_KOAMPOBAHME U NEPEAAYA UHOOPMALVUV I

UDC 519.72
doi:10.31799/1684-8853-2022-6-41-52
EDN: UWXZHN

Decoding of linear codes for single error bursts correction
based on the determination of certain events

A. A. Ovchinnikov?, PhD, Tech., Associate Professor, orcid.org/0000-0002-8523-9429, mldoc@guap.ru

A. M. Veresova?, Post-Graduate Student, orcid.org/0000-0002-3792-9249

A. A. Fominykh?, Master, orcid.org/0000-0002-1412-5766

aSaint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, Saint-Petersburg,
Russian Federation

Introduction: In modern systems for communication, data storage and processing the error-correction capability of codes are estimated
for memoryless channels. In real channels the noise is correlated, which leads to grouping error in bursts. A traditional method to fight
this phenomenon is channel decorrelation, which does not allow developing of coding schemes, mostly utilizing the channel capacity.
Thus the development of bursts decoding algorithms for arbitrary linear codes is the actual task. Purpose: To develop a single error burst
decoding algorithm for linear codes, to estimate the decoding error probability and computational complexity. Results: Two approaches are
proposed to burst error correction. The first one is based on combining the window sliding modification of well-known bit-flipping algorithm
with preliminary analysis of the structure of parity check matrix. The second one is based on the recursive procedure of constructing the
sequence of certain events which, in the worst case, performs the exhaustive search of error bursts, but in many cases the search may be
significantly decreased by using the proposed heuristics. The proposed recursive decoding algorithm allows a guaranteed correction of any
single error bursts within burst-correction capability of the code, and in many cases beyond the burst-correction capability. The complexity
of this algorithm is significantly lower than that of a bit flipping algorithm if the parity-check matrix of the code is sparse enough. An
alternative hybrid decoding algorithm is proposed utilizing the bit-flipping approach and showing the error probability and completion time
comparable to the recursive algorithm, however, in this case the possibility of a guaranteed burst correction hardly can be proved. Practical
relevance: The proposed decoding methods may be used in modern and perspective communication systems, allowing energy saving and
increasing reliability of data transmission by better error performance and computational complexity.

Keywords — channels with memory, low-density parity-check codes, burst error correction.

For citation: Ovchinnikov A. A., Veresova A. M., Fominykh A. A. Decoding of linear codes for single error bursts correction based on
the determination of certain events. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2022, no. 6, pp. 41-52.

doi:10.31799/1684-8853-2022-6-41-52, EDN: UWXZHN

Introduction

Error-correcting coding is very important mean
to provide the reliable data communication [1-3].
For the last 20 years, significant attention was
paid to investigating of low-density parity-check
(LDPC) codes. Despite of moving during the last
years the research focus to the area of polar codes
[4-6], LDPC codes remain part of many contempo-
rary standards, including digital video broadcasting
(DVB), local wireless networks (802.11 WiF'i), opti-
cal fiber communication (G.975.1), mobile networks
of fifth generation (5G), etc.

For the last decades, traditionally the analysis of
error-correcting performance of different codes in
communication systems is hold by intensive mod-
eling in the channel with additive white Gaussian
noise [7]. This is mainly connected with the fact
that modern code constructions such as turbo codes
or LDPC codes are pseudo-random, and while pro-
viding low error probabilities, which is agreed with
Shannon’s random coding theorems, they are hard-
ly suited for theoretical analysis.

Along with it, assumption of Gaussian nature of
noise is justificated, from the one hand, by simplic-

ity of this model, and from the other is provided by
receiving decorrelation procedures, while in fact in
many channels the noise process is not independent.
To describe the typical errors ion such channels, the
notion of single error burst of length b in error vec-
tor of length n is used — this is any binary vector
consisting of n elements, containing all its non-zero
elements within b subsequent positions. Since the
number of individual errors in such burst may ex-
ceed the error-correction capability of the code (for
independent errors), they cannot be managed by
classical algebraic decoders of cyclic codes. Due to
pseudo-random nature, absence of strict structure
and per-symbol decoding procedures of LDPC codes
they are less sensitive to errors grouping, however,
when using LDPC codes, artificial interleaving pro-
cedures are used to decorrelate the channel [8].

At the same time, it is known from information
theory, that if an interleaving is applied to channel,
and the property of noise correlation is not taken
into account during decoding, we get an equivalent
(in terms of average number of erroneous bits in
channel) memoryless channel with less capacity [9].
Burst correction has low attention in classical cod-
ing theory, and is considered mainly for cyclic codes

N26,2022 N\

MHOOPMALIMOHHO-YMPABJISIOLLME CUCTEMbl N\ 41

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

[10-12]. In the recent publication [13] the burst
erasure correction is considered, but only for the
family of block-permutation LDPC codes and under
consumption of fixed burst positions (phased burst).
Thus the actual task is development of coding and
decoding procedures for channels with memory, in
particular, for single burst correction.

In [14] it was shown that the maximal burst length
that can be corrected by LDPC code may be calculat-
ed using the polynomial-time procedure, taking the
parity-check matrix as input. In fact the sparseness
property of parity-check matrix does not taken into
account in this procedure, so it may be applied to any
linear code. However, the development of correspond-
ent decoding algorithm realizing burst-correction ca-
pability of the code remain an open problem.

In this paper an approaches using sliding win-
dows to single bursts correction is considered. These
approaches are based on analysis of LDPC code par-
ity-check matrix, however, obtained algorithms may
be used for any linear codes, though with increasing
the density of parity-check matrices the decoding
complexity is also increasing.

Low-density parity-check codes

Low-density parity-check codes were proposed by
R. Gallager [15]. These codes usually have low mini-
mal distance, however, good weight spectral proper-
ties and iterative decoding algorithms allow providing
very low decoding error probabilities [16, 17]. LDPC
codes are usually defined as elements of probabilistic
ensembles, characterized by weight distributions of
columns of parity-check matrix. From the analysis
of the properties of LDPC ensembles it is known that
irregular constructions (those with variable column
weights) with well optimized weight distributions
provide fast decreasing of error probability in the
area of low signal-to-noise ratio [18]. However, these
constructions are usually suffer from the effect of
error-floor (low decreasing of error probability with
signal-to-noise ratio increasing), and besides, encod-
ing and decoding procedures for them may be not so
effectively implemented as for regular constructions.
That is why today in practice the block-permutation
construction of LDPC codes is most widely used (in-
cluding most communication standards), when the
parity-check matrix has the form [19, 20]

cin Ci . Cw

g_|C® C= .. C%| "

cn Ccv ... Cw

where C — (m x m)-matrix of cyclic permutation:

0 0 O 0 1
1 0 O 0 0
C=/0 1 0 0 0
0 0 O 1 0

Construction given in (1) defines regular qua-
si-cyclic code, for which especially computationally
effective encoding and decoding algorithms may be
implemented, and to obtain the advantages of opti-
mized irregular distributions the masking may be
used by replacing some cyclic permutation blocks
in (1) by zero blocks.

