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Introduction: The problem of calculating the random coding exponent in the full range of code rates for finite-state 
channels is not completely solved and remains relevant. It seems that a good approximation to the optimal random coding 
exponent can be found by using a mismatched decoding function. Purpose: 
optimal one. Results: A new random coding bound is presented for a wide class of channels, including those for which the 
complete random coding exponent was not previously derived. The derivation of this bound is based on the use of a mis-

and the length B of the segment of the channel input sequence. The values of W and B greatly influence the values of the 
random coding exponent and the complexity of its calculation.
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Introduction

According to the random coding theorem [1] 
there exists a block code of length N and rate R, 
R N–1 log2M, M is the number of code words, 
such that the error probability of the maximum 
likelihood (ML) decoding is upper bounded as  
Pe < exp2(–N(Er(R) – o(N))), where exp2 2x, and 
Er(R) the exponent of the random coding bound. 
The function Er(R) > 0, if R < C, where С is the 
channel capacity. Another quantity characteri- 
zing the channel is the computational cut-off rate 
R0. The value R0 can be found from the function 
Er(R) as R0 Er(0). The values of Er(R) and R0 are 
calculated by averaging over a code ensemble and 
optimizing over a distribution on this ensemble. 
Generally, the exact computation of the function 
Er(R) is a difficult problem which can only be solved 
for some channel models. However, sometimes it is 
possible to obtain a bound for the function Er(R) for 
the decoding algorithm used a decoding function  
which differs from the ML decoding function (mis-
matched decoding; see, for example, [2–6] and ref-
erences wherein). In this case it is possible to obtain 
near-exact characteristics of the transmission reli-
ability. This approach is used in this paper.

For simplicity, we assume that the distribution 
on the code ensemble corresponds to the independ-
ent uniformly distributed (i.u.d.) code symbols. In 
this case we have the function Er

*(R; )  Er(R) and 
quantities R0

*( )  R0, С*( )  C (the asterisk in the 

superscript hereafter means that the code symbols 
are chosen as i. u. d. random variables). 

We assume that the channel model is given by 
the well known finite-state model [1]. For this mod-
el we present the derivation of the random coding 
exponent for the decoding function which is in the 
form of the product of the a posteriori probabilities 
(APP) of segments of the channel input sequence 
relative to the overlapped segments of the channel 
output sequence. One of the main challenges of this 
study was the choice of a suitable decoding function 
enabling a good final result. With the usage of such 
a decoding function the problem can be reduced 
to the evaluation of the logarithm of a bilinear 
form defined by a power of a nonnegative matrix. 
Then we used a known technique based on the us-
age of the Perron — Frobenius theorem to obtain 
the final result. Using this approach a new subop-
timal random coding bound which is applicable to  
a wide class of the channel with memory has been 
obtained. The discrete-time model with intersym-
bol interference, additive noise and fixed inputs 
is one of the important examples of such chan- 
nels [7]. 

Under these or similar conditions the maximum 
achievable information rate for the finite-state 
channel model has been estimated in [8–10] using a 
simulation-based algorithm. Bounds on the compu-
tational cut-off rate R0

* for the finite-state channel 
models were studied, particularly, in [11–16]. Some 
of the very first random coding bounds for chan-
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nels with memory were published in [17, 18]. In [18] 
random coding bounds for the discrete additive fi-
nite-state channel were obtained for mismatched 
decoding different from the ML decoding function, 
and that publication gave a basic idea for this pa-
per. The main known results for the random coding 
bounds for discrete-time channels with time-invar-
iant intersymbol interference (ISI) consist in evalu-
ation the value R0

* for ML decoding and i. u. d. code 
symbols. In [11], this task was solved for a particu-
lar case of the ISI channel with the length of inter-
ference equal to 1. More general cases of ISI were 
studied in [12–16]. Therefore, one may say that for 
channels with ISI it is known how to calculate the 
value of R0 (the technique based on the Perron — 
Frobenius theorem) and the value of maximum 
achievable information rate С* (simulation-based 
algorithm [9]). Taking these values into account let 
us introduce function * ( ),  as 

 

* *
*

*

, ,
( )

, .

