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Introduction: The implementation of data storage process requires timely scaling of the infrastructure to accommodate the
data received for storage. Given the rapid accumulation of data, new models of storage capacity management are needed, which
should take into account the hierarchical structure of the data storage, various requirements for file storage and restrictions on
the storage media size. Purpose: To propose a model for timely scaling of the storage infrastructure based on predictive estimates
of the moment when the data storage media is fully filled. Results: A model of storage capacity management is presented, based
on the analysis of storage system state patterns. A pattern is a matrix each cell of which reflects the filling state of the storage
medium at an appropriate level in the hierarchical structure of the storage system. A matrix cell is characterized by the real, limit,
and maximum values of its carrier capacity. To solve the scaling problem for a data storage system means to predict the moments
when the limit capacity and maximum capacity of the data carrier are reached. The difference between the predictive estimates
is the time which the administrator has to connect extra media. It is proposed to calculate the values of the predictive estimates
programmatically, using machine learning methods. It is shown that when making a short-term prediction, machine learning
methods have lower accuracy than ARIMA, an integrated model of autoregression and moving average. However, when making
a long-term forecast, machine learning methods provide results commensurate with those from ARIMA. Practical relevance: The
proposed model is necessary for timely allocation of storage capacity for incoming data. The implementation of this model at the
storage input allows you to automate the process of connecting media, which helps prevent the loss of data entering the system.
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Introduction

Data storage is a service needed by companies,
governmental structures or individuals. Banks and
insurance companies are active users of this ser-
vice, as they keep all the primary documentation in
scanned format. National security structures also
have a high demand in data storage [1]. Urban in-
frastructure projects such as “Smart yard”, “Safe
city”, etc. assume real-time data storage with sub-
sequent archiving. The storage of unstructured
medical data is often regulated by law. Individual
users also contribute to the rapid growth of the data
amount, creating private “clouds” in order to store
their personal content.

The tendency of rapid data accumulation is re-
ferred to as “big data”. It is often characterized by
its “three Vs”:

Volume, i. e. physical amount of data;

Velocity, i. e. speed of the data growth;

Variety, i. e. the capability to process different
data types in the same time.

Big data is a trend in the modern stage of our
transition to a digital society. To organize data
storage, you need special infrastructure [2]. It can

be provided by a data storage system (DSS) which
is a software/hardware solution for recording the
data to be stored, secure storage of this data, and
reading it by user’s demand [3]. The total capacity
of a DSS, without going into details about the soft-
ware/hardware solution, is also called data storage
[4, 5].

A data storage is a complex control object which
must deal with two types of load: data coming in
real time, and data whose secure storage requires
timely procedures of archiving, backuping, etc.
[6—8]. Thus, the problem of big data is not the lack
of the storage space but the lack of adequate models
for controlling this space, in particular, its timely
extension [9, 10]. Currently, the solution for this
problem is not automated, being a part of the DSS
operator’s duties. Implementing such a model at the
input of a storage would allow us to automate the
process of linking up the storage media, making
sure the input data is not lost [11].

The results presented in this article are a con-
tinuation of the work [12]. The model proposed in
[12] allows you to make short-range forecasts about
events that require your DSS to be scaled. However,
data storage systems need mid- and long-range
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forecasts, as the implementation of scaling takes
time, including the time for purchasing, installing
and setting the equipment.

Description of the research object
and statement of the problem

A data storage system follows the principle of hi-
erarchical storage. Nowadays, at least three levels
are specified in the DSS architecture [13-15]:

—RAID (Redundant Array of Independent
Disks);

— automated libraries;

— long-term storage media.

Increasing the number of the levels is the prob-
lem of vertical scaling. Let us denote the number of
levels in a DSS as m.

Increasing the number of the volumes/carriers
at the ith level of a DSS is the problem of timely
horizontal scaling. Let us denote the number of vol-
umes/carriers in a DSS as n [16].

The state of a DSS can be formalized as a ma-
trix B of size m x n [17], whose elements are sets of
files with assigned parameters F ={t, f, A}, where ¢
is the time of guaranteed storage determined from
the file extension *.type; fis the file size; A is the fre-
quency of requests for the file. Parameters ¢ and f
are metadata analyzed at the DSS input. Parameter
A is dynamic; it determines the migration of files
over the DSS levels.

Each cell of the matrix B, in its turn, can be rep-
resented by its own characteristics (Fig. 1).

Thus, the problem of DSS scaling formulated in
[12] as a forecast problem (estimating the moment

of an event at which V. tends to Vj;,, and es-

tlim cur

timating the moment ¢_ .. of an event at which V.

tends to V. ) is still the same. But our goal is get-
ting mid- and long-range forecasts.

Let us call the DSS state specified by the matrix
B at the time moment ¢ a behavior pattern B(¢) [18,
19].

Periodic analysis of B(t) patterns allows you to
adjust the forecast estimations ¢;,, and ¢ .. . The
structure of the data storage scaling management

model is given in Fig. 2.

