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Introduction: In modern systems for communication, data storage and processing the error-correction capability of codes are estimated 
for memoryless channels. In real channels the noise is correlated, which leads to grouping error in bursts. A traditional method to fight 
this phenomenon is channel decorrelation, which does not allow developing of coding schemes, mostly utilizing the channel capacity. 
Thus the development of bursts decoding algorithms for arbitrary linear codes is the actual task. Purpose: To develop a single error burst 
decoding algorithm for linear codes, to estimate the decoding error probability and computational complexity. Results: Two approaches are 
proposed to burst error correction. The first one is based on combining the window sliding modification of well-known bit-flipping algorithm 
with preliminary analysis of the structure of parity check matrix. The second one is based on the recursive procedure of constructing the 
sequence of certain events which, in the worst case, performs the exhaustive search of error bursts, but in many cases the search may be 
significantly decreased by using the proposed heuristics. The proposed recursive decoding algorithm allows a guaranteed correction of any 
single error bursts within burst-correction capability of the code, and in many cases beyond the burst-correction capability. The complexity 
of this algorithm is significantly lower than that of a bit flipping algorithm if the parity-check matrix of the code is sparse enough. An 
alternative hybrid decoding algorithm is proposed utilizing the bit-flipping approach and showing the error probability and completion time 
comparable to the recursive algorithm, however, in this case the possibility of a guaranteed burst correction hardly can be proved. Practical 
relevance: The proposed decoding methods may be used in modern and perspective communication systems, allowing energy saving and 
increasing reliability of data transmission by better error performance and computational complexity.

Keywords — channels with memory, low-density parity-check codes, burst error correction.

Articles

For citation: Ovchinnikov А. А., Veresova А. М., Fominykh А. А. Decoding of linear codes for single error bursts correction based on 
the determination of certain events. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2022, no. 6, pp. 41–52. 
doi:10.31799/1684-8853-2022-6-41-52, EDN: UWXZHN

Introduction

Error-correcting coding is very important mean 
to provide the reliable data communication [1–3]. 
For the last 20 years, significant attention was 
paid to investigating of low-density parity-check 
(LDPC) codes. Despite of moving during the last 
years the research focus to the area of polar codes 
[4–6], LDPC codes remain part of many contempo-
rary standards, including digital video broadcasting 
(DVB), local wireless networks (802.11 WiFi), opti-
cal fiber communication (G.975.1), mobile networks 
of fifth generation (5G), etc.

For the last decades, traditionally the analysis of 
error-correcting performance of different codes in 
communication systems is hold by intensive mod-
eling in the channel with additive white Gaussian 
noise [7]. This is mainly connected with the fact 
that modern code constructions such as turbo codes 
or LDPC codes are pseudo-random, and while pro-
viding low error probabilities, which is agreed with 
Shannon’s random coding theorems, they are hard-
ly suited for theoretical analysis.

Along with it, assumption of Gaussian nature of 
noise is justificated, from the one hand, by simplic-

ity of this model, and from the other is provided by 
receiving decorrelation procedures, while in fact in 
many channels the noise process is not independent. 
To describe the typical errors ion such channels, the 
notion of single error burst of length b in error vec-
tor of length n is used — this is any binary vector 
consisting of n elements, containing all its non-zero 
elements within b subsequent positions. Since the 
number of individual errors in such burst may ex-
ceed the error-correction capability of the code (for 
independent errors), they cannot be managed by 
classical algebraic decoders of cyclic codes. Due to 
pseudo-random nature, absence of strict structure 
and per-symbol decoding procedures of LDPC codes 
they are less sensitive to errors grouping, however, 
when using LDPC codes, artificial interleaving pro-
cedures are used to decorrelate the channel [8]. 

At the same time, it is known from information 
theory, that if an interleaving is applied to channel, 
and the property of noise correlation is not taken 
into account during decoding, we get an equivalent 
(in terms of average number of erroneous bits in 
channel) memoryless channel with less capacity [9]. 
Burst correction has low attention in classical cod-
ing theory, and is considered mainly for cyclic codes 
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[10–12]. In the recent publication [13] the burst 
erasure correction is considered, but only for the 
family of block-permutation LDPC codes and under 
consumption of fixed burst positions (phased burst). 
Thus the actual task is development of coding and 
decoding procedures for channels with memory, in 
particular, for single burst correction.