 
 (1)

Note that the function * ( )  in is not defined 
for rates in the range R0

*
 < R < C*. Let us denote 

by Er
*(R) the random coding exponent obtained for 

the discrete-time ISI channel, ML decoding, and 
a code ensemble with i. u. d. code symbols. Then, 
for the values of R  , R0

*] {C*} the inequality 
* *( ) ( )  is valid. Clearly, * *( ) ( )  in 

the interval 0  R  Rcr, where Rcr is the critical 
rate, and in the point R C*. In this paper we in-
troduce a decoding function  with partial overlap-
ping which depends on two integer parameters W 
and B, W  B  0. With the use of this function we 
obtain the random coding exponent Er

*
 (R; ) which 

can be a good approximation of the function Er
*

 (R) 
if W, B  even for the those values of R for which 
the function * ( )  is not defined.

This paper is the first part of a general study, 
consisting of two parts, published separately. In the 
second part of the work we intend to present a num-
ber of examples and their discussion. 

Notation and Basic Equations 

Let py|x(y|x) be the transition probability of the 
discrete-time channel; for the continuous-output 
channel it is instead a probability density function 
(p.d.f.); x XN, where X be a discrete input chan-
nel alphabet and qx | X | < ; y  YN, where Y is 
the channel output alphabet and N is the length 
of a block code. For the continuous channel output 

.  The set Y may also represent a quantized 
version of the continuous channel outputs, i. e. 
| Y | q. In this study consider this case.

The notation py|x(y|x) will mainly be used when 
vectors x and y have the equal lengths, e. g., N. For 
subvectors, or segments of vectors, x and y the no-
tation x and y is used. The difference between them 
is noted due to the use of ordinary and sans serif 
font. This notation is context-dependent; in par-
ticular, the length of x and/or y can differ in the 
various contexts. 

To indicate a segment of an arbitrary vector z 
we use the notation (max( , )) (max( , ) )( , , 

(min( , ))..., ), where L is length of the vector z. 
Let px(x) be a distribution on the code ensemble, 

where x (x(1), x(2), …, x(N)), and px(x(n)) be a one-di-
mensional distribution giving the distribution of a 
single code symbol, n 1, 2, …, N. 

We assume the decoding rule is given by 
ˆ argmax ( ; ),  where (y; x) is a real-valued 

positive decoding function, and the maximization 
is performed over all code words.

Using standard techniques [1] one can obtain 
the random coding bound Pe < exp2(–NEr(N, R, )), 
where Pe is the block error probability; Er(N, R, ) 
is the generalized exponent of the random coding 
bound defined as 

( , , ) max max max( ( , , , , ) ),

where ,  are the optimization parameters; R is the 
code rate, and (see also [5])

 

|

( , , , , )

log ( ) ( | ) ( ; )

( ) ( ; ) .
 

 (2)

Hereafter log(·) denotes the binary logarithm. 
The expression is an approximation to the exponent 
of random coding for a channel with a continuous 
output and the accuracy of this approximation in-
creases with increasing number of quantization  
levels q.

Assigning (y; x) py|x (y|x) corresponds to ML 
decoding; in this case the optimal value of the pa-
rameter  is equal to 1/(1 ), and we get clas-
sical expression for the random coding exponent [1] 

|( , , ) ( , )

max max ( , , ) ,

where

|( , , ) log ( ) ( | ) .
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As N , there is an asymptotic generalized ran-
dom coding bound Pe < exp2(–N(Er(R; ) – o(N))), 
where 

( ; ) max max max( ( , , , ) ,

and

( , , , ) lim ( , , , , ).

If (y; x) py|x(y|x), then again the optimal value 
of the parameter  is 1/(1 ) and we get asymp-
totic expression for the asymptotic random coding 
exponent for ML decoding [1] 

|( , ) ( ) max max( ( , ) ),

where E0( , px) lim N  E0(N, , px). It is known 
[1] that Er(R) > 0, if R < C, where C is the chan-
nel capacity, which can be found from the function  
E0( , px) as 

( , )
max .

