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Introduction: The standard way to check the quality of a compiler is manual testing. However, it does not allow to cover a vast 
diversity of programs that can be written in a target programming language. Today, in addition to manual written tests there are many 
automated compiler testing methods, among which fuzzing is one of the most powerful and useful. A compiler fuzzer is a tool that 
generates a random program in a target language and checks how the compiler works in this language. Purpose: To develop a platform 
for compiler fuzzing and, based on it, to develop a tool for Kotlin compiler testing. Results: We have developed Backend Bug Finder which 
is a platform for compiler fuzzing is. We have chosen a mutation-based approach as a method for generating random programs. First, an 
existing program is entered to the mutator as the input to be then transformed in some way. Mutations can be both trivial, for example, 
replacing arithmetic operators with others, and complex, changing the structure of the program. Next, the resulting program is fed to 
the input of the compiler with the following check of its operation. The developed test oracle can detect three types of errors: crashes, 
miscompilations, and performance degradations. If an error is detected, the test case is fed into the post-processing module, where 
reduction and deduplication algorithms are applied. We have developed a tool for fuzzing the Kotlin language compiler based on the 
platform for its approbation, which showed the applicability of the proposed approach for finding errors in modern compilers. Practical 
relevance: Over a year and a half of work, our tool has found thousands of different Kotlin compiler bugs, more than 200 of which were 
sent to the developers, and more than 80 have been fixed.
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I ntroduction

Often, software developers are faced with situa-
tions when their programs do not compile, run ab-
normally slowly, or not as they should. Sometimes 
these problems are results of compiler errors: bug 
trackers of popular compilers (clang, gcc, javac, etc.) 
contain tens of thousands of bugs found by users. 
The quality and reliability of compilers is the prima-
ry target of language development teams. For exam-
ple, in the Kotlin (https://kotlinlang.org/) compiler 
project bug tracker at the beginning of February 
2022 there are 30,256 issues (https://youtrack.jet-
brains.com/issues?q=%23Kotlin). Most of them 
were found by users of the language, who, with each 
error they find, feel less and less desire to work with 
the compiler. Despite the huge number of manually 
written tests, compiler developers and testers can-
not cover all the use cases of the language, since the 
number of possible programs is infinite. 

How can we try to reduce the number of errors 
faced by compiler users? This is where the methods 
of automatic testing of compilers can help us, one of 
the most popular of which is fuzzing. Fuzzing was 
invented in 1988 at a Barton Miller seminar at the 
University of Wisconsin [1]. Fuzzer was a program 
that generated random sequences of characters and 
fed them to the input of UNIX command line utilities 
and see if the program crashed on the generated data 

or not. It means that the compiler fuzzer should gen-
erate correct random programs in the target language 
and check whether they will be compiled correctly.

In this paper we are presenting a platform for 
compiler fuzzing, named Backend Bug Finder (BBF) 
and the implementation on its basis of the Kotlin 
compiler fuzzer. This tool is designed to find bugs 
related to the correct work of the compiler, and to 
its performance. Our fuzzer is mutational, it takes 
manually written code as input and tries to modify 
it in a non-trivial way. In addition to the test genera-
tion, BBF implements algorithms for bugs post-pro-
cessing: deduplication and reduction. The results of 
the tool are highly appreciated by the language de-
velopment team and are useful in practice.

R elated works

Even before the fuzzing was coined, there were 
various attempts to automatically test compilers 
with randomly generated programs as early as 
50 years ago. This section discusses the develop-
ment of compiler fuzzing area, as well as the most 
popular approaches and tools. Сomprehensive over-
view of the compiler testing area is given in the ar-
ticle by Chen J. et al. [2].

The purpose of any compiler fuzzer is to generate 
a random, non-trivial, correct program and check 
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the compiler’s work on it. Why should generated 
programs be non-trivial? Because bugs in all trivial 
programs have long been fixed. And as the compil-
er develops, the complexity of error-containing pro-
grams increases. Why do generated programs need 
to be correct? A syntactically incorrect program can 
only test the parser. Semantically incorrect ones 
can find compiler errors, but in practice such cas-
es will never occur and fixing such bugs will not 
lead to a significant improvement in the quality of 
the compiler. So automatic program generation for 
compiler testing is a big problem. All approaches for 
production of compiler tests can be divided into two 
groups: generative and mutational ones. It follows 
from the titles that generative approaches try to 
generate programs in some way, while mutational 
approaches modify existing ones.