In [14] it was shown that the maximal burst length 
that can be corrected by LDPC code may be calculat-
ed using the polynomial-time procedure, taking the 
parity-check matrix as input. In fact the sparseness 
property of parity-check matrix does not taken into 
account in this procedure, so it may be applied to any 
linear code. However, the development of correspond-
ent decoding algorithm realizing burst-correction ca-
pability of the code remain an open problem.

In this paper an approaches using sliding win-
dows to single bursts correction is considered. These 
approaches are based on analysis of LDPC code par-
ity-check matrix, however, obtained algorithms may 
be used for any linear codes, though with increasing 
the density of parity-check matrices the decoding 
complexity is also increasing.

Low-density parity-check codes

Low-density parity-check codes were proposed by 
R. Gallager [15]. These codes usually have low mini-
mal distance, however, good weight spectral proper-
ties and iterative decoding algorithms allow providing 
very low decoding error probabilities [16, 17]. LDPC 
codes are usually defined as elements of probabilistic 
ensembles, characterized by weight distributions of 
columns of parity-check matrix. From the analysis 
of the properties of LDPC ensembles it is known that 
irregular constructions (those with variable column 
weights) with well optimized weight distributions 
provide fast decreasing of error probability in the 
area of low signal-to-noise ratio [18]. However, these 
constructions are usually suffer from the effect of 
error-floor (low decreasing of error probability with 
signal-to-noise ratio increasing), and besides, encod-
ing and decoding procedures for them may be not so 
effectively implemented as for regular constructions. 
That is why today in practice the block-permutation 
construction of LDPC codes is most widely used (in-
cluding most communication standards), when the 
parity-check matrix has the form [19, 20] 

 

111 12

221 22

1 2

,

ii i

ii i

i i i





  

  
   
    
 
  

C C C

C C CH

C C C

  (1)

where C — (m  m)-matrix of cyclic permutation:

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0

.

 
  
  
 
      
  

C

Construction given in (1) defines regular qua-
si-cyclic code, for which especially computationally 
effective encoding and decoding algorithms may be 
implemented, and to obtain the advantages of opti-
mized irregular distributions the masking may be 
used by replacing some cyclic permutation blocks 
in (1) by zero blocks.

It is known that the performance of LDPC de-
coders may be negatively affected by “bad” place-
ments of non-zero elements in the parity-check ma-
trix. As the simplest requirement to avoid this we 
will assume that there are no two rows or columns 
having more than one non-zero element in common 
positions (in this case one say that the matrix con-
tains no cycles of length 4).

Calculation of the minimal distance of linear 
code, which defines the maximal number of cor-
rectable independent errors is NP-hard problem, at 
the same time, calculation of the maximal length of 
correctable single burst may be performed in poly-
nomial time using the procedure described in [14]. 
This procedure is based on the fact that if the code 
can correct all single error bursts of length bmax and 
less, then all error vectors, forming such bursts, 
should be in different cosets, or equivalently, have 
different syndrome. Thus, for any bursts e1 and e2 
of length bmax (or less) should holds e1HT e2HT, 
besides, multiplication of error vector forming the 
burst of length b by the parity-check matrix is 
equivalent to linear combination of columns of H in 
sub-matrix limited by b columns. That is, in mat-
rix H there should be no two submatrices of bmax 
subsequent columns, whose linear combination has 
the same result. This is guaranteed in case when 
the rank of concatenation of these two submatrices 
by columns is 2bmax. 

From the same considerations in the block-per-
mutation matrix (1) the maximal length of correct-
able error burst is always less than the block size, 
bmax < m, since sum of all columns within the block 
is all-ones column. However, in case when the pari-
ty-check matrix H is masked by all-zero blocks, this 
may increase the length of correctable error burst. 
Experiments show that without masking, with high 
probability, especially when m is prime and H has no 
cycles of length 4, the equation bmax = m — 1 holds. 

The classical decoding method of LDPC codes in 
the channel with soft (continuous) output (e.g. ad-
ditive white Gaussian noise channel) is belief prop-
agation algorithm. However, in case of the channel 
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with binary output the simpler bit flipping algo-
rithm may be used. In this paper, we consider on-
ly binary errors and we will consider only decoders 
with hard input and hard output.

