
ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 4, 20182 ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ2

UDC 519.614

doi:10.31799/1684-8853-2018-4-2-8

a, Dr. Sc., Tech., Professor, korbendfs@mail.ru 
b, PhD, Distinguished Professor Emeritus, djokovic@uwaterloo.ca 

aSaint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000,  
Saint-Petersburg, Russian Federation 
bUniversity of Waterloo, Department of Pure Mathematics and Institute for Quantum Computing, Waterloo, 
Ontario, N2L 3G1, Canada 

 To investigate more fully, than what was done in the past, certain families of symmetric Hadamard matrices 
of small orders by using the so called propus construction.  Orbit method for the search of three cyclic blocks 
to construct Hadamard matrices of propus type. This method speeds up the classical search of required sequences by 
distributing them into different bins using a hash-function. Our main result is that we have constructed, for the first 
time, symmetric Hadamard matrices of order 268, 412, 436 and 604. The necessary difference families are constructed 
by restricting the search to the families which admit a nontrivial multiplier. A wide collection of new symmetric Hadamard 
matrices was obtained and tabulated, according to the feasible sets of parameters.  Hadamard matrices 
are used extensively in the problems of error-free coding, compression and masking of video information. Programs for search 
of symmetric Hadamard matrices and a library of constructed matrices are used in the mathematical network “Internet” 
together with executable on-line algorithms.

 — Propus Construction, Difference Families, Symmetric Hadamard Matrices, Optimal Binary Sequences. 

2010 Mathematics Subject Classification: 05B10, 05B20. 

Citation: Balonin N. A., Ðokovi  D. . Symmetric Hadamard Matrices of Orders 268, 412, 436 and 604. Informatsionno-upravliaiushchie 
sistemy [Information and Control Systems], 2018, no. 4, pp. 2–8. doi:10.31799/1684-8853-2018-4-2-8

Introduction 

The construction of symmetric Hadamard ma-
trices was stagnating for long time while that of 
skew-Hadamard matrices advanced rapidly. The 
reason for this discrepancy was the fact that for 
the latter we had a very versatile tool, namely the 
Goethals — Seidel (GS) array, while for the former 
such tool was missing. The new tool for the con-
struction of the symmetric Hadamard matrices, so 
called propus array, was discovered recently [1] by 
J. Seberry and the first author. It was already used 
in [2–4] to construct many propus Hadamard ma-
trices (such matrices are always symmetric) includ-
ing some having new orders.

The authors of [1] observed that the well known 
Turyn series of Williamson quadruples (of sym-
metric circulant blocks) gives the first infinite se-
ries of propus Hadamard matrices. They also give 
a variation of the propus array in which they plug 
symmetric and commuting Williamson type quad-
ruples to construct another infinite series of sym-
metric Hadamard matrices. Yet another infinite 
series of propus Hadamard matrices was identified 
in [4, Theorem 5].

In this paper we continue our previous work [2, 
3] where we used the propus construction to find 
new symmetric Hadamard matrices. We refer to 
these papers and [5] for the more comprehensive 
description of this construction and the definitions 

of the GS-array and GS-difference families. As the 
propus difference families play a crucial role in the 
paper, we shall define them precisely in the next 
section and specify the propus array that we use.

The first Hadamard matrix of order 4 · 67 268 
was constructed by Sawade in 1985 [6]. The first 
skew-Hadamard matrix of the same order was con-
structed in 1992 by one of the authors [7]. However 
a symmetric Hadamard matrix of order 268 was not 
discoverd so far. We present in Sect. 3 six propus 
difference families in the cyclic group Z67 which 
we use to construct six symmetric Hadamard ma-
trices of order 268. Moreover, in the same section 
we also construct the first examples of symmetric 
Hadamard matrices of orders 412, 436 and 604. 
Examples of symmetric Hadamard matrices of or-
der 4v are now known [2–4, 8] for all odd positive 
integers v < 200 except for

59, 65, 81, 89, 93, 101, 107, 119, 127, 133, 149, 
153, 163, 167, 179, 183, 189, 191, 193.