It is known that the performance of LDPC de-
coders may be negatively affected by “bad” place-
ments of non-zero elements in the parity-check ma-
trix. As the simplest requirement to avoid this we
will assume that there are no two rows or columns
having more than one non-zero element in common
positions (in this case one say that the matrix con-
tains no cycles of length 4).

Calculation of the minimal distance of linear
code, which defines the maximal number of cor-
rectable independent errors is NP-hard problem, at
the same time, calculation of the maximal length of
correctable single burst may be performed in poly-
nomial time using the procedure described in [14].
This procedure is based on the fact that if the code
can correct all single error bursts of length b . and
less, then all error vectors, forming such bursts,
should be in different cosets, or equivalently, have
different syndrome. Thus, for any bursts e; and e,
of length b, (or less) should holds e HT = e,HT,
besides, multiplication of error vector forming the
burst of length b by the parity-check matrix is
equivalent to linear combination of columns of H in
sub-matrix limited by b columns. That is, in mat-
rix H there should be no two submatrices of b,
subsequent columns, whose linear combination has
the same result. This is guaranteed in case when
the rank of concatenation of these two submatrices
by columns is 26, ..

From the same considerations in the block-per-
mutation matrix (1) the maximal length of correct-
able error burst is always less than the block size,
b ax < m, since sum of all columns within the block
is all-ones column. However, in case when the pari-
ty-check matrix H is masked by all-zero blocks, this
may increase the length of correctable error burst.
Experiments show that without masking, with high
probability, especially when m is prime and H has no
cycles of length 4, the equation b, ,, = m — 1 holds.

The classical decoding method of LDPC codes in
the channel with soft (continuous) output (e.g. ad-
ditive white Gaussian noise channel) is belief prop-
agation algorithm. However, in case of the channel

42 7/ VH®OPMALIMOHHO-YMPABJISIIOLLVE CUCTEMbI

7/ N26,2022

\ KOOAUPOBAHME U NMEPEOAYA MHOOPMALIMN \

with binary output the simpler bit flipping algo-
rithm may be used. In this paper, we consider on-
ly binary errors and we will consider only decoders
with hard input and hard output.

The bit-flipping algorithm (Fig. 1) may be easily
adapted to correction of single error burst by organ-
izing the sliding window of size b,, with the begin-
ning running through possible starting positions of
the burst from 0 ton — b,, (the decoding procedure
may be significantly speeded up, if the estimations
of supposed burst beginning are obtained, however,
in the paper we are not considering such improve-
ments). Clearly, one should select b,,>b,,... In that
algorithm the subvector of y with elements on posi-
tions i, ...,7 + b, — 1 is denoted as y@, ...,7 + b,,— 1),
and for the matrix H the submatrix formed by col-
umns with numbers i, ..., i + b, -1, is denoted as
HG, ..., + b, — 1). By default, matrix multiplication
is performed modulo 2, except when the operator
“®” is used denoting operations in decimal arith-
metic.

In case when the all-zero syndrome is ob-
tained, the algorithm returns the decoded vector
which is a codeword, and informs about successful
decoding. If for all possible positions of the sliding
window after all decoding iterations the all-ze-
ro syndrome is not obtained, decoder signaling
about failure and returns the word received from
the channel itself as the decoded word. It should
be noted that of the burst length does not exceeds
the maximal correctable length b .., then the
state “success” always means correct decoding,
otherwise “success” may be caused either by cor-
rect decoding or decoding error, that is, finding
the wrong (false) codeword.

This algorithm may be modified for the “fail-
ure” state case by determining the decoding result
according to some criterion, which would allow de-
creasing the number of bit errors. However, in this
paper we will consider the error probability per
transmitted word as the target decoding character-
istics, so we will not consider such modifications.

For the channels with memory in [21] the mod-
ification of belief propagation algorithm is pro-
posed, based on preliminary channel state esti-

mation and subsequent decoding. The advantage
of this algorithm is the possibility of correcting
multiple bursts and individual errors, disadvan-
tage is growing complexity comparing to binary
and integer operations, and necessity to provide
the channel transition probabilities at the decod-
er’s input.

Algorithms for single error burst decoding

We will develop the algorithm for error burst
correction, starting with the structure of (r x n)
block-permutation matrix (1) of LDPC code (here r
denotes the number of rows in H rather than actu-
al number of redundant bits). As it was mentioned,
for this construction (without masking by all-zero
blocks) b, < m, where m is block size. Let the er-
ror burst of length b <b_ . occurred in the chan-
nel, for simplicity we assume b = b, ., and for the
received word the syndrome S is calculated. The
subvector of error vector e containing the non-ze-
ro elements (i.e. the subvector on burst positions)
denote as e,. Assume that we have the exact knowl-
edge about burst position and we may select the
(r x b)-submatrix H, containing columns of the pari-
ty-check matrix H corresponding to burst positions.
Compute the vector W =1, HE, where 1, is all-one
vector of length b, i.e. W is the sum of all columns
of H,. Consider two cases: the burst is either com-
pletely within some block of H, or, taking into ac-
count b < m, disturbing no more than two adjacent
blocks of H.

The first case is shown in Fig. 2, a, for the pari-
ty-check matrix with block size m = 7 and maximal
correctable burst length b, = 6. Since every block
of H is cyclic permutation matrix and contains ex-
actly one non-zero element in the row, the vector W
may contain only zeros and ones. If some i-th syn-
drome’s component is not zero, the correspondent
i-th component of W should also be non-zero (other-
wise successful decoding for current submatrix H,
is not possible, since it contains no columns which
would give non-zero syndrome element in i-th row).
Hence, there are the only column in H, which con-

INPUT: (r x n)-matrix H, received word y, window size b,,, maximal number of iterations N.
OUTPUT: decoded word a and status “success” or “failure” of the decoder.

1. Calculate S = yHT; if S = 0, return a4 =y and “success”.
2.Fori = 0ton — b, // cycle for sliding window positions:

2.1. For current window position set S, = S, y, = y@, ...,i + b,- 1), Hy = HG, ...,i + b, - 1).

2.2. Forj = 1 to N // cycle for decoding iterations:
2.2.1. Calculate f, = S;®H, (in decimal arithmetics).

2.2.2. Determine the set pos = arg max {f;} of positions numbers of f with maximal values.

2.2.3. Invert elements of y;, in pos positions.

2.2.4. Renew §; = yng, if §; = 0, add (modulo 2) to subvector y(, ..., i + b, — 1) the vector y,, return a =y and “success”.

