cor-
rectness by preserving types. 14th IEEE Conf. on Soft-
ware Testing, Verification and Validation (ICST),
2021, pp. 318–328.

УДК 004.05
doi:10.31799/1684-8853-2022-6-31-40
EDN: OOCYPQ

Backend Bug Finder — платформа для эффективного фаззинга компиляторов

Д. С. Степановa, старший преподаватель, orcid.org/0000-0003-1719-0325
В. М. Ицыксонa, канд. техн. наук, доцент, orcid.org/0000-0003-0276-4517, vlad@icc.spbstu.ru
аСанкт-Петербургский политехнический университет Петра Великого, Политехническая ул., 19, Санкт-Петербург,
195251, РФ

Введение: стандартным способом проверки надежности компилятора является ручное тестирование. Но с его помощью невоз-
можно покрыть множество программ, которые могут быть написаны на целевом языке программирования. В настоящее время в
дополнение к ручному тестированию существует множество автоматических методов проверки надежности компиляторов, среди
которых фаззинг является одним из самых мощных и полезных. Цель: разработать платформу для фаззинга компиляторов и на ее
основе инструмент для тестирования компилятора языка Kotlin. Результаты: разработана платформа Backend Bug Finder для фаз-
зинга компиляторов. В качестве метода для генерации случайных программ выбран мутационный подход, когда на вход мутатору
подается программа, которую он пытается каким-либо образом преобразовать. Мутации могут быть как тривиальными, например
замена арифметических операторов другими, так и сложными, меняющими структуру программы. Далее полученная программа
подается на вход компилятору, и производится проверка его работы. Разработанный тестовый оракул может детектировать ошибки
трех типов: падения, мискомпиляции и деградации производительности. В случае обнаружения ошибки тестовый пример подается
в модуль постобработки, где применяются алгоритмы редукции и дедупликации. На основе платформы для апробации подхода раз-
работан инструмент для фаззинга компилятора языка Kotlin, который показал применимость платформы для поиска ошибок в со-
временных компиляторах. Практическая значимость: за полтора года функционирования разработанный инструмент обнаружил
тысячи различных ошибок компилятора языка Kotlin, из них более 200 отправлено разработчикам, более 80 исправлено.

Ключевые слова — фаззинг, тестирование компилятора, генерация компиляторных тестов, Kotlin, мутационный фаззинг.

Для цитирования: Stepanov D. S., Itsykson V. M. Backend Bug Finder — a platform for effective compiler fuzzing. Информационно-
управляющие системы, 2022, № 6, с. 31–40. doi:10.31799/1684-8853-2022-6-31-40, EDN: OOCYPQ
For citation: Stepanov D. S., Itsykson V. M. Backend Bug Finder — a platform for effective compiler fuzzing. Informatsionno-
upravliaiushchie sistemy [Information and Control Systems], 2022, no. 6, pp. 31–40. doi:10.31799/1684-8853-2022-6-31-40, EDN:
OOCYPQ