The binary sequences, i.e., {±1}-sequences, of 
length v 1 (mod 4) are called optimal if the off-
peak values of its periodic autocorrelation function 
are 1 or –3. Such sequence is balanced if its sum 
is ±1. A computer generated list of binary balanced 
optimal sequences of length v 1 (mod 4) is given in 
[9] for v  47. As a byproduct of our computations 
of propus difference families we have obtained bi-
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nary balanced optimal sequences of lengths 49 and 
61. They are presented in Sect. 4.

In addition to the propus difference families 
used in Sect. 3, we give a more extensive list of such 
families in Sect. 5.

While trying to verify the proof of [1, Corollary 
1] we observed that this corollary is stated incor-
rectly. The second sentence of the corollary should 
read: “Then there exist symmetric Williamson type 
matrices of order q 2 and a symmetric propus-type 
Hadamard matrix of order 4(q 2)”. Consequently, 
4(2q 1) should be replaced with 4(q 2) in the ab-
stract as well as in line 3 on p. 351. Further, the two 
lists, one on p. 352 and the other on p. 356 should be 
corrected. The integers 59, 67, 81, 89, 105, 111, 119, 
127 should be removed from the former, while 97, 
99 should be removed from and 59, 67, 89, 119, 127 
inserted into the latter. (The cases 59, 89, 119, 127 
are still unresolved.)

Preliminaries 

Let G be a finite abelian group of order v > 1. Let 
(Xi), i 1, 2, … , m, be a difference family in G. We 
fix its parameter set 

 (v; k1, k2, …, km; ), ki |Xi|.  (1)

Recall that these parameters satisfy the equation

 

.   (2)

The set of diference families in G having this 
parameter set is invariant under the following ele-
mentary transformations:

a) for some i replace Xi by a translate g Xi, 
g G; 

b) for some i replace Xi by –Xi; 
c) for all i replace Xi by its image (Xi) under an 

automorphism  of G;
d) exchange Xi and Xj provided that |Xi| |Xj|.
Definition 1. We say that two difference families 

with the same parameter set are equivalent if one 
can be transformed to the other by a finite sequence 
of elementary transformations.

Definition 2. Let (Xi) be a difference family in G. 
We say that an automprphism  of G is a multiplier 
of this family if each set (Xi) is a translate of Xi. 

If a positive integer m is relatively prime to v then 
the multiplication by m is an automorphism of G.  
If this automorphism is a multiplier of a difference 
family, then we also say that the integer m is a mul-
tiplier or a numeric multiplier of that family.

The multipliers of a difference family in G form 
a subgroup of the automorphism group of G. All 
difference families that we construct in this paper 

have nontrivial multipliers. This follows from the 
fact that we use only the base blocks Xi which are 
union of orbits of a fixed nontrivial subgroup H 
of the automorphism group of G. We refer to this 
method of constructing difference families as the 
orbit method.

We are only interested in GS-difference families 
formally introduced in [5] and [10]. They consist of 
four base blocks (X1, X2, X3, X4) and their parame-
ter sets, also known as the GS-parameter sets, satis-
fy besides the obvious condition (2) (with m 4) also 
the condition

 

.   (3) 

By eliminating the parameter  from the equa-
tions (2) and (3), we obtain that

 

.   (4)

If ki kj for some i  j in a GS-parameter set (v; 
k1, k2, k3, k4; ) then we say that this parameter set 
is a propus parameter set.

In fact we shall use only a very special class of 
GS-difference families known as propus difference 
families. We adopt here the following definiton of 
these families.

Definition 3. A propus difference family is a GS-
difference family (Xi), i 1, 2, 3, 4, subject to two 
additional conditions:

a) two of the base blocks are equal, say Xi Xj for 
some i < j, which implies that ki kj; 

b) at least one of the other two base blocks is sym-
metric. 