At the beginning of the development of the com-
piler fuzzing area, the most obvious and simple 
approach was implemented: the generation of code 
based on grammar. Purdom implemented such a 
generator in his work [3]. The algorithm consists in 
iterating by the production rules of grammar, and 
trying to compile the resulting code. This approach 
is suitable only for testing parsers, since almost all 
the code obtained in such a way is semantically in-
correct. After that, various researchers introduced 
improved types of grammars, which allowed to add 
semantic rules into the generation process (affix, 
attribute, W-grammars) [4–6]. Unfortunately, for 
modern programming languages, none of them al-
lows to generate non-trivial, semantically correct 
programs. 

The work of Kreutzer P. et al. [7] can be consid-
ered as one of the modern grammar-based approach-
es. The authors presented a language for describing 
attribute grammars that contain both syntactic and 
semantic rules of the target programming language 
in a declarative way. The disadvantage of this ap-
proach is that in practice, it is hardly possible to 
write such grammar covering all modern language 
features and ways of their interaction. Therefore, in 
practice, it is limited to a small subset of the lan-
guage.

In addition to grammar-based approaches, there 
are methods that somehow use grammar to im-
prove the generation process (grammar-aided ap-
proaches). The most famous grammar-aided tool is 
CSmith [8], designed for testing C/C++ compilers. 
The difference between this tool and the approach-
es described above is that the program generation 
rules are described manually in the source code. 
The generation process consists of creating a set 
of data structures and the main function, which 
contains various scenarios of their use. Each gen-
eration step uses a grammar to understand which 
production rule can be applied and performs a set 
of checks to ensure that the resulting program is 

correct and free from undefined behavior. Over the 
years, the tool has found a large number of bugs in 
the GCC and Clang compilers, which greatly helped 
the developers. 

Besides of the mentioned, there are a huge num-
ber of generative approaches that implement vari-
ous ideas, for example, deriving generation rules 
from existing code in the target programming lan-
guage [9], using machine learning [10], testing cer-
tain compiler features in programming language 
compilers by writing a generator of the necessary 
expressions [11], etc.

As was written earlier, in addition to generative 
approaches, there are also mutational approaches. 
They differ from generative ones in that they use an 
existing program in the target programming lan-
guage as an initial seed and try to somehow modify 
part of it to get a new one. Mutational approaches 
are divided into two groups: preserving and not pre-
serving the original semantics.

Semantic-preserving mutational approaches 
are based on the   equivalence modulo inputs [12]. 
The main idea of equivalence modulo inputs is that 
two programs are equivalent to each other under a 
set of input data if for each input of the set their 
behavior is the same. It means that mutations by 
construction should produce code that is semanti-
cally equivalent to the original one. Next, we check 
that programs that are syntactically different but 
semantically equivalent actually work the same 
way. Examples of such mutations can be different: 
changes to dead code that are not affected during 
program execution, or, conversely, its insertion. 
A more difficult example can be various options for 
replacing random expressions in a program with 
equivalent ones. Despite the shown efficiency and 
usefulness, this type of mutation is not intended for 
full-fledged testing of compilers, because it is very 
limited.

Non-semantic-preserving mutations are those 
that change the semantics of the program. It can 
be anything: replacing the signs of arithmetic ex-
pressions, variables renaming, changing the class 
hierarchy, etc. Such mutations do not guaran-
tee the semantic correctness of the resulting pro-
gram, so after each mutation it should be checked, 
and, in case of incorrectness, it is necessary to roll 
back to the previous correct state. Non-semantic-
preserving mutations can be performed on different 
types of code representation: text, abstract syntax 
tree (AST), control flow graph, etc. For example, 
Chen et al. in their work [13] successfully used 
129 non-semantic-preserving mutations to test va-
rious Java Virtual Machine (JVM) implementations 
and found more than 50 bugs in it. Another good 
example is Holler’s work on finding vulnerabilities 
in the JavaScript (JS) interpreter of Mozilla Firefox 
[14]. The main idea is to replace non-terminal sym-
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bols with non-terminals of the same type, but from 
other programs. In order to increase the probability 
of producing correct code, the authors implemented 
a set of heuristics, such as changing variable names, 
etc. 