The bit-flipping algorithm (Fig. 1) may be easily 
adapted to correction of single error burst by organ-
izing the sliding window of size bw, with the begin-
ning running through possible starting positions of 
the burst from 0 to n — bw (the decoding procedure 
may be significantly speeded up, if the estimations 
of supposed burst beginning are obtained, however, 
in the paper we are not considering such improve-
ments). Clearly, one should select bw bmax. In that 
algorithm the subvector of y with elements on posi-
tions i, …, i + bw – 1 is denoted as y(i, …, i + bw – 1), 
and for the matrix H the submatrix formed by col-
umns with numbers i, …, i + bw – 1, is denoted as 
H(i, …, i + bw – 1). By default, matrix multiplication 
is performed modulo 2, except when the operator 
“” is used denoting operations in decimal arith-
metic.

In case when the all-zero syndrome is ob-
tained, the algorithm returns the decoded vector 
which is a codeword, and informs about successful 
decoding. If for all possible positions of the sliding 
window after all decoding iterations the all-ze-
ro syndrome is not obtained, decoder signaling 
about failure and returns the word received from 
the channel itself as the decoded word. It should 
be noted that of the burst length does not exceeds 
the maximal correctable length bmax, then the 
state “success” always means correct decoding, 
otherwise “success” may be caused either by cor-
rect decoding or decoding error, that is, finding 
the wrong (false) codeword. 

This algorithm may be modified for the “fail-
ure” state case by determining the decoding result 
according to some criterion, which would allow de-
creasing the number of bit errors. However, in this 
paper we will consider the error probability per 
transmitted word as the target decoding character-
istics, so we will not consider such modifications.

For the channels with memory in [21] the mod-
ification of belief propagation algorithm is pro-
posed, based on preliminary channel state esti-

mation and subsequent decoding. The advantage 
of this algorithm is the possibility of correcting 
multiple bursts and individual errors, disadvan-
tage is growing complexity comparing to binary 
and integer operations, and necessity to provide 
the channel transition probabilities at the decod-
er’s input.

Algorithms for single error burst decoding

We will develop the algorithm for error burst 
correction, starting with the structure of (r  n) 
block-permutation matrix (1) of LDPC code (here r 
denotes the number of rows in H rather than actu-
al number of redundant bits). As it was mentioned, 
for this construction (without masking by all-zero 
blocks) bmax < m, where m is block size. Let the er-
ror burst of length b  bmax occurred in the chan-
nel, for simplicity we assume b = bmax, and for the 
received word the syndrome S is calculated. The 
subvector of error vector е containing the non-ze-
ro elements (i.e. the subvector on burst positions) 
denote as eb. Assume that we have the exact knowl-
edge about burst position and we may select the 
(r  b)-submatrix Hb containing columns of the pari-
ty-check matrix H corresponding to burst positions. 
Compute the vector T ,b bW 1 H  where 1b is all-one 
vector of length b, i.e. W is the sum of all columns 
of Hb. Consider two cases: the burst is either com-
pletely within some block of H, or, taking into ac-
count b < m, disturbing no more than two adjacent 
blocks of H. 

The first case is shown in Fig. 2, а, for the pari-
ty-check matrix with block size m = 7 and maximal 
correctable burst length bmax = 6. Since every block 
of H is cyclic permutation matrix and contains ex-
actly one non-zero element in the row, the vector W 
may contain only zeros and ones. If some i-th syn-
drome’s component is not zero, the correspondent 
i-th component of W should also be non-zero (other-
wise successful decoding for current submatrix Hb 
is not possible, since it contains no columns which 
would give non-zero syndrome element in i-th row). 
Hence, there are the only column in Hb which con-

INPUT: (r  n)-matrix H, received word y, window size bw, maximal number of iterations N.
OUTPUT: decoded word â  and status “success” or “failure” of the decoder.
1. Calculate S = yHT; if S = 0, return ˆ a y  and “success”.
2. For i = 0 to n — bw // cycle for sliding window positions:
2.1. For current window position set Sb = S, yb = y(i, …, i + bw – 1), Hb = H(i, …, i + bw – 1).
2.2. For j = 1 to N // cycle for decoding iterations:
2.2.1. Calculate fb = SbHb (in decimal arithmetics).
2.2.2. Determine the set pos = arg max {fb} of positions numbers of f with maximal values.
2.2.3. Invert elements of yb in pos positions.
2.2.4. Renew T ,b b bS y H  if Sb = 0, add (modulo 2) to subvector y(i, …, i + bw – 1) the vector yb, return ˆ a y  and “success”.
3. Return ˆ a y  and “failure”.