(We say that a subset X G is symmetric if 
–X X.)

Unless stated otherwise, we shall assume from 
now on that G is cyclic. We identify G with the ad-
ditive group of the ring Zv of integers modulo v. 
We denote by Zv

* the group of units (invertible ele-
ments) of Zv. We identify the automorphism group 
of G with Zv

*. Thus, every automorphism  of Zv is 
just the multiplication modulo v by some integer k 
relatively prime to v.

To any subset X Zv we associate the binary se-
quence (i.e., a sequence with entries 1 and –1) of 
length v, say (x0, x1, …, xv–1), where xi  –1 if and 
only if i X. By abuse of language, we shall use the 
symbol X to denote also the binary sequence associ-
ated to the subset X.

Let (Xi) be a GS-diference family in Zv. Further, 
let Ai be the circulant matrix having the sequence 
Xi as its first row. Then the Ai satisfy the equation

 

T ,   (5)
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where Iv is the identity matrix of order v. This 
equation guarantees that, after plugging the (Ai) 
into the GS-array, we obtain a Hadamard mat- 
rix.

If (Xi) is a propus difference family, we say that 
the corresponding matrices (Ai) are propus matri-
ces. By plugging these (Ai), in suitable order, into 
the propus array

 

,

 

 (6)

where R is the back-diagonal permutation matrix, 
we obtain a symmetric Hadamard matrix of order 
4v. The ordering should be chosen so that A1 is 
symmetric and A2 A3.

We construct the base blocks Xi as unions of cer-
tain orbits of a small nontrivial subgroup H Zv

* 
(mostly of order 3 or 5). When recording a base 
block, to save space, we just list the representatives 
of the orbits which occur in the block. As a repre-
sentative, we always choose the smallest integer of 
the orbit.

The Сases v 67, 103, 109, 151 

In this section we list six non-equivalent ex-
amples of propus difference families in Z67, three 
such families in Z103, two in Z109, and a single one 
in Z151. By using the propus array, they provide the 
first examples of symmetric Hadamard matrices of 
orders 268, 412, 436 and 604, respectively.

In the case v 67, up to a permutation of the kis, 
there are three feasible propus parameter sets for 
the subgroup H {1, 29, 37} Z*

67. For each of them 
we have found several propus difference families. 
We list only two families per parameter set. The 
block X4 is symmetric in the first two families while 
X1 is symmetric in the remaining four families.

Let us explain how we record the base blocks. As 
an example, we take the block X2 of the first family 
in Table 1. It is the union of ten H-orbits whose rep-
resentatives are the integers 0, 2, 4, 6, 16, 17, 25, 
27, 30, 41. As each nontrivial orbit has size 3, the 
block X2 has the size 1 9·3 28. The blocks X1 and 
X4 are given similarly. In all difference families 
listed in this and the next section we have X2 X3 
and we record only the blocks X1, X2 and X4 in that 
order. The families having the same parameter set 
are separated by a semicolon.

 Table 1. Propus difference families in Z67, Z103, Z109 and Z151

(67; 33, 28, 28, 31; 53), H {1, 29, 37} 

[1, 3, 4, 10, 12, 15, 17, 30, 34, 36, 41],  [0, 2, 4, 6, 16, 17, 25, 27, 30, 41],  [0, 1, 4, 5, 8, 10, 16, 18, 30, 32, 36]; 

[1, 2, 8, 15, 16, 18, 25, 30, 32, 34, 36],  [0, 2, 3, 6, 8, 9, 17, 18, 34, 36],  [0, 1, 2, 4, 5, 9, 16, 17, 18, 30, 41]

(67; 30, 31, 31, 27; 52), H {1, 29, 37} 

[1, 5, 6, 15, 16, 17, 27, 30, 34, 41],  [0, 2, 4, 9, 10, 12, 16, 23, 30, 36, 41],  [5, 8, 9, 12, 16, 17, 23, 25, 41]; 