As can be seen from this section, compiler test-
ing is a very big and practically useful scientific area 
separate from classic fuzzing. Each of the tools given 
as an example found a big number of errors. Ideally, 
a compiler fuzzer should be used in the development 
of any programming language, regardless of the ap-
proach that it implements, as practice shows, it will 
find some errors and help users to use the program-
ming language more safely. Unfortunately, almost 
all tools are designed to test a specific programming 
language or even specific compiler, so creating one 
for Kotlin is an actual task. 

B BF in detail

Backend Bug Finder is a platform for finding 
bugs in the programming languages compilers. 
Its development began in 2019 and is still ongo-
ing. Project is open source and available on Github
(https://github.com/DaniilStepanov/bbfgradle). In 
this section we will consider in detail its structure 
and operation principle: from methods for producing 
test cases to post-processing of results.

BBF overview
Our platform for compiler fuzzing (Fig. 1) con-

sists of a number of components. In this section, we 
will consider the purpose and algorithm of each of 
them.

Test generator is responsible for test generation. 
From all the existing approaches, we decided to im-
plement non-semantic-preserving mutations that 
are applied in random order to a random test from 
the initial test suite. The output of the test genera-
tor is a mutant program to check the correctness of 
the compiler. The mutation process is directed us-
ing the information received from the compilation 
checker, which allows one to understand that the 
current mutant is incorrect or meaningless and do 
not work with it further. 

A component called compilation checker, also 
known as a test oracle, is responsible for exchanging 
information with the compiler. The input for this 
component is a mutant program, which it sends to 
the compiler for execution and analyzes the output, 
which is then passed to the test generator to direct 
its work. If a bug was found, then it is transferred to 
the bug manager for post-processing. 

Bug manager is the component responsible for 
the found bugs post-processing. Usually, it includes 
algorithms for deduplication, reduction and iso-
lation of errors. The output of this component is a 
well-formatted and minimized test containing a bug 
previously not found in the compiler, ready to be au-
tomatically or manually submitted to the appropri-
ate bug tracker. 

Test generator
As mentioned earlier, non-semantics-preserv-

ing mutations were chosen for implementation in 
the BBF. The grammar-based approach is not very 
suitable for testing common language compilers due 
to their complexity. A large number of different fea-
tures are implemented in the language, and manual 
description of the rules for its generation requires 
too much time with no guarantee of results.

Mutations in the BBF can be as diverse as pos-
sible: from simple ones like swap random lines or 
replace plus to minus to complicated mutations with 
class hierarchy modifications. In addition to such 
mutations, the platform also provides the ability to 
write partial generation: for example, random func-
tions or classes. 

All mutations are applied in random order and 
with different probabilities to provide a variety of 
resulting mutants. It is important to note that since 
our mutations do not guarantee the preservation 
of the semantics and correctness of the test, after 
each of them a check is necessary: if the resulting 
mutant is incorrect, a rollback to the previous state 
is performed. We get such information from the or-
acle after compilation and execution of the obtained 
mutant.

As input, the test generator takes a random test 
from the compiler’s test seed, which is usually man-
ually written by developers or testers. To improve 

 Fig. 1. Backend Bug Finder overview
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the quality of fuzzing, they should be diverse and 
cover all language features and constructions. All 
tests must have a single structure: at the beginning, 
a set of various data structures, functions, and oth-
er top-level objects is defined, after which a function 
is declared that contains different scenarios for us-
ing the previously described components.