We assume that the code ensemble distribution 

is given as ( )( ) ( ),  x XN, and  

px(x) 1/qx, x  X, i. e. it corresponds to the i. u. d. 
channel input. This assumption leads to loss of opti-
mality but simplifies further consideration. Under 
these assumptions one can derive the suboptimal 
exponent of the random coding bound in asymptotic 
form

 

* *( ; ) max max ( , , ) ,
 

 (3)

where

 

*

|

( , , ) ( )log

lim log ( | ) ( ; )

( ; ) .
 

 (4)

By analogy with the channel capacity C let us de-
fine the lower bound on maximum achievable code 
rate C*( ) as 

 

*
*

max ( , , )
( ) .

 

 (5)

The value * *( ) ( )  gives a 

bound on the cut-off rate max ( , );  ev-

idently the inequalities R0
*( )  R0

*  R0 are valid. 

Similarly we can write the equations for func-
tion Er

*(N, R) for the ML decoding as 

 

* *( , ) max ( , ) ,
 

 (6)

where

 

*

|

( , ) ( )log

log ( | ) ,

 

 (7)

and the asymptotic random coding exponent 
as Er

*(R) limN Er
*(N, R) with bound on the 

maximum achievable information rate

 * *
max( ) ( , ) / ,  *

max( ) .

Channel Model and Decoding Function

Let the channel transition probabilities be giv-

en as | ( | ) ( , , ) / ( ),  where 

s (s(0), s(1), …, s(n), …) is the sequence of the channel 
states, s(n) S, S is a set of the channel states and 
|S| < , pyxs(y, x, s) is the simultaneous probability 
of the vectors y, x and s. Note that

|

|

| |

( , , )
( | )

( )
( | , ) ( , )

( | , ) ( | ),
( )

where py|xs(y|x, s) is the conditional probability of 
the channel output for the fixed vectors x and s, and 
ps|x(x|s) is a conditional probability of the channel 
states for the given input vector x. 

Let us assume that the channel is a probabilistic 
finite-state machine, i. e.

( ) ( ) ( )
| |( | , ) ( | , );

( ) ( ) ( ) ( )
| |( | ) ( ) ( | , ),

where ps(·) is an unconditional (stationary) distribu-
tion on the set of channel states; ps|xs(s(n)|x(n), s(n–1)) 
is the conditional channel state transition probabil-
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ity. In addition, we assume that the input channel 
symbol x(n) and the current channel state s(n–1) are 
independent. Such a model is quite general enough 
and has been widely used (see, for example, [8, 9] 
and references wherein). An explanatory illustra-
tion is given in Fig. 1 [9].

Some particular cases of this model are: 
1. State transitions not depending on the input 

symbol (channel with freely evolving states) [9], i. e. 
ps|xs(s(n)| x(n) s(n–1)) ps|s(s(n)|s(n–1)). The Gilbert — 
Elliot [19, 20] channel is a specific example of such 
a model.

2. Deterministic state transitions (deterministic 
finite state machine). In this case the state transi-
tion is given as 

( )
( ) ( )( ) ( ) ( )

|
, ;( | , )
,

The ISI channel is an example of a channel in 
this class. 

The probabilities py|x(y | x) can be represented as

( ) ( ) ( )

( )
|

( ) ( ) ( ) ( ) ( ) ( )
| |

( | ) ... ( )

( | , ) ( | , ) ,

or in the following form of matrix product proved 
similarly to the derivation of [1, eq. (5.9.39)]: 

 

( ) ( )
| ( | ) ( | ) ,

 

 (8)

where 

 | |( | ) [ ( | , ) ( | , )]
 
 (9)

is a matrix of size |S| |S|; ps [ps(1), …, ps(|S|)] is the 
vector of the unconditional state probabilities at 
n 0, and 1 (1, …, 1) is vector of 1’s of dimensions 
1 |S|.

Let us choose the decoding function as the prod-
uct of APP of input segments of length 2B 1 for 
fixed output segments of length 2W 1, W  B  0 
are integer parameters,

( )
( ) ( )
( ) ( )( ; ) Pr | ,

and

 
( ) ( ) / ( ) .