[3, 5, 8, 10, 12, 16, 23, 25, 32, 36],  [0, 5, 6, 9, 12, 15, 16, 17, 23, 27, 30],  [1, 2, 3, 4, 8, 27, 30, 32, 36]

(67; 30, 30, 30, 28; 51), H {1, 29, 37} 

[3, 4, 5, 8, 10, 16, 18, 23, 32, 36],  [3, 6, 9, 10, 12, 15, 17, 23, 25, 41],  [0, 5, 9, 10, 12, 15, 17, 27, 30, 41]; 

[2, 3, 4, 9, 10, 17, 18, 23, 32, 41],  [1, 2, 9, 16, 17, 23, 27, 32, 34, 41],  [0, 3, 10, 15, 16, 17, 23, 27, 32, 34]

(103; 48, 51, 51, 42; 89), H {1, 46, 56} 

[3, 4, 14, 17, 19, 21, 29, 30, 31, 33, 38, 40, 49, 51, 55, 62],  [2, 3, 4, 6, 7, 14, 15, 22, 29, 30, 31, 38, 42, 44, 47, 49, 62],  

[3, 6, 8, 10, 15, 17, 21, 31, 33, 38, 42, 44, 55, 60]; 

[1, 3, 6, 8, 10, 11, 21, 30, 33, 40, 44, 47, 49, 51, 55, 62],  [5, 6, 7, 11, 12, 14, 19, 23, 29, 30, 38, 40, 47, 51, 55, 60, 62],  

[4, 6, 7, 8, 10, 12, 17, 20, 22, 33, 42, 44, 49, 55]

(109; 52, 49, 49, 48; 89), H {1, 45, 63} 

[0, 3, 4, 6, 9, 10, 11, 12, 18, 19, 20, 24, 31, 36, 43, 48, 50, 60],  [0, 1, 2, 3, 5, 9, 10, 16, 19, 20, 23, 25, 41, 46, 55, 57, 62],  

[1, 2, 4, 6, 9, 10, 15, 19, 20, 24, 31, 36, 38, 46, 48, 57]; 

[0, 3, 5, 8, 11, 12, 13, 15, 18, 20, 30, 31, 41, 43, 46, 53, 55, 57],  [0, 1, 2, 3, 5, 8, 11, 12, 13, 16, 29, 31, 38, 41, 48, 50, 57],  

[3, 6, 8, 10, 18, 20, 23, 24, 25, 29, 41, 48, 55, 57, 60, 62]; 

[0, 1, 2, 3, 6, 9, 10, 12, 15, 18, 24, 25, 36, 41, 43, 48, 53, 57], [0, 1, 3, 6, 8, 9, 11, 12, 13, 18, 23, 29, 31, 36, 41, 43, 57],  

[1, 3, 9, 11, 13, 16, 18, 29, 30, 31, 43, 46, 50, 53, 62, 67]

(151; 71, 71, 71, 66; 128), H {1, 8, 19, 59, 64} 

[0, 2, 5, 6, 7, 11, 15, 17, 23, 27, 30, 34, 37, 51, 68], [0, 1, 2, 3, 4, 14, 17, 23, 27, 28, 34, 47, 51, 68, 87],  

[0, 1, 2, 3, 4, 5, 7, 10, 29, 34, 46, 47, 51, 68]



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 4, 2018 5

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА

For the cases v 103 and v 109 we use again 
the subgroups H of order 3, namely {1, 46, 56}  Z* 103 

and {1, 45, 63}  Z*
109. For v 103 we found two 

non-equivalent propus difference families having 
the same parameter set and for v 109 we found 
three such families. In all six families the block X4 
is symmetric. 

For the case v 151 we use the subgroup of order 
five. Only one propus difference family was found. 
The symmetric block is X1.