3. Return a =y and “failure”.

B Fig. 1. Windowed bit-flipping algorithm

N26,2022 N\

MHOOPMALIMOHHO-YMPABJISIIOLLIME CUCTEMbI \ 43

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

tributes to non-zero syndrome element. The number
of this column corresponds to erroneous position
within burst, we may subtract this column from the
syndrome and continue decoding. As can be seen
from the Fig. 2, a, for given example consideration
of first three non-zero elements of the syndrome
leads to all-zero syndrome and reconstructs the er-
ror burst e,. Consider also the vector f, = S, ® H,,
which we use in windowed bit-flipping algorithm (see
Fig. 1) — for considered example all its maximal
components correspond to erroneous burst posi-
tions, and the others are zero (windowed bit-flip-
ping algorithm would correct such a burst by one
iteration).

Now we consider more complicated case when the
burst affected two adjacent blocks of H (Fig. 2, b). In
this case the rows of H, may be all-zeros, contain
one non-zero element, or two elements from dif-
ferent blocks (in this example the border between
blocks are between second and third columns of Hp).
In figure the burst e, and vector f, are also shown.
In this case the comparison by their elements does
not allow, as in Fig. 2, a to determine error bits in
e, by the values of f, with such confidence — for
example, the value 2 which is close to maximal may
correspond both to first position without error and
to last with error.

Basing on considered examples we may deter-
mine the following conditions by considering ele-
ments W and S, from which certain decoding states
or events is followed, and formulate the correspond-
ing decoding steps:

— (W; =0, S; = 1): in this case the syndrome S
cannot be obtained by any combination of bit errors
within current burst position (i.e. current position
of sliding window), decoding should be stopped and
new window position should be defined (event “im-
possible”);

— (W; =1, S, = 1): in this case the column cor-
respondent to erroneous position within burst may
be uniquely determined, correspondent bit of e, on
this position is set to 1, and the column is marked as
considered (for given window position this bit with-
in the burst would never change its value), then W
and S may be renewed and decoding continues with-
in current window (event “certain 1”);

— (W; =1, S; = 0): in this case the column with
one non-zero element in i-th row is certainly did not
take part in computation of S, the correspondent
bit of e, on position correspondent to this column
may be set to 0, the column is marked as considered,
which leads to renewal of W, and decoding continues
within current window (event “certain 0”);

— (W; > 1, S; = 1): for the considered block-per-
mutation constructions and b < m this event is pos-
sible only for W, = 2, but in general case one may
assume larger number of ones in i-th row of H,, in
this case we cannot certainly determine the values
of any positions of the burst from i-th components of
W and S (event “ambiguity”).

We may note that all listed situations are based
on considering the non-zero elements of syndrome,
except special case “certain 0”. First three cases de-
termine certain events (with conditional probability

)]
=

S
N
(¢}
i~

|
[«]
p—

(=M=l leNeN--lel il (=] (=] (=== i) i (=}

Hb:

O OO H O OO HOO O OO oO|IHIC)oo o o O] |-
OO HOOOOOOO OO OO IO oo H||O
H O OO OO0 OO0 o0 Hooo|ococ olR|o of |-
|H»—A>—AHH»—AO»—A»—AO»—AH>—A»—AH|—A»—AO»—A»—A»—A|€

OO0 OO HOO0O KOO OoOOoO oo HHOOoOoOo
O O OO HOOOHOOCOOOOoO|IHIOO O OO

|HOOHHOOD—‘HOOHOOH|—‘OOD—‘OO|

f,= |0 33003

b)

o
o

|
[e=]
p—

OO0 O OO HOOHEOOOCOOO oo o oo

Hb:

H O OO OO0 OO OO OO OO0 OO O ||+
OO OO O HOOHOODOOOOOOO OO |-
clooc oo o OO0 O0O0 oo o ~olool|+-
|wooor—tr—tw»—tr~r—ﬂmn—~ooooommr—au|%
|.—ooo»—w—w—~»—w~ooooooooo»—to>—t|(%

HO OO OO OO OO HOO OO0 o oo

O OO0 OO0 O HOOOoOHOOOOO OO oOOo

B Fig. 2. Decoding by certain events: ¢ — burst within the block; 6 — burst in two blocks

44 7/ VH®OPMALMOHHO-YMNPABSSIOLLME CUCTEMBI

7/ N26,2022

\ KOOAUPOBAHME U NMEPEOAYA MHOOPMALIMN \

equal to 1, for the given window position): impossi-
bility of decoding, certain zero and one values with-
in the burst, conditioning that the burst is within
the positions of current window. Basing on these
events, the procedure may be determined looking
through elements of S and W and performing de-
scribed decoding steps, while the event “impossible”
would be determined or the all-zero syndrome ob-
tained. However, during the decoding the situation
is possible, when for all non-zero syndrome elements
the event “ambiguity” is determined. An example of
such situation is given in Fig. 3, a for the case when
two erroneous positions within the burst is found,
and correspondent columns are excluded from con-
sideration (in figure they are shadowed). Using the
rule for the event “certain 0” in Fig. 3, a will lead to
very fast successful decoding, but this event may be
absent (Fig. 3, b). Note that the parity-check matrix
in Fig. 3, b is not block-permutation, and the burst
of length 9 is considered, while the code from this
example may correct all bursts of length no more
than 7.

In the case described in Fig. 3, b, the resolving of
ambiguity is possible by using some heuristics [22],
for example. As one variant we consider the hybrid
decoder, when in case of ambiguity the decoding is
switched to conventional bit-flipping within current
window, until successful decoding or reaching the
maximal number of iterations. Such approach de-
fines in fact two-stage decoding which may be con-
sidered as windowed bit-flipping decoding with pre-
liminary processing based on certain events.

However, to ensure guaranteed decoding of burst
(at least within the burst-correction capability of the
code) another approach may be considered. In case
of uncertainty we make trial selection of erroneous
position and return to certain events consideration
basing on new W and S, until success or impossibil-
ity of the decoding will be determined, in the latter
case the algorithm should trace back and select an-
other trial erroneous bits. If in the process of one
trial we again meet the ambiguity, the next trial is
made and so on, thus leading to tree-like exhaustive
search. Surely, such search would lead to significant
grow of complexity. To reduce the search, we will se-
lect as trial erroneous positions those with maximal
value in vector f, = S, ® H,.