Mutations can be performed over two types of 
source code representation: textual and abstract 
syntax tree (AST). The textual representation can 
be used for simple mutations using regular expres-
sions or line-level modifications. The AST is used 
for more complex transformations, such as chang-
ing the structure and architecture of tests. For ex-
ample, when modifying a function argument, you 
have to modify all the call places. To improve the 
mutation process, the AST can be extended with 
various semantic information obtained from code 
analysis: types, descriptors, and so on.

Compilation checker
The compilation checker is used to determine 

that the compiler is not working correctly. To do 
this, the program obtained from the test generator 
is compiled and executed, after which the result of 
compiler work is analyzed. In terms of fuzzing, the 
compiler is a program under test (PUT) and the 
compilation checker is a test oracle. According to 
the type of information received from the compil-
er, test oracles are divided into black-box, gray-box 
and white-box. In the case of black-box oracle, we 
only get information from the program I/O stream, 
which does not allow us to direct the fuzzing pro-
cess in any way. The gray-box oracle receives addi-
tional information from the PUT, usually its cover-
age, which is then used to target the fuzzing pro-
cess to cover necessary source code. In white-box 
testing, a PUT model is built, on which symbolic 
execution methods are used to generate new input 
test data.

In terms of getting information from the compil-
er, BBF is a black-box fuzzer — we work only with 
the information received from compiler I/O. The 
generation of tests for compiler testing is very dif-
ferent from generation of not structured input data 
for other programs, and in the case of target compil-
er testing, using coverage information as in general 
fuzzing will not give an increase in testing quality. 
Also, practice shows that prioritization of various 
mutations also does not increase the quality of com-
mon compiler fuzzing. Work on using compiler cov-
erage information to improve the quality of target 
fuzzing is one of the directions for future work. 

Regarding the types of bugs we are searching for, 
compilers are large and diverse software projects, so 
errors are not limited to crashes. This section dis-
cusses the types of bugs we are looking for and how 
we detect them.

Compiler crashes are the most common and easi-
ly detected kind of errors. To find bugs of this type, 
we just need to parse the message that the compil-
er ends with. This type of error occurs most often. 
With such an error, you will not be able to run the 
resulting code, because the compiler for some rea-
son could not compile it.

The next type of bug is much more dangerous 
and is called “miscompilation”. This situation oc-
curs when the compiler works correctly, but the be-
havior of the program does not correspond to the 
semantics of the language. To search for this type 
of errors we need to compile the program with dif-
ferent compilers (or different versions or modes of 
the same compiler), instrument the compiled code 
and check its behavior at runtime. If the behavior 
of the program compiled in one of the modes or by 
one of the compilers differs from the others, then at 
least we have found an interesting situation, and as 
a maximum this situation turns out to be a bug. 

Last but not least are performance bugs. This 
type of error is associated either with too long com-
pilation time, or, more seriously, with abnormally 
high execution time. Such errors are also detected 
using the “voting” system, but the whole difficulty 
lies in measuring the program running time, since 
the measurement error usually makes it difficult to 
separate bugs from false positives. BBF deals with 
such situations by adjusting the number of test runs 
until the measurement error becomes negligible. 

Of course, considered bug types list is not final. 
The types of bugs to be found are limited only by 
the developer’s imagination. As a part of the project, 
work was done to find errors in the Kotlin language 
compiler plugin, in application binary interface, cer-
tain components of the compiler, etc.

Bug manager
Practice shows that without this component it is 

impossible to effectively test the compiler. For ex-
ample, usually, in a few hours of work, fuzzer finds 
more than a hundred bugs, almost all of which are 
duplicates. In addition to a large number of du-
plicates, test cases that lead to an error contain a 
large amount of irrelevant information, the manual 
removal of which takes a lot of time. It means that 
any fuzzing platform should contain post-process-
ing algorithms. They typically include reduction, 
deduplication, and isolation algorithms.

Reduction is designed to remove information ir-
relevant to error from the test. Practice shows that 
most often the minimized test takes less than 10 lines, 
while the generated one is many times larger. To re-
duce tests in BBF, we implemented a hybrid approach: 
several language-agnostic methods and infrastruc-
ture to implement language-specific transformations. 
Language-specific transformations are intended for 
complex changes in the structure of the code that can-
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not be done using automatic methods, for example, 
when removing a function argument, you must re-
move it in all call sites. Transformations run one after 
another until the test is no longer minimized. Reducer 
overview is shown in Fig. 2.