  Fig. 1. Windowed bit-flipping algorithm
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tributes to non-zero syndrome element. The number 
of this column corresponds to erroneous position 
within burst, we may subtract this column from the 
syndrome and continue decoding. As can be seen 
from the Fig. 2, а, for given example consideration 
of first three non-zero elements of the syndrome 
leads to all-zero syndrome and reconstructs the er-
ror burst eb. Consider also the vector fb = Sb Hb, 
which we use in windowed bit-flipping algorithm (see 
Fig. 1) — for considered example all its maximal 
components correspond to erroneous burst posi-
tions, and the others are zero (windowed bit-flip-
ping algorithm would correct such a burst by one 
iteration).

Now we consider more complicated case when the 
burst affected two adjacent blocks of H (Fig. 2, b). In 
this case the rows of Hb may be all-zeros, contain 
one non-zero element, or two elements from dif-
ferent blocks (in this example the border between 
blocks are between second and third columns of Hb). 
In figure the burst eb and vector fb are also shown. 
In this case the comparison by their elements does 
not allow, as in Fig. 2, а to determine error bits in 
eb by the values of fb with such confidence — for 
example, the value 2 which is close to maximal may 
correspond both to first position without error and 
to last with error. 

Basing on considered examples we may deter-
mine the following conditions by considering ele-
ments W and S, from which certain decoding states 
or events is followed, and formulate the correspond-
ing decoding steps:

— (Wi = 0, Si = 1): in this case the syndrome S 
cannot be obtained by any combination of bit errors 
within current burst position (i.e. current position 
of sliding window), decoding should be stopped and 
new window position should be defined (event “im-
possible”);

— (Wi = 1, Si = 1): in this case the column cor-
respondent to erroneous position within burst may 
be uniquely determined, correspondent bit of eb on 
this position is set to 1, and the column is marked as 
considered (for given window position this bit with-
in the burst would never change its value), then W 
and S may be renewed and decoding continues with-
in current window (event “certain 1”);

— (Wi = 1, Si = 0): in this case the column with 
one non-zero element in i-th row is certainly did not 
take part in computation of S, the correspondent 
bit of eb on position correspondent to this column 
may be set to 0, the column is marked as considered, 
which leads to renewal of W, and decoding continues 
within current window (event “certain 0”);

— (Wi > 1, Si = 1): for the considered block-per-
mutation constructions and b < m this event is pos-
sible only for Wi = 2, but in general case one may 
assume larger number of ones in i-th row of Hb, in 
this case we cannot certainly determine the values 
of any positions of the burst from i-th components of 
W and S (event “ambiguity”).

We may note that all listed situations are based 
on considering the non-zero elements of syndrome, 
except special case “certain 0”. First three cases de-
termine certain events (with conditional probability 

  Fig. 2. Decoding by certain events: а — burst within the block; b — burst in two blocks
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equal to 1, for the given window position): impossi-
bility of decoding, certain zero and one values with-
in the burst, conditioning that the burst is within 
the positions of current window. Basing on these 
events, the procedure may be determined looking 
through elements of S and W and performing de-
scribed decoding steps, while the event “impossible” 
would be determined or the all-zero syndrome ob-
tained. However, during the decoding the situation 
is possible, when for all non-zero syndrome elements 
the event “ambiguity” is determined. An example of 
such situation is given in Fig. 3, а for the case when 
two erroneous positions within the burst is found, 
and correspondent columns are excluded from con-
sideration (in figure they are shadowed). Using the 
rule for the event “certain 0” in Fig. 3, а will lead to 
very fast successful decoding, but this event may be 
absent (Fig. 3, b). Note that the parity-check matrix 
in Fig. 3, b is not block-permutation, and the burst 
of length 9 is considered, while the code from this 
example may correct all bursts of length no more 
than 7. 