Basing on these considerations, the following re-
cursive algorithm may be proposed as general meth-
od of single burst decoding:

1) for the current window position determine
certain values of error burst positions basing on
conditions on S and W, until decoding ends or event
“ambiguity” is determined (for all non-zero ele-
ments of S);

2) for the “ambiguity” decoding state select the
position with maximal value of current vector f, as
the next erroneous position and return to step 1, in
case of failure select the next maximal value of f;
and so on; if trial succeeded or all (non-zero) ele-
ments of f, are considered, go to step 3;

3) if the burst e, giving the all-zero syndrome is
obtained during preceding steps, return codeword a,
which is vector y added (modulo 2) by burst e, om

a) e,= * |k b)

Hb:

|.—Amoooo.—looom.—n»—to.—toooo.—lmlsﬂ
-
|or—noooooooo»—tooooooooo»~|f{)_]

H|l|[OH OO OO0 OO0 o000 HHOHOOCOOOoOOo
Hl RO OO OO OO0 oo HOOO0O OO0 oo o

fb=

*
*
=

=

€e,= *

=
Il
—H olojlooocolocjooorlooooroooo
|oooocoooooov—nooooooooo| 28
=)

|[\’>OOO[\'}OOO[\DOOOOO[\’>OOMN}OOO|

HlP O OO OO0 OO0 0O HOHFHOOFEOOCOoOOo
H| O OO0 O HIOOOHKHOOHOOOO O HOOOo

fb= 1

B Fig. 3. Uncertainty during decoding: a — resolvable by event “certain 0”; b — without resolving by certain events

N26,2022 N\

MHOOPMALIMOHHO-YMPABJISIOLLME CUCTEMbl N\ 45

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

window positions, otherwise decoding in current
window is failed.

Described algorithm should be performed for all
possible positions of sliding window, its pseudocode
is given in Figures 4 and 5.

In fact, in the worst case for the given window
position the algorithm performs exhaustive search
by vectors e,, which guarantees finding the error
burst giving the all-zero syndrome, however, ex-
tremely time-consuming. However, if described
algorithm is applied to LDPC codes, especially for
block-permutation constructions, and if the burst
length does not exceeds burst correction capability
of the code, in many cases decoding is ended by the
first step (processing of certain events), either suc-
cessfully or not, then all the positions of error burst
may be determined by no more than b steps.

To fasten the decoding speed (by cost of failure
probability increasing, naturally), the recursion
depth or the number of considered elements in f;
may be limited.

Analysis of decoding algorithms
and simulation results

The algorithms described in preceding sec-
tions were implemented in MatLab environment
under MS Windows 10, the simulations where
made using CPU Intel Core i7-9700@3,00 GHz,
RAM 32 Gb. The following algorithms were con-
sidered:

— windowed bit-flipping algorithm (WBF);

— hybrid decoding with processing of certain
events basin on W and S with switching to win-
dowed bit-flipping algorithm in case of ambiguity
(WS + WBF);

— recursive algorithm.

The following code constructions were selected
for analysis:

— code 1: random (66.35) block-permutation
LDPC code (1) with parametersy = 3,p = 6,m = 11
(density of the parity-check matrix is y ~ 0.09), for
this code b, = 10;

INPUT: (r x n)-matrix H, received word y, window size b,,.

OUTPUT: decoded word a, status “success” or “failure” of the decoding.

1. Calculate S = yHT; if S = 0, return 4 =y and “success”.
2.Fori =0mon — b, // cycle for sliding window positions:
2.1.8etH, = HG, ...,i + b, - 1), e, = (0, ..., 0).

2.2. Calculate W =1, Hg

2.3. Call procedure [e,, status] = try_decode(H,, S, W, e;), given in Fig. 5.
2.4. If status = “success”, add (modulo 2) to subvector y(, ..., 7 + b, — 1) the vector e,, return a =y and “success”.

3. Return a=y and “failure”.

B Fig. 4. General scheme of single error burst decoding algorithm

PROCEDURE: [e,, status] = try_decode(H,, S, W, e,).

INPUT: (r x b,)-matrix H, syndrome S, vector W, current burst e,

OUPUT: renewed e, status “success” or “failure”.
1. If S = 0, return [e;, “success”].

2.1f3i: W; = 0 and S; = 1 (“impossible” event is determined), return [e,, “failure”].
3. For the first i = 0, ..., r, for which W; = 1 and S; = 0 (“certain 0” event is determined) or S; = 1 (“certain 1” event is determined):
3.1. Find j: the number of (the only) nonzero element in i-th row of H,.

3.2.Set e,(j) = 8,.

3.3.If §; = 1, then renew the syndrome: sum (modulo 2) S and the column j of matrix H,,.
3.4. Mark the column j of H, as considered (technically it may be zeroed).

3.5. Renew the vector W.

3.6. Call [e;, status] = try_decode(H,, S, W, e;).

3.7. If status = “success”, return [e;, status].

3.8. If status = “failure”, set e,(j) = 0 and return [e,, status].

4. Calculate f, = S ® H,, (in decimal numbers). Sort f; together with the number of its positions by decrease, obtaining the vector
fb,sort and corresponding array of indexes ind. Determine f., — the number of non-zero elements in f;.

5.Fori=1,..,f .

5.1. Setj = ind(@) (j — position of the next element in f; by the value).

5.2. Set e,(j) = 1.

5.3. Calculate trial renewal of syndrome S’ by adding the j-th column of Hj to S.
5.4. Set the trial renewal of Hj, marking j-th column as considered.

5.5. Calculate trial renewal of W'
5.6. Call [e;, status] = try_decode(Hp, S', W', e;).
5.7. If status = “success”, return [e;, “success”].

5.8. If status = “failure”, restore the value e,(j) = 0 (if trial versions Hj, S, W where not in separate memory, their values also

should be restored by the moment of entrance in the cycle).

6. If this step is reached, then the search through elements of f; is completed without success, return [e,, “failure”].

B Fig. 5. Recursive procedure of decoding trial

46 7/

WHPOPMALIMOHHO-YMPABJIAIOLLUE CUCTEMbI

7/ N26,2022

\

— code 2: random (66.33) code with density
x~0landb ., = 12;

— code 3: random (66.33) code with density
x~=0.5andb , = 13.

Relatively small lengths of the codes were select-
ed to fasten simulations in MatLab, since for the
code 3 (which is defined by the dense parity-check
matrix) simulations take significant time. At the
same time, some experiments with longer codes
gave qualitatively the same results, so in what fol-
lows we consider the codes with listed parameters.

For error vector generation the burst beginning
was selected randomly and uniformly, the first and
last positions of the burst are set to ones, erroneous
bits within the burst were generated with probabil-
ity 0.5, decoding fastening by means of estimation
the burst position was not applied. Note that the
simulation was also made for burst lengths exceed-
ing the correction capabilities of the codes, so the de-
coding error event consists both of decoding failure
and decoding error, that is finding false codeword.