Hierarchical delta debugging [15] and static 
backward slicing [16] were chosen as language-in-
dependent methods that remove most of informa-
tion irrelevant to error. The hierarchical delta de-
bugging algorithm is based on the idea that on each 
level of the AST, representing the code with a bug, 
we are looking for the minimum set of vertices on 
which the desired error continues to be reproduced, 
and the vertices that do not affect this are deleted. 

Slicing creates a program slice that contains only 
code that affects a slicing criterion. In our case, the 
slicing criteria are the variables found in the line 
of the test that contains the error. There are sev-
eral types of slicing with different complexity and 
quality of work, we chose static backward slicing, 
which works at the intraprocedural, function and 
class levels.

As a result, the reduction algorithm removes 
significant amount of information irrelevant to the 
bug and greatly improves the manual processing of 
fuzzing results. 

Practice of applying any compiler fuzzing shows 
that without deduplication, manual processing of 
found bugs takes too much time. It should be noted 
that the algorithms described in this section do not 
completely solve the problem of duplicates, allowing 
both false-positive and false-negative situations, but 
still significantly reduce the time of manual pro-
cessing of results. 

The first idea that comes to mind for filtering 
duplicates is that the same bugs have similar stack-
traces. So, we decided to compare them. For this 
purpose, we are using Myer’s difference algorithm 
[17]. The result of the algorithm is a similarity co-
efficient (0 <= k <= 1). If the coefficient exceeds a 
previously empirically selected threshold, then the 
bugs are considered duplicates. Algorithm is shown 
in Fig. 3, a.

As is clear from the description, stacktraces are 
required for this algorithm to work, but they are 
available only in case of a compiler crash. What 
about other types of bugs when we don’t have any-
thing to compare? The solution to this problem lies 
in the scientific field called “Bug Isolation” [18]. The 
task of bug isolation algorithms is to determine the 
place in the source code of the PUT, which is the 
cause of the error. The result of the algorithm is a 
set of files sorted by the probability of containing 
bug in it. The main idea of   our method is the hy-
pothesis that bugs are duplicates if they are in the 
same place in the compiler source code. To deter-
mine the source of the error, the method of gener-
ating witness programs described in the article by 

Chen et al. [19] is used. Scheme of the algorithm is 
shown in Fig. 3, b.

K otlin compiler fuzzing tool 
implementation

Based on the platform described in the previous 
section, we have implemented a tool for the Kotlin 
compiler fuzzing. In this section we would like to 
discuss some of the more interesting implementa-
tion details.

Working with Kotlin
To implement our tool, we need to be able to build 

a structural representation of Kotlin code, be able to 
modify it, and also effectively test the compiler on 
it. All the necessary tools are already implemented 
inside the Kotlin compiler, so we decided to build a 
tool on top of it. In order not to be part of a huge pro-
ject, we decided to use the necessary compiler mod-
ules as libraries. However, this solution also has a 
drawback –when updating the compiler version, the 
versions of the libraries do not always remain com-
patible, which makes the update impossible.

 Fig. 2. Reducer overview

 Fig. 3. Bug deduplication algorithms: a — using 
stacktraces comparison; b — using bug isolation tech-
niques



ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 6, 202236

ПРОГРАММНЫЕ И АППАРАТНЫЕ СРЕДСТВА

The compiler infrastructure also allows us to 
use the Program Structure Interface (PSI) trees
(https://plugins.jetbrains.com/docs/intellij/psi.
html) — traditional concrete syntax tree imple-
mentation used in JetBrains IntelliJ Platform. 
PSI is a standard way of representing structured 
code inside a Kotlin compiler. In addition to syn-
tactic information, the tree contains information 
obtained from code analysis: types, descriptors, 
and so on. PSI makes it easier to perform the 
modification of the code and allows you to make 
changes that cannot be made with only syntactic 
information.