In the case described in Fig. 3, b, the resolving of 
ambiguity is possible by using some heuristics [22], 
for example. As one variant we consider the hybrid 
decoder, when in case of ambiguity the decoding is 
switched to conventional bit-flipping within current 
window, until successful decoding or reaching the 
maximal number of iterations. Such approach de-
fines in fact two-stage decoding which may be con-
sidered as windowed bit-flipping decoding with pre-
liminary processing based on certain events.

However, to ensure guaranteed decoding of burst 
(at least within the burst-correction capability of the 
code) another approach may be considered. In case 
of uncertainty we make trial selection of erroneous 
position and return to certain events consideration 
basing on new W and S, until success or impossibil-
ity of the decoding will be determined, in the latter 
case the algorithm should trace back and select an-
other trial erroneous bits. If in the process of one 
trial we again meet the ambiguity, the next trial is 
made and so on, thus leading to tree-like exhaustive 
search. Surely, such search would lead to significant 
grow of complexity. To reduce the search, we will se-
lect as trial erroneous positions those with maximal 
value in vector fb = Sb Hb.

Basing on these considerations, the following re-
cursive algorithm may be proposed as general meth-
od of single burst decoding:

1) for the current window position determine 
certain values of error burst positions basing on 
conditions on S and W, until decoding ends or event 
“ambiguity” is determined (for all non-zero ele-
ments of S);

2) for the “ambiguity” decoding state select the 
position with maximal value of current vector fb as 
the next erroneous position and return to step 1, in 
case of failure select the next maximal value of fb 
and so on; if trial succeeded or all (non-zero) ele-
ments of fb are considered, go to step 3;

3) if the burst eb giving the all-zero syndrome is 
obtained during preceding steps, return codeword ,â  
which is vector y added (modulo 2) by burst eb om 

  Fig. 3. Uncertainty during decoding: а — resolvable by event “certain 0”; b — without resolving by certain events
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window positions, otherwise decoding in current 
window is failed. 

Described algorithm should be performed for all 
possible positions of sliding window, its pseudocode 
is given in Figures 4 and 5.

In fact, in the worst case for the given window 
position the algorithm performs exhaustive search 
by vectors eb, which guarantees finding the error 
burst giving the all-zero syndrome, however, ex-
tremely time-consuming. However, if described 
algorithm is applied to LDPC codes, especially for 
block-permutation constructions, and if the burst 
length does not exceeds burst correction capability 
of the code, in many cases decoding is ended by the 
first step (processing of certain events), either suc-
cessfully or not, then all the positions of error burst 
may be determined by no more than b steps.

To fasten the decoding speed (by cost of failure 
probability increasing, naturally), the recursion 
depth or the number of considered elements in fb 
may be limited. 

Analysis of decoding algorithms 
and simulation results

The algorithms described in preceding sec-
tions were implemented in MatLab environment 
under MS Windows 10, the simulations where 
made using CPU Intel Core i7-9700@3,00 GHz, 
RAM 32 Gb. The following algorithms were con-
sidered:

— windowed bit-flipping algorithm (WBF);
— hybrid decoding with processing of certain 

events basin on W and S with switching to win-
dowed bit-flipping algorithm in case of ambiguity 
(WS + WBF);

— recursive algorithm.
The following code constructions were selected 

for analysis:
— code 1: random (66.35) block-permutation 

LDPC code (1) with parameters  = 3,  = 6, m = 11 
(density of the parity-check matrix is   0.09), for 
this code bmax = 10;

INPUT: (r  n)-matrix H, received word y, window size bw.
OUTPUT: decoded word â , status “success” or “failure” of the decoding.
1. Calculate S = yHT; if S = 0, return ˆ a y  and “success”.
2. For i = 0 до n — bw // cycle for sliding window positions:
2.1. Set Hb = H(i, …, i + bw – 1), eb = (0, …, 0).
2.2. Calculate T .b bW 1 H
2.3. Call procedure [eb, status] = try_decode(Hb, S, W, eb), given in Fig. 5.
2.4. If status = “success”, add (modulo 2) to subvector y(i, …, i + bw – 1) the vector eb, return ˆ a y  and “success”.
3. Return ˆ a y  and “failure”.