Some New Balanced Optimal Binary 
Sequences 

In this section we list some balanced optimal 
binary sequences of lengths 49 and 61. They arose 
as a byproduct of our search for propus difference 
families. We say that a binary sequence of length v 
has three-level autocorrelation function if this func-
tion takes exactly three distinct values, including 
the value v at shift 0.

Up to a permutation of the kis, there are three fea-
sible propus parameter sets for the subgroup H {1, 
18, 30} of Z*

49. We discard the one with all ki 21 as it 
probably does not admit any propus difference fam-
ily, see [3]. In Table 2 we list five propus difference 
families for v 49 and a single family for v 61.

The block X2, of cardinality 24, in the first ex-
ample is

X2 {3, 5, 7, 8, 9, 13, 14, 15, 16, 21, 25, 28,  
29, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47}.

The values of the periodic autocorrelation func-
tion of the corresponding sequence X2, for the 
shifts in the range 0, 1, …, 24, are:

49, 1, –3, –3, 1, –3, 1, 1, –3, –3, 1, –3, –3, 1,  
–3, 1, –3, 1, 1, –3, 1, 1, 1, –3.

Thus the correlation values of X2 occupy just 
three levels 49, 1 and –3. In the terminology of [9, 

p. 144] (see also [11]) the sequence X2 is a balanced 
optimal binary sequence of length 49. Such se-
quences of lengths v 1 (mod 4) are listed there on 
the same page for v  45. Our sequence X2 extends 
that list one step further. The meaning of the word 
‘balanced’ in this context is that the sum of the se-
quence is 1 or –1.

The sequences X2 in the second and third exam-
ple also have only 3 correlation values but this time 
these values are 49, 1 and –7 and so they are not 
optimal.

The block X2 in the fourth example

X2 {0, 1, 6, 7, 9, 10, 12, 14, 15, 16, 17, 18,  
20, 25, 28, 29, 30, 32, 33, 37, 39, 43}

has cardinality 22. Consequently, its binary 
sequence is not balanced. The correlation values of 
the sequence X2, for the shifts in the range 0, 1, …, 
24 are:

49, 1, 1, 1, 1, 1, 1, –3, 1, –3, 1, 1, –3, 1, –3,  
–3, 1, –3, 1, 1, –3, –3, 1, 1, –3.

Thus the correlation values of X2 occupy only 
three levels, 49, 1 and –3. Hence, this sequence is 
optimal but not balanced. The same is true for the 
fifth example.

The block X2 in the last example

X2 {1, 2, 3, 9, 12, 13, 15, 19, 22, 26, 27, 28,  
31, 33, 34, 35, 36, 37, 39, 41, 42, 45, 46, 47,  

49, 54, 56, 57, 58, 59}

has cardinality 30 and so its binary sequence X2 
is balanced. The correlation values of the sequence 
X2, for the shifts in the range 0, 1, …, 30 are:

61, 1, –3, –3, –3, –3, 1, 1, 1, –3, 1, –3, 1, 1, 1, 1,
–3, 1,1, –3, –3, –3, –3, 1, 1, –3, –3, 1, –3, –3, 1.

Hence, X2 is a balanced optimal binary sequence 
of length 61.

 Table 2. Three-level autocorrelation functions from propus difference families

(49; 22, 24, 24, 18; 39), H {1, 18, 30} 

[0, 1, 6, 7, 8, 9, 13, 16], [3, 7, 8, 9, 13, 16, 21, 29], [3, 6, 8, 12, 16, 29]; 

[0, 2, 7, 8, 13, 16, 19, 26], [2, 6, 9, 12, 16, 24, 26, 29], [1, 3, 7, 8, 19, 21]; 

[0, 1, 3, 4, 12, 13, 16, 24], [1, 6, 8, 13, 16, 19, 24, 29], [1, 4, 6, 16, 19, 26]