 
 (10)

The value N(B), defined in (10), gives the num-
ber of the code block segments, or subblocks, of the 
length 2B 1. As will be seen in the following, for 
such a decoding function, it is possible to obtain  
a good final result for the suboptimal random cod-
ing exponent.

Let us denote 

 
( ) ( ) .

 
 (11)

This value gives the position of the central ele-
ment of the nth code block segment of length 2B 1. 

For equiprobable segments
( )
( )  we can write the 

expression for the decoding function (y; x) in an-
other equivalent form 

 

( )
( ) ( )

| ( ) ( )( ; ) | ,y x
 

 (12)

where py|x(·|·) is the conditional probability for seg-
ments of different, in general, lengths 2W 1 and 
2B 1. Note, that in general py|x(·|·)  py|x(·|·). The dif-
ference in these values is emphasized by their in-
dex notation typed in Roman bold font and sans ser-
if bold font respectively. 

The segments 
( )
( )  of length 2B 1 of the 

input vector x do not overlap, but the segments 
( )
( )  

of length 2W 1 overlap on a segment of 

length 2(W – B). The illustration for B 2, W 4, 
2B 1 5, 2W 1 9 is shown in Fig. 2. 

Let us note some specific cases of the decoding 
function (12). 

Case 1. If W B 0, then N(B) N, and the de-
coding function is

( ) ( )
| |( ; ) | | ,

i. e. it is matched with the memoryless channel. 

x
(1) x

(2)
x

(N)

y(1) y(2) y
(N)

s(0) s(1) s(N–1)

 Fig. 1. Finite-state channel transitions 

segments of vector y of length 
2W + 1  9

segments of vector x of length 
2B + 1  5

 Fig. 2. Positions of the subblocks in product (12)
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Case 2. If B 0 and W  1, then N(B) N, and the 
decoding function is 

( )
|

( )
|

( ; ) |

| ,

y

y

and such decoding is equivalent to APP symbol 
decoding in a window of the length 2W 1, and it is 
similar to windowed version of the Bahl — Cocke — 
Jelinek — Raviv (BCJR) algorithm [21], (see e. g. 
[22]).

Case 3. If W B N, then N(B) 1, and the de-
coding function is 

|

| |

( ; ) |

| ( | ),

y x

y x

and corresponds to the ML decoding. 
It can be shown (see Appendix A) that the prob-

abilities py|x(y|x) on the right-hand side of can be 
found for any y  Y2W 1 and x  X2B 1 as

 

( ) ( )
|

( ) ( ) ( )

( | ) ( )

( | ) ( ) ,

y x y x y

y x y
 

 (13)

where y(l), x(l) are components of the vectors y and 
x respectively; P(y|x) is |S| |S| matrix defined by 
equation (9), and P(y) is matrix defined as the  
sum 

 

( ) ( | ).
 

 (14)

Suboptimal Random Coding Exponent

Consider the sums in the right-hand part of the 
equation (4). It can be shown (see Appendix B) that

( )

( )
( ) ( )

( ; )

; ,

where

|( ; ) ( | ) , ,y x
x

y y x y
 

n1 is the least positive integer such that k(n1) – 
– W  1, and n2 is the greatest integer such that, 

( ) ,  or according to the definition (11) 

/ ( ) , ( ) / ( ) .
 
(15)

We denote by a(·) and b(·) the non-essential (not 
affecting the exponent of random coding) positive 
factors. It is also shown in Appendix В that 

( )
|

( )
( ) ( )

( | ) ( ; )

( ; ) ,

where D2(y; ) is |S| |S| matrix defined as 

 

| |

( ; )

| ( | ) ,y x y x
x

y

y x y x
 

 (16)

y  Y2W 1; A(·) и B(·) are inessential nonnegative 
matrix multipliers of dimension |S| |S|, and 

( ) ( )
| ( | ) ( | ), , ,y x y x y xy x

 

(17)

where the matrices P(·|·) are defined by the equation 

(9). Note, that y  in the right-hand part of (16) 

is the middle part of the vector y having length 2B 1. 