  Fig. 4. General scheme of single error burst decoding algorithm 

PROCEDURE: [eb, status] = try_decode(Hb, S, W, eb).
INPUT: (r  bw)-matrix Hb, syndrome S, vector W, current burst eb.
OUPUT: renewed eb, status “success” or “failure”.
1. If S = 0, return [eb, “success”].
2. If i: Wi = 0 and Si = 1 (“impossible” event is determined), return [eb, “failure”].
3. For the first i = 0, …, r, for which Wi = 1 and Si = 0 (“certain 0” event is determined) or Si = 1 (“certain 1” event is determined): 
3.1. Find j: the number of (the only) nonzero element in i-th row of Hb.
3.2. Set eb( j) = Si.
3.3. If Si = 1, then renew the syndrome: sum (modulo 2) S and the column j of matrix Hb.
3.4. Mark the column j of Hb as considered (technically it may be zeroed).
3.5. Renew the vector W.
3.6. Call [eb, status] = try_decode(Hb, S, W, eb).
3.7. If status = “success”, return [eb, status].
3.8. If status = “failure”, set eb( j) = 0 and return [eb, status].
4. Calculate fb = S Hb (in decimal numbers). Sort fb together with the number of its positions by decrease, obtaining the vector 
fb,sort and corresponding array of indexes ind. Determine f>0 — the number of non-zero elements in fb.
5. For i = 1, …, f>0:
5.1. Set j = ind(i) ( j — position of the next element in fb by the value).
5.2. Set eb( j) = 1.
5.3. Calculate trial renewal of syndrome S by adding the j-th column of Hb to S.
5.4. Set the trial renewal of ,bH  marking j-th column as considered.
5.5. Calculate trial renewal of W.
5.6. Call [eb, status] = try_decode( ,bH  S, W, eb).
5.7. If status = “success”, return [eb, “success”].
5.8. If status = “failure”, restore the value eb( j) = 0 (if trial versions ,bH  S, W where not in separate memory, their values also 
should be restored by the moment of entrance in the cycle).
6. If this step is reached, then the search through elements of fb is completed without success, return [eb, “failure”].

  Fig. 5. Recursive procedure of decoding trial 
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— code 2: random (66.33) code with density 
  0.1 and bmax = 12;

— code 3: random (66.33) code with density 
  0.5 and bmax = 13.

Relatively small lengths of the codes were select-
ed to fasten simulations in MatLab, since for the 
code 3 (which is defined by the dense parity-check 
matrix) simulations take significant time. At the 
same time, some experiments with longer codes 
gave qualitatively the same results, so in what fol-
lows we consider the codes with listed parameters.

For error vector generation the burst beginning 
was selected randomly and uniformly, the first and 
last positions of the burst are set to ones, erroneous 
bits within the burst were generated with probabil-
ity 0.5, decoding fastening by means of estimation 
the burst position was not applied. Note that the 
simulation was also made for burst lengths exceed-
ing the correction capabilities of the codes, so the de-
coding error event consists both of decoding failure 
and decoding error, that is finding false codeword.

In Fig. 6 the results of evaluating the codeword 
(frame) error rate is given for windowed bit-flipping 
algorithm with 1, 5, 10 iterations, for the single 
burst lengths from 6 to 20. As can be seen from the 
curves, windowed bit-flipping algorithm did not re-

alize the burst-correction capability in any case, and 
since the algorithm is based on the sparsity of the 
parity-check matrix, for dense matrix (code 3) the 
error probability rapidly tends to one. For the ma-
trix (code 2) with density close to those of block-per-
mutation construction (code 1) the error probability 
is remarkably higher comparing to code 1. This may 
be connected to the fact that random matrix of code 2 
was not optimized in its structure for using tradi-
tional iterative decoders for LDPC codes. During 
decoding, all error events were caused by decoding 
failures, no any false codewords were found. 