(49; 22, 22, 22, 19; 36), H {1, 18, 30} 

[0, 4, 6, 7, 9, 13, 19, 26], [0, 1, 6, 7, 9, 12, 16, 29], [0, 1, 6, 7, 16, 19, 21]; 

[0, 3, 4, 6, 7, 12, 19, 29], [0, 1, 2, 4, 7, 8, 13, 19], [0, 1, 3, 7, 8, 19, 21]

(61; 25, 30, 30, 25; 49), H {1, 13, 47} 

[0, 6, 8, 11, 16, 18, 23, 32, 36], [1, 2, 3, 9, 12, 22, 27, 28, 31, 36], 

[0, 4, 7, 8, 9, 11, 16, 27, 28]
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 Table 3. Propus difference families with v  1 (mod 6) a prime

(7; 3, 3, 3, 1; 3), H {1, 2, 4} 

[3], [3], [0]

(13; 6, 6, 6, 3; 8), H {1, 3, 9} 

[1, 4], [4, 7], [4]

(13; 6, 4, 4, 6; 7), H {1, 3, 9} 

[2, 7], [0, 4], [1, 7]

(19; 7, 9, 9, 6; 12), H {1, 7, 11} 

[0, 4, 10], [2, 4, 5], [1, 10]; [0, 1, 8], [1, 4, 10], [1, 8]

(19; 9, 7, 7, 7; 11), H {1, 7, 11} 

[2, 4, 8], [0, 5, 10], [0, 1, 8]

(31; 15, 15, 15, 10; 24), H {1, 2, 4, 8, 16} 

[3, 7, 15], [1, 3, 15], [1, 15]

(31; 15, 12, 12, 13; 21), H {1, 5, 25} 

[1, 2, 4, 8, 12], [2, 4, 8, 11], [0, 2, 4, 11, 12]

(31; 13, 13, 13, 12; 20), H {1, 5, 25} 

[0, 1, 2, 6, 12], [0, 2, 6, 8, 11], [2, 4, 12, 16]; 

[0, 2, 4, 11, 17], [0, 3, 8, 11, 17], [1, 4, 6, 11]

(37; 18, 15, 15, 15; 26), H {1, 10, 26} 

[2, 3, 5, 7, 17, 18], [1, 3, 7, 17, 21], [6, 7, 14, 17, 21]

(37; 16, 18, 18, 13; 28), H {1, 10, 26} 

[0, 1, 7, 14, 17, 21], [1, 2, 6, 9, 14, 21], [0, 1, 2, 11, 17]

(43; 21, 21, 21, 15; 35), H {1, 4, 11, 16, 21, 35, 41} 

[6, 7, 9], [1, 6, 9], [0, 3, 6]

(43; 19, 18, 18, 18; 30), H {1, 6, 36} 

[0, 2, 4, 9, 14, 19, 20], [2, 3, 10, 13, 20, 26],  

[3, 4, 10, 13, 20, 21];

[0, 5, 7, 9, 10, 20, 21], [1, 3, 4, 10, 14, 21], [1, 3, 5, 7, 13, 21]

(43; 18, 21, 21, 16; 33), H {1, 6, 36} 

[1, 5, 7, 10, 13, 26], [2, 3, 5, 13, 14, 20, 26],  

[0, 1, 7, 9, 19, 20]

(49; 22, 24, 24, 18; 39), H {1, 18, 30} 

[0, 1, 6, 7, 8, 9, 13, 16], [3, 7, 8, 9, 13, 16, 21, 29],  

[3, 6, 8, 12, 16, 29]; 

[0, 2, 7, 8, 13, 16, 19, 26], [2, 6, 9, 12, 16, 24, 26, 29],  

[1, 3, 7, 8, 19, 21]; 

[0, 1, 3, 4, 12, 13, 16, 24], [1, 6, 8, 13, 16, 19, 24, 29],  

[1, 4, 6, 16, 19, 26]