Using these notations we get from (4) that 

* ( , , ) ( )log  

 

( )

( )
( ) ( )

lim log

; , ,

  

(18)

where

( )( ) ( ) ( ), ;y y y y
 

 
( )( ) ( ) ( ) , ;y y y y

 
 (19)

 
( ; , ) ( ; ) ( ; ), .y y y y

 
 (20)

In general (see Appendix C), the sum over y on 
the right-hand side of (16) can be written in the form 

 

( )
( ) ; , ( , ) ,

 

 (21)
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where 

 

( )

( ) ( ) ( )

( , ) [ ( , )]

( , ) ( , )

( , ) ( , )
 

 

(22)

is a square block matrix of order |S|q2(W–B) built 
of he blocks Kij( , ) of dimension |S| |S| defined  
as 

 
( )

( ; , ), ;
( , ) ( ; , ),

y

y
y

 

 
(23)

for i, j 1, …, q2(W–B). The matrix D(y; , ) in equations 
(21) and (23) is defined in (20). The correspondence 
of the indices i, j and the vector y in the expression 

(23) is given as ( )y  and .y  In other 

words, the components of the vectors ( )y  and 

y  are the digits in q-ary representation of 

the indices i and j respectively. 

The matrices F and G on the right-hand side of 
(21) are nonnegative matrix multipliers of dimen-
sion |S| |S|q2(W–B) and |S|q2(W–B) |S|.

With these definitions equation (18) can be re-
written as follows

 

* ( , , ) ( )log

lim log ( , ) ,
 
 (24)

where n1, n2 are defined in equations (15) and 
f psG; g G1T are inessential nonnegative vec-
tors. In what follows we use the following assertion. 

Corollary from the Perron — Frobenius the-
orem [1, 23]. Let A be a nonnegative irreducible 
square matrix, a and b be nonnegative vectors of 
the corresponding dimensions, then 

lim log log ( ),

where r(A) is maximum eigenvalue (spectral radius) 
of the matrix A.

Using this corollary and the definitions in (15) 
we get from the equation (24) that, if the matrix 
K( , ) is irreducible, then 

 

* ( , , ) ( )log

( ) log ( ( , )),
 
 (25)

where r(K( , )) is maximum eigenvalue (spectral 
radius) of the matrix K( , ). The similar approach 
has been used many times in early publications such 
as [1, 17, 18], and later, for example, in [12–16]. 

Let us consider the conditions for matrix K( , ), 
defined in (22), to be irreducible. Obviously for the 
matrix K( , ) to be irreducible it is sufficient that 
each of its blocks Kij( , ) is irreducible. Matrices 
Kij( , ) defined by the equation (23) are linear com-
binations of the matrices Py|x(y|x) [see (16) and (17)]. 
Hence, for irreducibility of the matrix Kij( , ) it is 
sufficient that the matrices in (17) are irreducible. 
This condition is satisfied if the matrices (9) are ir-
reducible. Irreducibility of the matrices (9) means 
that any channel state is reachable from any other 
state over a finite number of steps when receiving 
independent, equally distributed symbols to the 
channel input. Below we assume that the matrices 
(9) in are irreducible for any x and y.

After substitution (25) into (3) we have the fol-
lowing theorem. 

Тheorem. Let channel be specified by conditional 
probabilities (8), where the matrices (9) are irre-
ducible, and let the decoding function  be given 
by equation (12) with integer parameters W and B, 
where W  B  0. Then the achievable random coding  
exponent Er

*(R; ) for the code ensemble with i. u. d. 
code symbols is 

* *( ; ) max ( , ) ,

where * *( , ) max ( , , ) ( )log  

( ) log min ( , ) ,  and r(K( , )) is 

the maximum eigenvalue (spectral radius) of ma-
trix K( , ), given in equation (22). 