In Fig. 7 the results for recursive decoding is 
given. The average time of one codeword decoding 
(in seconds) were also estimated. Since no special 
optimizations of decoders implementations were 
not performed, the goal of time estimation is to ap-
proximately evaluate the comparative complexity in 
different cases. For code 1 and code 2 the decoding 
algorithm was fully completed. During simulations 
of code 1 and code 2 there were no any cases of am-
biguity shown in Fig. 3. Besides, decoding did not 
lead to any failure events, so all decoding errors 
were caused by false codewords, and in many cases 
the decoding for burst lengths exceeding the correc-
tion capability was successful. As can be seen from 

 Fig. 6. Simulation results for windowed bit-flipping algorithm
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Fig. 7, code 2 provides better error probability com-
paring to code 1, with comparable but slightly less 
decoding complexity.

As for code 3, which is defined by dense matrix, 
the simulation shows fundamentally different re-
sults. The decoding of one codeword might be up to 
1000 times slower than for code 1 and code 2, in fact 
in this case the decoder with high probability tends 
to brute force of error bursts. Thus for the code 3 
in Fig. 7 the artificial limitation of the number of 
calls of try _ decode procedure was set, equal to 
100bw. In this case decoder stops to find the false 

codewords and started to fail. From the window size 
of about 10, where the time curve of code 3 decod-
ing changes its fast growth by gentle increasing (see 
Fig. 7), the decoding failure in almost all cases is 
connected to reaching the maximal recursion depth 
for all window positions, and not with determining 
“impossible” event. Even in case of successful de-
coding, the recursion depth was close to maximal.

In Fig. 8 for the code 1 and code 3 are given: 
Tmin(Success), Tmax(Success), E(T(Success)) — min-
imal, maximal and average number of calls of 
try _ decode procedure (see Fig. 5) for successful 

  Fig. 7. Simulation results for recursive algorithm of single burst correction

  Fig. 8. The number of calls of try_decode procedure
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decoding in the window, Tmin(Failure), Tmax(Failure), 
E(T(Failure)) — similar values for failed decoding in 
the window. As one can see, for the code 1 the maxi-

mal number of calls of try _ decode for given win-
dow position is approximately equal to window size 
bw both for correct and not correct window position. 

  Fig. 9. Comparison of different decoders for code 1 (a), code 2 (b) and code 3 (c)
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Minimal number of calls may be approximated as 
bw/2 for correct window position and 1 otherwise (in 
this case the event “impossible” is determined by the 
first call). For the code 3 the maximal recursion depth 
(and average for failed decoding) rapidly increasing 
and approaches upper limit of 100 window sizes even 
for burst lengths below correction capability.

In Fig. 9, а the evaluation of error probability 
and decoding time for windowed bit-flipping, hybrid 
and recursive algorithms for code 1 are presented. 
As can be seen, algorithms using analysis of certain 
events show approximately the same error proba-
bility (an order less than for bit-flipping algorithm) 
and comparable decoding time, the error events 
(caused only by false codewords) appears only for 
burst lengths exceeding the capability of the code. 
Recall that for these algorithms no uncertainty dur-
ing decoding were reached, so the decoding complet-
ed only by determination of certain events.

In Fig. 9, b, c the similar results for code 2 and 
code 3 are given. For code 2 the gain obtained by 
decoders analyzing the certain events comparing to 
bit-flipping algorithm is even larger than for code 
1, this may be reasoned both by worse performance 
of bit-flipping algorithm for code 2, and by the fact 
that code 2 has slightly larger burst-correction ca-
pability than code 1, and perhaps — better weight 
spectrum for correcting single bursts, so the decod-
ing far beyond correction capability for this code 
is possible. For the code 3 given by dense matrix, 
the recursive algorithm (with recursion depth lim-
ited by 100 window sizes) shows significant gain 
for bursts length up to 10 (recall that code 3 has 
bmax = 13), and two other decoders tends to error 
probability equal to 1. This gain is achieved by cost 
of significant decoding time, in all cases, when error 
probability close to 1, decoding time stops to change 

with burst length increasing, since in practically all 
cases decoding for all window positions is failed.