In Fig. 6 the results of evaluating the codeword
(frame) error rate is given for windowed bit-flipping
algorithm with 1, 5, 10 iterations, for the single
burst lengths from 6 to 20. As can be seen from the
curves, windowed bit-flipping algorithm did not re-

KOOAUPOBAHME U NMEPEOAYA MHOOPMALIMN \

alize the burst-correction capability in any case, and
since the algorithm is based on the sparsity of the
parity-check matrix, for dense matrix (code 3) the
error probability rapidly tends to one. For the ma-
trix (code 2) with density close to those of block-per-
mutation construction (code 1) the error probability
is remarkably higher comparing to code 1. This may
be connected to the fact that random matrix of code 2
was not optimized in its structure for using tradi-
tional iterative decoders for LDPC codes. During
decoding, all error events were caused by decoding
failures, no any false codewords were found.

In Fig. 7 the results for recursive decoding is
given. The average time of one codeword decoding
(in seconds) were also estimated. Since no special
optimizations of decoders implementations were
not performed, the goal of time estimation is to ap-
proximately evaluate the comparative complexity in
different cases. For code 1 and code 2 the decoding
algorithm was fully completed. During simulations
of code 1 and code 2 there were no any cases of am-
biguity shown in Fig. 3. Besides, decoding did not
lead to any failure events, so all decoding errors
were caused by false codewords, and in many cases
the decoding for burst lengths exceeding the correc-
tion capability was successful. As can be seen from

Code 1, byax = 10

Code 2, byax = 12

0 N
100 10 < < a4 A
o :
Q -~ J
@ g |
& | o I
= | =} |
2 it |) I
g 10 | o 107 |
£ | g i
] | i \
= I
l :
102 | |
” I 102 . . I . . .
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Error burst length Error burst length
—— literation —v— 5 iterations 10 iterations —o— literation —v— 5 iterations 10 iterations
Code 3, bpax= 13 Comparison for 10 iterations
1 . —t ¢ s— 10° . .
|
|
[«)] ‘ Q
= 0.98 | } =
~ | f—
— -
g | =
E 096 r | E 10—1 L
: | :
£ 094 | g
) |)
|
|
0.92} ; 10
L L L | L L L L L L L L
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Error burst length Error burst length
—o— 1iteration —s— 5 iterations 10 iterations ——codel ——code?2 code 3
B Fig. 6. Simulation results for windowed bit-flipping algorithm
N26,2022 N\ MHOOPMALIMOHHO-YMPABJISIIOLLIME CUCTEMbI \ 47

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

Fig. 7, code 2 provides better error probability com-
paring to code 1, with comparable but slightly less
decoding complexity.

As for code 3, which is defined by dense matrix,
the simulation shows fundamentally different re-
sults. The decoding of one codeword might be up to
1000 times slower than for code 1 and code 2, in fact
in this case the decoder with high probability tends
to brute force of error bursts. Thus for the code 3
in Fig. 7 the artificial limitation of the number of
calls of try decode procedure was set, equal to
100b,,. In this case decoder stops to find the false

codewords and started to fail. From the window size
of about 10, where the time curve of code 3 decod-
ing changes its fast growth by gentle increasing (see
Fig. 7), the decoding failure in almost all cases is
connected to reaching the maximal recursion depth
for all window positions, and not with determining
“impossible” event. Even in case of successful de-
coding, the recursion depth was close to maximal.
In Fig. 8 for the code 1 and code 3 are given:
T in(Success), T, .. (Success), E(T(Success)) — min-
imal, maximal and average number of calls of
try decode procedure (see Fig. 5) for successful

10°
107!
()
®
~
~
I
8 1072
]
g
8
=
1073 4
107 . . . » .
8 10 12 14 16 18 20
Error burst length
—— code 1 —s— code 2 code 3

10°
[}
g
8
T 107
<
£
i
2
5 107%F
o
3
s
)
¥
g 10°f
<

4
6 8 10 12 14 16 18 20
Error burst length
—— code 1 —s— code 2 code 3

B Fig. 7. Simulation results for recursive algorithm of single burst correction

Code 1, byax = 10
25 . . T

20+

~
.-8 15¢
g
3
g
L‘I)
©
O 10r

6 8 10 12 14 16 18 20

Error burst length
—o— E[T(Success)] —— Tmax(Success) ---p
—— E[T(Failure)] —— Tyin(Failure) ---5/2

Tmin(Success) —— Tmax(Failure)

B Fig. 8. The number of calls of try_decode procedure

Code 3, bypax = 13

1400
1200+
1000 -
3 -
< e
g 800+ 7
2
=2 -7
= 600 (7
&)
400
200
0 . i i i
6 7 8 9 10 1 12 13 14
Error burst length
—— E[T(Success)] —*— Tmax(Success) ---100b

—— E[T(Failure)] —»— T ; (Failure)
Tmin(Success) —— T, (Failure)

48 7/ VH®OPMALIMOHHO-YMPABJISIIOLLVE CUCTEMbI

7/ N26,2022

decoding in the window, T ; (Failure), T} ..

N\

KOOAUPOBAHME U NMEPEOAYA MHOOPMALIMN \

(Failure),

E(T(Failure)) — similar values for failed decoding in
the window. As one can see, for the code 1 the maxi-

mal number of calls of try decode for given win-
dow position is approximately equal to window size
b,, both for correct and not correct window position.

a) 10°

107t
Q
=
~
) /
=
-2 |
o 10 :
g
®
o
<3}
1073 /
10 : ' : :
8 12 14 16 18 20
Error burst length
——WBEF 10 iterations ——WS+WBF Recur
b)
o .
®
~
8
~
3
° i
g
g
<
10 3
10—4 L L L L .
6 8 10 12 14 16 18 20
Error burst length
——WBEF 10 iterations ——WS+WBF Recur
c)looo_/’¢.¢,f e
3
g 10t
~
2
3
()
g
g
= 1072t
103
6 8 10 12 14 16 18 20

Error burst length

—— WBF 10 iterations —— WS+WBF

Recur (100%)

Average decoding time, s/frame

P

>

1074 // !

6 8 10 12 14 16 18 20
Error burst length

——WBF 10 iterations —+—WS+WBF Recur

1073

Vg

Average decoding time, s/frame

7

=

1074¢ / . . . L
6 8 10 12 14 16 18 20
Error burst length
——WBF 10 iterations ——WS+WBF Recur

10°

107 F

1072

Average decoding time, s/frame

& 5.3
v v

10—3 -)))))) J
6 8 10 12 14 16 18 20
Error burst length
—— WBF 10 iterations —— WS+WBF Recur (1009)

B Fig. 9. Comparison of different decoders for code 1 (a), code 2 (b) and code 3 (¢)

N26,2022 N\

MHOOPMALIMOHHO-YMPABJISIIOLLIME CUCTEMbI \ 49

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

Minimal number of calls may be approximated as
b,,/2 for correct window position and 1 otherwise (in
this case the event “impossible” is determined by the
first call). For the code 3 the maximal recursion depth
(and average for failed decoding) rapidly increasing
and approaches upper limit of 100 window sizes even
for burst lengths below correction capability.