Also, using the compiler as a library makes it 
possible to compile code much more efficiently due 
to the lack of overhead for running compilation ex-
ternally. But it is worth noting that in the case of 
the Kotlin compiler, after a few hours it starts to 
work more and more slowly, so sometimes the fuzz-
ing process needs to be restarted.

Test generator implementation 
For the Kotlin language we have implemented 

more than 50 mutations that are performed over 
two types of code representation: text and PSI. In 
this section, examples of interesting and diverse 
mutations will be given; a complete list can be found 
in the source code of the tool. To improve the muta-
tion process, a random type generator and a gener-
ator of random expressions of the given types were 
implemented. It is also possible to work with the 
Kotlin standard library or use external ones.

The initial seed for the test generator is tests for 
the Kotlin compiler, written manually by the devel-
opers (https://github.com/JetBrains/kotlin). There 
are quite a lot of them (6000+), they are diverse 
and cover all language features and constructions. 
Tests have a single structure: at the beginning, a 
set of various data structures, functions, and other 
top-level objects is defined, after which a function 
named box is declared that contains different sce-
narios for using the previously described compo-
nents. 

PSI modifier
This mutation is designed to modify the PSI with-

out using any semantic information. Nodes in the 
tree can be swapped, added, removed, or changed to 
nodes of the same type from other tests. Let’s con-
sider the last item in more details. An example of 
such an operation is shown in Fig. 4. For this muta-
tion to work, first of all, it is necessary to collect a 
database of trees and their node types. After that, 
we take a random test case, select a random node 
and search for nodes of the same type from other 
tests, take a random one and try to make a replace-
ment: if the resulting test turns out to be correct, 
then we accept the transformation and continue to 

mutate the new test, if not, we roll back to the pre-
vious state.

Expression replacer
This transformation selects a random expression 

and replaces it with another of the same type that 
is available in the current scope. The expression we 
are replacing can be a property, a parameter, a lo-
cal variable, or a function call that returns a value 
of the compatible type. An example of applying this 
transformation is shown in Fig. 5. The original pro-
gram P1 is shown in Fig. 5, a, suppose we choose to 
replace the b property initializer of type Int shown 
in Fig. 5, b. Further, for the place where the change 
will be made, we calculate the scope, for example, 
this will be a and result of calling the getSum func-
tion. After that, we select a random element of the 
same type from the scope and make a replacement. 
However, when choosing getSum, we need to gen-
erate a call to this function. And when generating 
a call, variables from the current scope can also be 
used. The generation result is shown in Fig. 5, c.

 Fig. 4. Example replacing of PSI node to the node 
from another tree

 Fig. 5. Expression replacer mutation example: a — 
P1; b — P2; c — P3

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = 1
return if (a == b) "OK" else "ERROR"

}

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = [Int] 
return if (a == b) "OK" else "ERROR"

}

fun getSum(a: Int, b: Int) = a + b

fun box(): String {
val a = 1
val b = getSum(a, 9)
return if (a == b) "OK" else "ERROR"

}
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Random component generator
This transformation represents the generative 

part of the tool. To increase the diversity and com-
plexity of tests, a generator of random data struc-
tures was implemented. This generator allows you 
to create interfaces, abstract classes, objects and 
standard classes of all kinds. A class can contain 
properties, functions, or nested classes. They can al-
so be inherited from others while maintaining code 
correctness. To implement this generator, a random 
type generator was also implemented, which takes 
into account the context and the Kotlin standard 
library. Generation of non-trivial function bodies is 
a complex and time-consuming task and one of the 
primary directions of future work. An example of 
the generated class is shown in Listing 1. In addi-
tion to adding classes, the generator can insert var-
ious properties and functions into existing classes. 