Conclusion

In this paper representing the first part of the 
general study we built a random coding bound ap-
plicable to a wide class of channels with memory de-
fined as probabilistic finite-state machine. This class 
of the models describes many transmission channels 
important for theory and practice. Among them, we 
can highlight channel models with intersymbol in-
terference, which are widely used for description of 
data transmission and recording systems. To obtain 
the main result, an approach used mismatched de-
coding function is applied. The choice of decoding 
function was the main problem of this study. In the 
second part of the work we will give examples of cal-
culating the exponent of random coding for several 
models of channels with memory, their discussion 
and comparison of these results with known ones.
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Appendix A

Let us consider the computation of the prob-

abilities | |y x  for some k. The seg-

ment  can be represented as a concatenation 

, , .  Therefore, 

| || |

.

y x

For i. u. d. components of the vectors  

and 
 

the following equation is valid:

( ).  Hence,

 

|

( )
|

|

| .

y x
  

(A1)

Then, using the equation (8), we have

( ) ( )
| | ( | )

( ) ( ) ( ) ( )

( ) ( )

( | ) ( | )

( | )

and further

|

( ) ( ) ( )

( )

|

( ) ( | )

( ) ,

where ( ) ( | ).  Then using equation 

(A1) and notation (14) we obtain the expression (13) 
for k W 1.

Appendix B

To calculate the sum ( ; ) ,  let us repre-
sent the vector x as a sequence of N(B)

 
subvectors 

of length 2B 1 except perhaps the first and last 
segments,

 

( ) ( )
( ) ( )

( ) ( ( ) )
( ) ( ( ) )

, , ...,

, ..., ,
  

(B1)

where k(n) is defined in equation (11). Then from the 
equation (12), it follows that 

( ) ( )
| ( ) ( )( ; ) | ,y x  (B2)

where n1 is the smallest integer such that 
k(n1) – W  1, n2 is the greatest integer such that 
k(n2) W  N, and a1, b1 are positive multipliers de-
pending on initial and final segments of the vectors 
x and y. 

After a summation over i. u. d. and disjoint seg-
ments of the vector x, we have 

 

( )
( )( ; ) ( ) ; ( ),   (B3) 

where

|( ; ) ( | ) , ,y x
x

y y x y

and a( ), b( ) are positive multipliers obtained after 

summing the quantities  and  over the initial 
and final segments of the vector x. 

Let us now derive an expression for the sum 

| ( | ) ( ; ) .  In this case, we also rep-

resent the vector x as a sequence of subvectors of 
length 2B 1 except the first and last ones, which 
may have a different length [see equation (B1)]. 
Using equation (B1) one can rewrite the expression 

 

|

( ) ( )
| ( ) ( )

( | )

| ,y x
  

(B4)

where, as before, n1 is the least integer such that 
k(n1) – W  1, and n2 is the greatest integer such 
that k(n2) W  N; A1 и B1 nonnegative matrix 
multipliers of dimension |S| |S|, corresponding to 
the first and last segments of the vector x, and

( ) ( )
| ( | ) ( | ), , ,y x y x y xy x

 

(B5)
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where the matrices P(y(l)|x(l)) in the right-hand part 
of (B5) is defined by equation (9). 

Using expressions (B4) and (B2), we can write 

| ( | ) ( ; )

( ) ( )
| ( ) ( )

( ) ( )
| ( ) ( )

|

| .

y x

y x
 

Summing over i. u. d. and disjoint components 
of the vector x, we get 

 

|

( )
| ( )

( )
| ( )

( | ) ( ; )

|

| ,

y x
x

y x

x

x

  

(B6)

where A и B are inessential matrix multipliers ob-

tained after summation and  over 

the initial and final segments of the vector x re-
spectively. And finally it follows from (B6) that 

 

|

( )
( )

( | ) ( ; )

; ,
  

(B7)

where D2(y; ) is matrix |S| |S|, defined as 

 

|

|

( ; ) |

( | ) , ,

y x
x

y x

y x

y x y

y

 

 (B8)

and matrix | ( | )y x y x  is given by equation (B5). 

Appendix C

Consider two adjacent terms in the product on 
the left-hand side of (21)

( )( )
( ) ( )

( ) ( )
( ) ( )

; , ; ,

; , ... ; , .