In Fig. 9, a the evaluation of error probability
and decoding time for windowed bit-flipping, hybrid
and recursive algorithms for code 1 are presented.
As can be seen, algorithms using analysis of certain
events show approximately the same error proba-
bility (an order less than for bit-flipping algorithm)
and comparable decoding time, the error events
(caused only by false codewords) appears only for
burst lengths exceeding the capability of the code.
Recall that for these algorithms no uncertainty dur-
ing decoding were reached, so the decoding complet-
ed only by determination of certain events.

In Fig. 9, b, ¢ the similar results for code 2 and
code 3 are given. For code 2 the gain obtained by
decoders analyzing the certain events comparing to
bit-flipping algorithm is even larger than for code
1, this may be reasoned both by worse performance
of bit-flipping algorithm for code 2, and by the fact
that code 2 has slightly larger burst-correction ca-
pability than code 1, and perhaps — better weight
spectrum for correcting single bursts, so the decod-
ing far beyond correction capability for this code
is possible. For the code 3 given by dense matrix,
the recursive algorithm (with recursion depth lim-
ited by 100 window sizes) shows significant gain
for bursts length up to 10 (recall that code 3 has
b ax = 13), and two other decoders tends to error
probability equal to 1. This gain is achieved by cost
of significant decoding time, in all cases, when error
probability close to 1, decoding time stops to change

with burst length increasing, since in practically all
cases decoding for all window positions is failed.

Conclusion

In this paper the decoding of single error bursts
with linear codes is considered. The analysis of win-
dowed decoding is hold, basing on determination of
certain events using structure of the parity-check
matrix. The two-stage hybrid decoder is considered,
combining the consideration of certain events with
bit-flipping algorithm. The recursive decoding al-
gorithm is proposed, which guarantees correction
of single error bursts with correction capability,
the search in this decoder is optimized by selecting
the least reliable position, determined by the col-
umn with most coincides of non-zero elements with
syndrome. The evaluation of error probability and
average decoding time per transmitted codeword
is performed by computer simulation. The simula-
tion results show that proposed algorithms allow
to correct large number of single error bursts with
lengths exceeding the burst-correction capability.
Proposed recursive algorithm may be applied to any
linear code, however taking into account, that the
decoding complexity is reasonable (and significantly
less than for bit-flipping algorithm) only for codes
which parity-check matrix is sparse enough.

Financial support

The paper was prepared with the financial sup-
port of the Russian Science Foundation, project
No. 22-19-00305 “Spatial-temporal stochastic models
of wireless networks with a large number of users”.

References

1. Moon T. K. Error correction coding: Mathematical
methods and algorithms. Wiley, 2020. 992 p.

2. Lin Z. Design of network coding schemes in wireless
networks. Boca Raton, FL, CRC Press, 2022. 166 p.

3. Gazi O. Forward error correction via channel coding.
Cham, Springer, 2020. 319 p.

4. Ghaddar N., Kim Y.-H., Milstein L. B., Ma L., and
Yi B. K. Joint channel estimation and coding over
channels with memory using polar codes. IEEE Trans-
actions on Communications, Oct. 2021, vol. 69, no. 10,
pp. 6575-6589. d0i:10.1109/TCOMM.2021.3098822

5. Sasoglu E., Tal I. Polar coding for processes with
memory. IEEE Transactions on Information Theory,
2019, vol. 65, no. 4, pp. 1994-2003. doi:10.1109/
TIT.2018.2885797

6. Shao S., Hailes P., Wang T.-Y., Wu J.-Y., Maunder R. G.,
Al-Hashimi B. M., Hanzo L. Survey of Turbo, LDPC,

and polar decoder ASIC implementations. I[EEE Com-
munications Surveys & Tutorials, 2019, vol. 21, no. 3,
pp. 2309-2333. do0i:10.1109/COMST.2019.2893851

7. Stevens A. Monte-Carlo simulation: an introduction
for engineers and scientists. First ed. Boca Raton, FL,
CRC Press, 2022. 112 p.

8. Jihwan S., Lee H.-K. Burst error correction for convo-
lutional code concatenated with Hamming code with
a block interleaver. 2020 Intern. Conf. on Artificial In-
telligence in Information and Communication (IC-
AIIC), Fukuoka, Japan, 2020, pp. 531-533. d0i:10.1109/
ICAIIC48513.2020.9065198

9. Loyka S., Charalambous C. D. On the capacity of
Gaussian MIMO channels with memory. IEEE Com-
munications Letters, 2022, vol. 26, no. 8, pp. 1760-
1763. doi:10.1109/LCOMM.2022.3174774

10. Veresova A. M., Ovchinnikov A. A. Comparison of the
probability of Reed — Solomon and LDPC codes de-
coding error in the Gilbert — Elliott channel. 2022

50 7/ VH®OPMALMOHHO-YMNPABSSIOLLME CUCTEMBI

7 N26,2022

\ KOOAUPOBAHME U NMEPEOAYA MHOOPMALIMN \

Wave Electronics and its Application in Information
and Telecommunication Systems (WECONF),
Saint-Petersburg, Russia, 2022, pp. 1-4. doi:10.1109/
WECONF55058.2022.9803501

11. Kulhandjian M., Kulhandjian H., D’Amours C. Im-
proved soft decoding of Reed — Solomon codes on Gil-
bert — Elliott channels. 2019 IEEE Intern. Symp. on
Information Theory (ISIT), Paris, France, 2019,
pp. 1072-1076. doi:10.1109/ISIT.2019.8849456

12.Song L., Huang Q., Wang Z. Construction of multi-
ple-burst-correction codes in transform domain and
its relation to LDPC codes. IEEE Transactions on
Communications, 2020, vol. 68, no. 1, pp. 40-54.
doi:10.1109/TCOMM.2019.2948341

13.Xiao X., Vasi¢ B., Lin S., Li J., and Abdel-Ghaffar K.
Quasi-cyclic LDPC codes with parity-check matrices
of column weight two or more for correcting phased
bursts of erasures. IEEE Transactions on Communi-
cations, May 2021, vol. 69, no. 5, pp. 2812-2823.
doi:10.1109/TCOMM.2021.3059001

14.Veresova A. M., Ovchinnikov A. A. About one algo-
rithm for correcting bursts using block-permutation
LDPC-codes. 2019 Wave Electronics and its Applica-
tion in Information and Telecommunication Systems
(WECONF), Saint-Petersburg, Russia, 2019, pp. 1-4.
doi:10.1109/WECONF.2019.8840580

15.Gallager R. G. Low density parity check codes. Cam-
bridge, MA, MIT Press, 1963. 90 p.