(49; 22, 22, 22, 19; 36), H {1, 18, 30} 

[0, 4, 6, 7, 9, 13, 19, 26], [0, 1, 6, 7, 9, 12, 16, 29],  

[0, 1, 6, 7, 16, 19, 21]; 

[0, 3, 4, 6, 7, 12, 19, 29], [0, 1, 2, 4, 7, 8, 13, 19],  

[0, 1, 3, 7, 8, 19, 21]

(61; 30, 26, 26, 26; 47), H {1, 9, 20, 34, 58} 

[2, 6, 8, 10, 23, 26], [0, 1, 4, 5, 6, 8], [0, 3, 5, 6, 10, 12]

(61; 30, 25, 25, 30; 49), H {1, 9, 20, 34, 58} 

[4, 5, 10, 12, 13, 26], [1, 5, 6, 8, 26], [2, 4, 10, 12, 13, 26]

(61; 30, 25, 25, 30; 49), H {1, 13, 47} 

[1, 4, 6, 8, 9, 11, 14, 18, 23, 32],  

[0, 6, 7, 8, 14, 22, 23, 27, 28], [1, 3, 4, 6, 7, 8, 9, 11, 28, 36]

(61; 25, 30, 30, 25; 49), H {1, 13, 47} 

[0, 3, 6, 7, 8, 18, 22, 23, 31],  

[1, 2, 9, 14, 16, 18, 22, 23, 31, 36],  

[0, 1, 8, 9, 18, 27, 28, 31, 36]

(61; 28, 28, 28, 24; 47), H {1, 13, 47} 

[0, 1, 3, 4, 14, 16, 18, 23, 31, 32],  

[0, 3, 4, 9, 14, 16, 18, 22, 28, 32]1,  

[2, 6, 8, 11, 18, 23, 28, 32]

(61; 28, 27, 27, 25; 49), H {1, 13, 47} 

[0, 1, 2, 4, 7, 8, 16, 28, 32, 36], [1, 2, 7, 8, 9, 12, 16, 27, 36], 

[0, 2, 7, 12, 16, 27, 28, 31, 36]

(73; 36, 36, 36, 28; 63), H {1, 8, 64} 

[3, 5, 6, 11, 12, 21, 25, 26, 27, 33, 35, 43],  

[3, 4, 9, 14, 17, 18, 21, 26, 34, 35, 42, 43],  

[0, 1, 7, 13, 18, 21, 25, 33, 35, 42]

(73; 36, 31, 31, 33; 58), H {1, 8, 64}

[3, 4, 5, 6, 13, 14, 25, 27, 33, 34, 36, 42],  

[0, 2, 3, 5, 9, 18, 21, 26, 27, 35, 42],  

[1, 5, 7, 11, 18, 21, 27, 33, 34, 42, 43]

(73; 31, 36, 36, 30; 60), H {1, 8, 64} 

[0, 2, 7, 11, 12, 13, 17, 18, 26, 35, 42],  

[3, 5, 6, 12, 14, 18, 21, 26, 27, 33, 34, 35],  

[1, 2, 5, 6, 9, 12, 26, 34, 36, 42] 

(73; 31, 34, 34, 31; 55), H {1, 8, 64} 

[0, 1, 3, 5, 7, 9, 12, 17, 27, 33, 35],  

[0, 1, 2, 5, 9, 11, 12, 18, 21, 27, 36, 43],  

[0, 1, 3, 9, 18, 21, 26, 27, 35, 36, 42]

(73; 31, 36, 36, 30; 60), H {1, 8, 64} 

[0, 1, 4, 14, 17, 21, 26, 34, 36, 42, 43],  

[2, 3, 4, 7, 12, 14, 25, 27, 35, 36, 42, 43],  

[1, 4, 9, 11, 12, 13, 26, 35, 36, 42]