Listing 1. Example of generated class
open class A {
 private val a: Int = 1
 public inline val b: List<Int>
         get() = listOf()
 open fun c(): A = TODO()
 inner class B : A() {
         val a: Double = 0.0
         override fun c(): A = A()
 }
}

Compilation checker
To implement an oracle for the Kotlin compiler, 

first we need to understand what we are testing, 
what kind of errors we can look for and how to de-
tect them. The main platform for Kotlin compiler 
is the JVM, but there are also backends that allow 

compiling Kotlin to JS and to native binaries, which 
can run without a virtual machine. At this moment 
our tool supports JVM and JS backends. Adding a 
native backend is considered future work. In addi-
tion to the release versions of the compiler, we are 
testing various dev-builds for pre-release testing of 
new functionality.

The first type of errors we look for are crashes, 
and it’s quite easy to define them: their messages 
have a specific format that is easy enough to parse. 
Listing 2 shows an example of the crash message for 
the Kotlin compiler.

Listing 2. Example of Kotlin compiler crash mes-
sage

Exception in thread “main” org.jetbrains.
kotlin.codegen.CompilationException: Back-
end (JVM) Internal error: wrong bytecode 
generated

 L0 
   LINENUMBER 6 L0 
   NOP 
File being compiled: (1,1) in /File.kt The 

root cause 
…
Detecting miscompilations is a task of a different 

complexity. To search for miscompilations, we need 
to compile the instrumented program with different 
backends or in different modes of the same back-
end and compare their behavior. This is done using 
the voting method, the scheme of which is shown in 
Fig. 6. And it is important to take into account the 
specifics of the backend, for example, in JS division 
by 0 is undefined, and in the JVM it is an exception. 
For such situations, we have implemented a set of 
filters that help save time on manual processing of 
such cases. 

 Fig. 6. Voting system for the Kotlin compiler
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Bug manager implementation
The bug manager is used to reduce the time for 

manual processing of found bugs. All algorithms and 
approaches described in the previous section are suit-
able for Kotlin compiler bugs post-processing. To im-
prove the quality of reduction algorithms, more than 
thirty Kotlin specific transformations were implement-
ed on two types of code representation: text and PSI. 
Examples of text transformations are: deleting text in-
side a balanced pair of brackets, deleting text between 
two dots, replacing while with if, etc. PSI based trans-
formations, which are intended for complex modifica-
tions can be divided into the following groups:

— expression simplification (replace expression 
to constant of same type, simplification of if state-
ments, loops, elvis operator, etc.);

— removal of unneeded components (imports, 
function arguments, etc.);

— simplification of interdependencies (removal 
of inherited properties and functions, replacement 
of function bodies with TODO(), etc.);

— miscellaneous (comment deletion, formatting, 
etc.).

More details about the Kotlin program reducer 
and its results can be found in the article [20]. In 
general, a complex approach using language-agnos-
tic methods and language-specific transformations 
gives a good result. In practice, more than 90% of 
irrelevant information is removed from programs 
that lead to erro rs.

Kotlin compiler fuzzer evaluation

Active use of the tool has been going on for more 
than a 1.5 years. To estimate the effectiveness, 

we have been collecting statistics and logs all this 
time. To fuzz the Kotlin compiler, we did not use 
any big computing power, because, despite the effi-
cient work of post-processing algorithms, filtering 
uninteresting results and sending them to devel-
opers takes a lot of time. All interesting bugs were 
sent to Kotlin bug tracker — YouTrack (https://
youtrack.jetbrains.com/issues/KT?q=%23found-by-
fuzzer%20). Evaluation was mainly performed on 
a single computer with Intel(R) Core(TM) i7-8700K 
CPU@3.70 HGz and 32 GB RAM. The compiler 
version has always been kept up to date. As an in-
itial seed for mutation, we selected a compiler test 
suite, consisting of more than 6000 files. Mostly 
fuzzing was done for the JVM backend, but for sev-
eral months we were looking for bugs in the JS. It 
is also worth noting that BBF has been constantly 
improving during this time: new mutations and ora-
cles have appeared, because without improvements 
at some point fuzzing stops working.