16.Zhu K., Wu Z., Comprehensive study on CC-LDPC,
BC-LDPC and Polar code. 2020 IEEE Wireless Com-
munications and Networking Conference Workshops
(WCNCW), 2020, pp. 1-6. doi:10.1109/WC-
NCW48565.2020.9124897

17.Jeong S., Ha J. MET-LDPC code ensembles of low
code rates with exponentially few small weight code-
words. IEEE Transactions on Communications, 2021,
vol. 69, no. 6, pp. 3517-3527. doi:10.1109/TCOMM.
2021.3063348

18.0vchinnikov A. A., Fominykh A. A. About some irreg-
ular degree distributions of LDPC codes in two-state
channels. 2021 Wave Electronics and its Application
in Information and Telecommunication Systems
(WECONF), Saint-Petersburg, Russia, 2021, pp. 1-4.
doi:10.1109/WECONF51603.2021.9470627

19.Xiao X., Vasic B, Lin S., Abdel-Ghaffar K., Ryan W. E.
Reed — Solomon based quasi-cyclic LDPC codes: de-
signs, girth, cycle structure, and reduction of short
cycles. IEEE Transactions on Communications, 2019,
vol. 67, no. 8, pp. 5275-5286. do0i:10.1109/TCOMM.
2019.2916605

20.Li J., Gong Y., Lin S., Abdel-Ghaffar K. Balanced in-
complete block designs, partial geometries, and their
associated QC-LDPC codes. 2021 11th Intern. Symp.
on Topics in Coding (ISTC), Montreal, QC, Canada,
2021, pp. 1-5. doi:10.1109/ISTC49272.2021.9594122

21. Eckford A. W., Kschischang F. R., Pasupathy S. Anal-
ysis of low-density parity-check codes for the Gil-
bert — Elliott channel. IEEE Transactions on Infor-
mation Theory, 2005, vol. 51, no. 11, pp. 3872-3889.
doi:10.1109/T1T.2005.856934

22.0vchinnikov A., Fominykh A. About burst decoding
for block-permutation LDPC codes. Internet of Things,
Smart Spaces, and Next Generation Networks and
Systems: 20-th Intern. Conf., NEW2AN 2020, and 13-
th Conf., ruSMART 2020, Saint-Petersburg, Russia,
2020, pp. 393-401. doi:10.1007/978-3-030-65726-0_35

YIK 519.72
doi:10.31799/1684-8853-2022-6-41-52
EDN: UWXZHN

JexogupoBaHue JHHEHHBIX KOJOB IIPH HCIPaBI€HUN OXHHOYHBIX ITAKETOB OIIHOOK HA OCHOBE OIIPeIe/ICHHUsI

IOCTOBEPHBIX COOBITHIL

A. A. OBYUMHHHMKOB?, KAH][. TEXH. HAYK, A01eHT, orcid.org/0000-0002-8523-9429, mldoc@guap.ru

A. M. Bepecosa?, acimpant, orcid.org/0000-0002-3792-9249

A. A. ®omunnix?, marucrp, orcid.org/0000-0002-1412-5766

aCankr-IleTepOyprekuii rocy1apCTBEHHBIN YHUBEPCUTET a9POKOCMUYECKOT0 pubopocrpoenust, b. Mopckas yi., 67, Caukt-
ITerep6ypr, 190000, PO

BBenenue: B COBpeMEHHBIX CUCTEMAX CBI3U, XPAHEHUS U 00pab0TKH JaHHBIX IIOMEX0YCTONYUBOCTD PA3IUIHBIX KOJOB, UCIIPABIISIOUX
OIIUOKY, OIIEHUBAETCA 711 KAHAJIOB 0e3 maMATH. B peaqbHBIX KaHAIAX CBA3HU IIIyM IPEACTABIAET CO00H KOPPEIUPOBAHHBIN CIIydaHbIN IPO-
1ece, 9YTo IPUBOIUT K IPYIIIHPOBAHUIO OITHOOYHBIX OUT B MakeThl. Kiaccuueckuit moaxoz st 60pbObI ¢ MaKeTUPOBAHUEM OIIMOOK COCTOUT B
IPUMEeHEeHUH IPOLE/yPhl JeKOPPEIANNN KAHAIA, 9TO He MIO3BOJISeT CTPOUTH KOJOBbIE CXeMbI, HanboJee MOJIHO PealnsyoIlye IPOILyCKHYO
croco6HOCTh KaHama. TakuM 06pasoM, akTyanbHOU ABISETCH 3a/a4a OCTPOEHHUS AITOPUTMOB A€KOIHUPOBAHUS VIS UCIIPABIEHUS IAKETOB
OIIKOOK /I IPOU3BOIBHBIX JIMHEHHBIX KOmoB. I{esb: pa3paborars alroputM IeKOAUPOBAHHUA OJUHOYHBIX IAKETOB OIIMOOK /IS JIMHEHHBIX
KOJIOB, OLIEHUTDH BEPOSITHOCTH OIITUOKY ¥ BHIYUCIUTENBHYIO CI0KHOCTb pazpaboTanHoro aaropurma. PesyabTarsr: mpeiosxeHs! ABa M01xo0/a
K MCIIPABJIEHUIO MAKETOB OMIMO0K. IIepBhiii 0CHOBAH HA KOMOMHUPOBAHUU OKOHHOM MOAM(DUKAIIUN U3BECTHOTO AJITOPUTMA HHBEPTUPOBAHUS
OUT ¢ IpeaBapUTEIHLHBIM aHAIHU30M CTPYKTYPHI IIPOBEPOYHOM MATPHUIIBL. BTOPOH OCHOBAH HA PEKYPCHBHOM IIPOIEAyPe IIOCTPOEHUS IOCIe-
JIOBATEIBLHOCTH JJOCTOBEPHBIX COOBITHI, B HAMXYALIEM CJIydae OCYIIEeCTBISIOIIeH IOJHBIN Iepe6op MaKeTOB OMIMUOOK, KOTOPBIH BO MHOTHX
CIy4aax MOKET ObITh 3HAUUTEIHHO COKPAIIEH C IIOMOIIBIO IPeI0KEHHON 9BPUCTHKH. [IpeIosKeHHbIi PeKYyPCUBHBIA aJITOPUTM JeKOAHPO-
BaHUSA II03BOJIAET FAPAHTUPOBAHHO HUCIPABIATH J00bIe OJMHOYHBIE IAKETHI OIIMOOK B IIPe/eax KOPPEKTUPYIOIIEeH CII0COOHOCTH KO/, a C
BBICOKOHM BEPOATHOCTHIO M CBEPX KOpPeKTUpyoel crocobHoctu. CIoKHOCTh 3TOTO AIrOPUTMA 3HAYUTEIHHO HUIKE CIIOKHOCTH aJrOPUTMA