They depend on two adjacent blocks 
( )
( )  

and 
( )
( ) .  The indices of the first block are 

n(2B 1) 1 – W, …, n(2B 1) 1 W, and indices 
of the second block are (n 1)(2B 1) 1 – W, …, 
(n 1)(2B 1) 1 W, i. e. the second set of indices 
is shifted right to 2B 1 positions. An intersec-
tion of the position numbers exists on an interval 
of length (2W 1) – (2B 1) 2(W – B). If W > B, 
then this intersection is not empty; an illustration 
is shown in Fig. С1, a. Since W  B, the case W B 
is also possible. In this case there is no intersec-
tion and the summing in over vector y is reduced to 

summing separate factors over segments 
( )
( ) .  

This case is simpler to analyze and hence omitted. 
The illustration is given in Fig. С1, b.

Consider the case that W > B. Let us introduce 
indices i, j 1, 2, …, q2(W–B) and and establish a one-
to-one correspondence between indices i, j and vec-

tors y  Y2W 1
 
as i  y1

2(W–B) и .y  Then we 

consider two cases: 1) the vectors y1
2(W–B) and y  

have common elements (see Fig. C1, a), and 2) the 

vectors y1
2(W–B) and y  have no common ele-

ments (see Fig. C2).
The first case takes place, if 2W 1 < 2

2(W – B), or if W  2B 1, because W is integer. 

2 1
2 2

W
B jy

2B + 1

2B + 1

2(W – B)2B + 1

2W + 1

2W + 1

a)

b)

2
1

( )W B iy

 Fig. C1. Layout of adjacent segments: a — intersec- 
tion of segments, W > B; b — disjoint segments, W B

2
1

( )W B iy
2 1
2 2

W
B jy

2(W – B)

2B + 1

2B + 1

2W + 1

 Fig. C2. Intersection of adjacent segments, 
2W < 4B 1
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The second case takes place if W < 2B 1. Since 

in the second case two blocks y1
2(W–B) and y  

have no common elements, it is possible to sum 
independently over elements with indices from 
2(W – B) 1 to 2B 1. Therefore, we can define the 
|S| |S| matrices Kij( , ) as 

 
( )

( ; , ), ;
( , ) ( ; , ), ,   (C1)

where y Y2W 1, ( )y  and .y
Also define a block matrix K( , ) [Kij( , )] of 

order |S|q2(W–B). Then the sum over y on right-hand 
side of (21) can be written as 

 

( ) ( )
( )

( )

; ,

( , ) ( , ) ,

 

 (C2) 

where matrices U(·) and V(·) are defined by equa-
tions (19), F is a block matrix of size |S| |S|q2(W–B), 
and G is a block matrix of size |S| q2(W–B) |S|. 

The matrices F and G on the right-hand side of 
(C2) do not affect the asymptotic expression for the 
random coding exponent, so the description of their 
structure is not given due to space savings. 
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Граница случайного кодирования для каналов с памятью — декодирующая функция с частичным перекрытием

Часть 1: Вывод основного выражения

Трофимов А. Н.а, канд. техн. наук, доцент, andrei.trofimov@vu.spb.ru
аСанкт-Петербургский государственный университет аэрокосмического приборостроения, Б. Морская ул., 67, 

Санкт-Петербург, 190000, РФ 

Введение: задача вычисления экспоненты случайного кодирования во всем диапазоне скоростей кода для каналов с конеч-
ным числом состояний не решена полностью и остается актуальной. Представляется, что хорошее приближение к оптимальной 
экспоненте случайного кодирования может быть найдено при использовании несогласованной декодирующей функции. Цель: 
построить экспоненту случайного кодирования, близкую к оптимальной. Результаты: представлена новая граница случайного 
кодирования, применимая для широкого класса каналов, в том числе для тех, для которых полная экспонента случайного ко-
дирования ранее не была построена. Вывод этой границы основан на использовании несогласованной декодирующей функции, 
которая зависит от двух параметров: длины сегмента выходной последовательности канала W и длины сегмента последователь-
ности на входе канала B. Величины W и B в существенной степени влияют на значения экспоненты случайного кодирования и на 
сложность ее вычисления.

Ключевые слова — граница случайного кодирования, канал с конечным числом состояний, несогласованное декодирование, 
теорема Перрона — Фробениуса.
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