Figure 7 shows the number of bugs posted per 
month for all time of fuzzing. The first results 
began to be transferred to developers in August 
2020. At that time, the compiler was not yet as re-
liable and stable as it is now. In November 2020, 
the Type Centric Enumeration approach [21] was 
implemented, which led to a significant increase in 
bugs found. After that, BBF interested the compil-
er development team and a lot of effort was spent 
to make the tool from research to practical. There 
were few launches during the rework, so there 
were few bugs before July 2021. In July 2021, the 
practice-oriented BBF went live and brought a lot 
of practical value. Developers often asked to test 
certain components of the compiler that were un-
der development, which also influenced the general 

  Fig. 7. Number of bugs posted per month
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trend towards an increase in the number of bugs 
found.

Table shows statistics on the distribution of 
found bugs. A total of 208 bugs have been submit-
ted as of this writing. Not specified bugs that do not 
fall into any category are either duplicates or not in-
teresting from the developer’s point of view. To bet-
ter understand our impact, during the experiment, 
about 13% of the total number of bugs in the JVM 
backend was found using BBF. The total number of 
errors found is several thousand, but most of them 
are caused by semantically incorrect code. These 
bugs get a low priority and are unlikely to ever be 
fixed, so the decision was made not to send such bug 
reports to the developers.

Conclusion

In this work, we have presented a platform for 
finding bugs in the programming language com-
pilers — Backend Bug Finder. After reviewing the 
compiler fuzzing area and choosing the methods 
to be implemented, we considered all the ideas and 
principles implemented in the tool. On the basis of 
the developed platform, a fuzzer was implemented 
for the compiler of the Kotlin programming lan-
guage. The results of fuzzing shows that the use of 
the fuzzer greatly improves the quality of the com-
piler: we published about 13% of the total number 
of bugs in the JVM backend reported during our 
experiment.

How difficult is it to adapt the platform to anoth-
er programming language? It is pretty easy to make 
a naive fuzzer, which will probably find some errors. 
But for deep and complete testing of the compiler, 
efforts will have to be made to write language-spe-
cific transformations, reduction algorithms and in-
frastructure for the efficient execution of generated 
programs.

As for future work, the BBF will improve both in 
practical and theoretical terms. In practical side, we 
plan implement a parallelling of the fuzzing process. 
In theoretical side, we will move towards gray-box 
fuzzing and other methods of program generation 
for compiler testing purposes. 

  Found bugs statistic

Bug status Critical Major Normal Minor
Not 

specified

Fixed 2 45 18 5 19

Open 0 11 12 2 16

In 
progress

0 1 2 0 1

Other 0 2 3 2 0
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Backend Bug Finder — платформа для эффективного фаззинга компиляторов
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Введение: стандартным способом проверки надежности компилятора является ручное тестирование. Но с его помощью невоз-
можно покрыть множество программ, которые могут быть написаны на целевом языке программирования. В настоящее время в 
дополнение к ручному тестированию существует множество автоматических методов проверки надежности компиляторов, среди 
которых фаззинг является одним из самых мощных и полезных. Цель: разработать платформу для фаззинга компиляторов и на ее 
основе инструмент для тестирования компилятора языка Kotlin. Результаты: разработана платформа Backend Bug Finder для фаз-
зинга компиляторов. В качестве метода для генерации случайных программ выбран мутационный подход, когда на вход мутатору 
подается программа, которую он пытается каким-либо образом преобразовать. Мутации могут быть как тривиальными, например 
замена арифметических операторов другими, так и сложными, меняющими структуру программы. Далее полученная программа 
подается на вход компилятору, и производится проверка его работы. Разработанный тестовый оракул может детектировать ошибки 
трех типов: падения, мискомпиляции и деградации производительности. В случае обнаружения ошибки тестовый пример подается 
в модуль постобработки, где применяются алгоритмы редукции и дедупликации. На основе платформы для апробации подхода раз-
работан инструмент для фаззинга компилятора языка Kotlin, который показал применимость платформы для поиска ошибок в со-
временных компиляторах. Практическая значимость: за полтора года функционирования разработанный инструмент обнаружил 
тысячи различных ошибок компилятора языка Kotlin, из них более 200 отправлено разработчикам, более 80 исправлено.

Ключевые слова — фаззинг, тестирование компилятора, генерация компиляторных тестов, Kotlin, мутационный фаззинг.
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