N26,2022 N\ MHOOPMALIMOHHO-YMPABJISIOLLME CUCTEMbl N\ 51

7/ KOOWPOBAHME U NEPEOAYA MHOOPMALIUN /

WHBEPTHUPOBAHUA OUT, €C/IU IPOBEPOYHAS MATPUIIA JIMHEHHOTO KO/ia BIAETCA JOCTATOIHO PaspeKeHHOH. ATbTepHATUBHBIN THOPUAHBIH aj-
TOPUTM JIEKOAMPOBAHUS C HCIIOIb30BAHIEM HHBEPTUPOBAHUSA OUT I HUSKOIIOTHOCTHBIX KO/IOB IIOKA3bIBAET BEPOSITHOCTD OIIUOKU U BPEMS
BBIIIOTHEHUS, CPABHUMBIE C PEKYPCHUBHBIM aJITOPATMOM, OJHAKO BO3MOKHOCTH TAPAaHTHPOBAHHOIO UCIIPABJIEHUS ITAKETOB OLINGOK C ero II0-
MOIIIBIO BPAJ JIX MOeT ObITh fokasaHa. [IpakTHyeckas 3HAYHMOCTD: [IPEIIOKEHHbIe METObI JeKOAUPOBAHUA MOTYT ObITH UCIIOIB30BAHbI
B COBPEMEHHBIX U IEPCIEKTUBHBIX CHCTEMAaX CBA3H, I103BOJIAA YKOHOMUTDH DHEPIHI0 W IIOBBINIATH HAJEKHOCTD IIepeladyr TaHHBIX 3a CYeT
nydiei 5dHEeKTUBHOCTH UCIIPABIEHHUS OIINO0K U MEHbIIEH BEIMUCIUTEIBHOMN CIOKHOCTH.

KaioueBsbie c10Ba — KaHAIbI ¢ TAMATHIO, KOABI C MAJIOH IIJIOTHOCTHIO IIPOBEPOK HA YETHOCTD, UCIIPABIEHNE IAKETOB OLIHOOK.

Jaa purupoBanua: Ovchinnikov A. A., Veresova A. M., Fominykh A. A. Decoding of linear codes for single error bursts correction based
on the determination of certain events. Hugopmayuorro-ynpasasrowue cucmemst, 2022, No 6, c. 41-52. doi:10.31799/1684-8853-2022-
6-41-52, EDN: UWXZHN

For citation: Ovchinnikov A. A., Veresova A. M., Fominykh A. A. Decoding of linear codes for single error bursts correction based on
the determination of certain events. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2022, no. 6, pp. 41-52.
doi:10.31799/1684-8853-2022-6-41-52, EDN: UWXZHN

YK 519.21: 537.86
BBK 22.17

Xumenko B. 1.
Br16pocsI ciay4ailHBIX IIPOMECCOB U MPO006JieMa IepecevYeHn il ypOBHER
Mocxksa: TEXHOC®EPA, 2022. - 582 c. ISBN 978-5-94836-658-6

XapaKkTepucTUKHU BBIOPOCOB, IEPECEYEHMs 3aJaHHBIX yPOBHEH, DKCTPEMAaJbHBIE
3HAUYEHHA CIYYaWHBIX IIPOIIECCOB — 3TO KIACC XapPaKTEePUCTHUK, IO3BOJAIONINX OMIHUCHI-

¢H3HKH BaTh CTPYKTYPYy B BEepPOATHOCTHOe IIOBejeHHe ciaydaiHbIx pynkuuii. [lo cBoemy co-
JIep:RaHUI0 TaKue XapaKTePUCTUKN OTHOCATCA K HAIIPABIEHHUIO MeKIUCIUILIMHAPHBIX
i ucciaenosBannii. Heo6xoquMocTs UX M3ydYeHUd CBA3aHA C PEIleHHeM MHOTOYHCIEHHBIX
3"‘5*’“"“' 327124 U3 PA3IHYHBIX 001acTel (PU3UKH, TEXHUKA U €CTECTBO3HAHUA.
::)::ec::: Copnepsxanue JaHHOW PaGOThI OTPAKAET COBPEMEHHOE COCTOSHWE HCCIeLOBAHUN
w npobnera B 06J1aCTH IIPUKJIALHOM TEOPUHU BBIOPOCOB U 0011[el IPO6IEeMBI «IIepecedeHn il yPOBHEH».
nepeceseHmi 31ech neraeTcs IONbITKA CHCTEMATH3aIuH, 0000IeHUA U PA3BUTUA OCHOBHBIX PE3YJIb-
yposHed TaTOB, IOIBITKA PACCMOTPEHHU IIPO6IeMaTHKY IIPEBBIIIIEHUH 3aTaHHBIX YPOBHEH «B Ife-

JI0M» 1A HauboJiee pacpocTpaHeHHBIX KIACCOB caydaiHbIX pyHnknui. IIpencrasieno
60JIbIIIOE KOJTHYECTBO HOBBIX Pe3yJIbTaTOB. JTO OTHOCUTCA K aHAINU3Y BEPOATHOCTHOH
CTPYKTYPBI BpeMEHHBIX PANOB, HEIIPEPBIBHBIX CIyYaWHBIX IIPOLECCOB, CIyYalHBIX IIO0-
TOKOB COOBITHU M CIyYaWHBIX IPOCTPAHCTBEHHO-BpeMeHHbIX moiei. Ilokasansl Bo3-
MOKHOCTH 001IeH KIacCH(MUKAIIUN IPUKIAAHBIX 38129 X 0COGEHHOCTH UX PEIIeHHI Ha
OCHOBE HCIIOJIb30BAHUA XapaKTePHUCTHUK ITIepecedeHn i yPOBHEH.

Jl7 mupoKoro Kpyra CIeIUaIiuCTOB, ACIUPAHTOB U CTYAE€HTOB, AJId TeX, KTO U3Y-
JaeT, UCCIIe/lyeT U IPUMeHIeT Ha IPaKTHKe MO U MEeTO/bl AaHAIN3a PA3IHYHBIX 110
cBOei (PU3UYeCKO IPUPOLe CILyIaNHbIX JAHHbIX.

52 7/ VH®OPMALIMOHHO-YMPABJISIIOLLVE CUCTEMbI 7 N26,2022