Conclusion

In this paper the decoding of single error bursts 
with linear codes is considered. The analysis of win-
dowed decoding is hold, basing on determination of 
certain events using structure of the parity-check 
matrix. The two-stage hybrid decoder is considered, 
combining the consideration of certain events with 
bit-flipping algorithm. The recursive decoding al-
gorithm is proposed, which guarantees correction 
of single error bursts with correction capability, 
the search in this decoder is optimized by selecting 
the least reliable position, determined by the col-
umn with most coincides of non-zero elements with 
syndrome. The evaluation of error probability and 
average decoding time per transmitted codeword 
is performed by computer simulation. The simula-
tion results show that proposed algorithms allow 
to correct large number of single error bursts with 
lengths exceeding the burst-correction capability. 
Proposed recursive algorithm may be applied to any 
linear code, however taking into account, that the 
decoding complexity is reasonable (and significantly 
less than for bit-flipping algorithm) only for codes 
which parity-check matrix is sparse enough.
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Декодирование линейных кодов при исправлении одиночных пакетов ошибок на основе определения 
достоверных событий
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Введение: в современных системах связи, хранения и обработки данных помехоустойчивость различных кодов, исправляющих 
ошибки, оценивается для каналов без памяти. В реальных каналах связи шум представляет собой коррелированный случайный про-
цесс, что приводит к группированию ошибочных бит в пакеты. Классический подход для борьбы с пакетированием ошибок состоит в 
применении процедуры декорреляции канала, что не позволяет строить кодовые схемы, наиболее полно реализующие пропускную 
способность канала. Таким образом, актуальной является задача построения алгоритмов декодирования для исправления пакетов 
ошибок для произвольных линейных кодов. Цель: разработать алгоритм декодирования одиночных пакетов ошибок для линейных 
кодов, оценить вероятность ошибки и вычислительную сложность разработанного алгоритма. Результаты: предложены два подхода 
к исправлению пакетов ошибок. Первый основан на комбинировании оконной модификации известного алгоритма инвертирования 
бит с предварительным анализом структуры проверочной матрицы. Второй основан на рекурсивной процедуре построения после-
довательности достоверных событий, в наихудшем случае осуществляющей полный перебор пакетов ошибок, который во многих 
случаях может быть значительно сокращен с помощью предложенной эвристики. Предложенный рекурсивный алгоритм декодиро-
вания позволяет гарантированно исправлять любые одиночные пакеты ошибок в пределах корректирующей способности кода, а с 
высокой вероятностью и сверх корректирующей способности. Сложность этого алгоритма значительно ниже сложности алгоритма 
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инвертирования бит, если проверочная матрица линейного кода является достаточно разреженной. Альтернативный гибридный ал-
горитм декодирования с использованием инвертирования бит для низкоплотностных кодов показывает вероятность ошибки и время 
выполнения, сравнимые с рекурсивным алгоритмом, однако возможность гарантированного исправления пакетов ошибок с его по-
мощью вряд ли может быть доказана. Практическая значимость: предложенные методы декодирования могут быть использованы 
в современных и перспективных системах связи, позволяя экономить энергию и повышать надежность передачи данных за счет 
лучшей эффективности исправления ошибок и меньшей вычислительной сложности.

Ключевые слова — каналы с памятью, коды с малой плотностью проверок на четность, исправление пакетов ошибок.
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Характеристики выбросов, пересечения заданных уровней, экстремальные 
значения случайных процессов – это класс характеристик, позволяющих описы-
вать структуру и вероятностное поведение случайных функций. По своему со-
держанию такие характеристики относятся к направлению междисциплинарных 
исследований. Необходимость их изучения связана с решением многочисленных 
задач из различных областей физики, техники и естествознания. 

Содержание данной работы отражает современное состояние исследований 
в области прикладной теории выбросов и общей проблемы «пересечений уровней». 
Здесь делается попытка систематизации, обобщения и развития основных резуль-
татов, попытка рассмотрения проблематики превышений заданных уровней «в це-
лом» для наиболее распространенных классов случайных функций. Представлено 
большое количество новых результатов. Это относится к анализу вероятностной 
структуры временных рядов, непрерывных случайных процессов, случайных по-
токов событий и случайных пространственно-временных полей. Показаны воз-
можности общей классификации прикладных задач и особенности их решения на 
основе использования характеристик пересечений уровней.

Для широкого круга специалистов, аспирантов и студентов, для тех, кто изу-
чает, исследует и применяет на практике модели и методы анализа различных по 
своей физической природе случайных данных.