(73; 34, 33, 33, 30; 57), H {1, 8, 64} 

[0, 2, 3, 4, 6, 7, 9, 12, 13, 26, 27, 35], [1, 2, 5, 6, 7, 12, 17, 

21, 25, 26, 35], [2, 4, 6, 7, 11, 17, 18, 25, 26, 36]

(157; 78, 78, 78, 66; 143), H {1, 14, 16, 39, 46, 67, 75, 93, 

99, 101, 108, 130, 153}

[2, 3, 7, 9, 11, 13], [3, 5, 6, 11, 13, 15], [0, 3, 4, 5, 7, 13]

(307; 153, 153, 153, 136; 288), H {1, 9, 81, 115, 114, 105, 

24, 216, 102, 304, 280, 64, 269, 272, 299, 235, 273}

[2, 3, 4, 5, 6, 7, 14, 20, 30], [4, 5, 7, 12, 14, 28, 30, 31, 49], 

[2, 6, 7, 10, 21, 28, 30, 31]

1The binary sequence of this block has only four 
correlation values 61, 1, –3, and –11.
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Propus Difference Families 

In Table 3 we list propus difference families that 
we constructed by using the method of orbits. We 
only consider the cases where the subgroup H is non-
trivial. If each of the ki is the size of an H-invariant 
subset of Zv, then we say that the parameter set is 
H-feasible (or just feasible when H is known from 
the context). The case v 67 is omitted as it was 
treated separately in section 3.

We can permute the Xi and replace any Xi with 
its complement. When listing the propus difference 
families it is convenient to introduce some addition-
al restrictions on the propus parameter sets (1). We 
shall assume that each ki  v /2, k2 k3 and that 
k1  k4.

In Table 3 below we first record the propus pa-
rameter set, and the subgroup H of the multiplica-
tive group of the finite field Zv. Each of the three 
blocks X1, X2 X3, X4 is a union of orbits of H act-
ing on the additive group of Zv. In order to speci-
fy which orbits constitute a block we just list the 
representatives of these orbits. As representative 
we choose the smallest integer in the orbit. For 
instance, 0 is the unique representative of the tri- 
vial orbit {0}, and 1 is the representative of the or- 
bit H.

When two or more difference families are listed 
for the same parameter set, they are separated by a 
semicolon. When k1 > k4 we have tried to find pro-
pus difference families with X1 symmetric as well 
as those with X4 symmetric. However, in some cases 
we did not succeed.

The last two families have the same parameter 
sets as the corresponding Turyn propus families 
of the same lengths but they are not equivalent to 
them.
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Симметричные матрицы Адамара порядков 268, 412, 436 и 604
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Цель: исследовать более полно, чем это было известно ранее, выделенные семейства симметричных матриц Адамара малых 
порядков, используя так называемую пропус-конструкцию. Методы: метод орбит поиска трех циклических блоков, составляю-
щих матрицу Адамара типа пропус. Этот метод ускоряет классический поиск требуемых последовательностей с предварительной 
сортировкой их на непересекающиеся сомножества потенциальных решений с помощью хэш-функции. Результаты: основной ре-
зультат состоит в том, что впервые удалось сконструировать симметричные матрицы Адамара порядков 268, 412, 436 и 604. Необ-
ходимые разностные семейства сконструированы посредством выделения тех из них, которые содержат заданный нетривиальный 
множитель. Получено и классифицировано в таблицы обширное множество новых симметричных матриц Адамара, отличаю-
щихся между собой индивидуальными наборами параметров. Практическое значение: матрицы Адамара имеют непосредствен-
ное практическое значение для задач помехоустойчивого кодирования, сжатия и маскирования видеоинформации. Программное 
обеспечение нахождения симметричных матриц Адамара и библиотека найденных матриц используются в математической сети 
Интернет с исполняемыми онлайн алгоритмами. 

Ключевые слова — пропус-конструкция, разностные семейства, симметричные матрицы Адамара, оптимальные бинарные 
последовательности.
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