External environment

| Metadata analysis

C
B(t) lf——=——=== 1

| |

A ?An: d 1-? T |
ﬁbcl)};raiez | 0000 :
ongterm ey GED |
|

>  Forecast

v
_| Decision | |

B Fig. 2. Data storage scaling management model

|
|
|
|
|
|
|
|
|
|
|
|
I I
| l I | Data storage
|
|
|
|
|
|
|
|
|
|
|
|
|

Pattern |
| [t e | [Bo ] al
o | i) fmaxtin) 12 __L
5| ftin(t2) tnantta)| (B v
ol m—— — — — J 4+ — — —=/—=
o
e -1
|- i
~ | Comparison | :

|
|

Current filled Current allocated Real maximum
volume volume volume
Vclur Wim Vinax

L /| >

T N T

tlim " tmax
Time allotted for
scalling

B Fig. 1. Characteristics of a cell of the matrix B

The forecast model is adjusted automatically if
the deviation of the pattern parameters from the
forecast estimations becomes significant.

Proposed solution

In order to estimate the values of ¢; and ¢ ..,
let us use the following machine learning methods:

— Decision trees;

— Random forest;

— Feedforward neural network;

— Support vector machines.

Decision trees are the most popular method of
numerical forecasting in the case when the fore-
cast variable values are continuous. The method
is popular due to the tree structure, in which the
decision-making sequence is reduced to a number
of vertex transitions, which subsequently makes
model very comprehensible. The major shortcoming
of the method is that it often requires retraining,
which can lead to branchy trees and/or high class
bias.

Formally, a decision tree is a graph G =(V, E),
where V is a finite non-empty set of vertexes, i. e.
tree leaves; E is a finite non-empty set of vertex
pairs, i. e. tree branches. The branches contain var-
ious conditions, and the leaves contain their val-
ues. The main parameter of the method is the tree
depth, i. e. the distance from the root to the most
remote leaves. The model of a decision tree is built
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following two algorithms: induction and pruning.
Induction specifies the borders of a hierarchical
solution, based on the feature space x. Pruning re-
moves less informative structures from the tree,
preventing retraining. The conditions for splitting
tree vertices are formed with a feature chosen by a
greedy algorithm in order to reduce the cost func-
tion. In numerical prediction, this function is mean
squared error (MSE):

MsE=3(v, -V, ), M
i=1

whereV, isreal datain the ith point; Vl isapredicted
value in the i*h point; N is the sample size.

The decision tree G breaks all the feature space
into a certain number of non-overlapping subsets
{E{, ..., Ey}, and in each subset E]. produces a pre-
diction V;

N
mKB:ZW@ﬁE} 2
j=1

In the prediction problem to be solved, the tree
vertices are traffic amounts, and the branches are
the moments of time when the incoming traffic
amount is fixed.

Random forest is an ensemble of trees in which
each tree has its weight when obtaining the final
prediction estimation. The randomness is intro-
duced into the ensemble of trees at the induction
stage. The most common way of building an ensem-
ble of trees is called bagging (abbreviated bootstrap
aggregation). It is based on artificial creation of
several samples V ={V;, V,, ..., V;} from the train-
ing set, uniformly and with replacement. On each
sample, a decision tree G;, i=1, C is built. Bagging
is normally used in order to avoid retraining, i. e.
saving the training dataset indiscriminately. The
algorithm is characterized by two main parame-
ters: number of the trees and their depth.

In addition to bagging, you can randomly select
a subset of features in each vertex in order to make
the trees more independent. The final prediction is
chosen by averaging:

1 C
mWEFEZQ. 3)
i=1

Using neural networks for time series prediction
is based on the assumption that a regression prob-
lem can be replaced by a recognition problem. As a
matter of fact, a neural network cannot predict. It
can only recognize, in the current parameters of a
time series, a familiar situation, reproducing a re-
action to it as precisely as possible. Thus, the state-
ment of a prediction problem as applied to a neural
network can be formulated as follows: to find the

best approximation to a function defined by a finite
set of a training sample.

In time series prediction, a multilayer percep-
tron, i. e. a feedforward neural network can be use-
ful, as a feedback network uses short-term memory.

The inputs of a multilayer perceptron are fed
with parameters reflecting the function of the da-
ta stream ¢(¢) to the DSS, and the outputs are the
predicted values of ¢, and ¢, . This method was
dubbed “sliding windows”, as its implementation
requires two windows: the input window corre-
sponds to the values of the input layer of the neu-
ral network; the output window corresponds to the
expected values of its output layer. In the course of
a prediction, both these windows move along the
function ¢(¢) with a step which corresponds to the
time series interval. Like in all regression problems
solved by neural networks, supervised training
method is used.

Support vector machines solve the prediction
problem through classification, taking the initial
data vector to an n-dimensional space and search-
ing for (n — 1) dimensional hyperplane with a max-
imum Euclidean distance between the borders of
areas separating one class from another. The initial
data vector is a time series describing the amount
of traffic coming to the storage to be stored. In
fact, support vector machines solve an optimization
problem where the target function is maximizing
the Euclidean distance between the decision planes
or minimizing the average value of the MSE clas-
sifier. During the training, “volume-time” classes
of the function ¢(¢) are determined; and during the
prediction, the classes are revealed to which the fu-
ture values of ¢(¢) can be assigned, and the values
ti, @) and ¢ (#) are calculated.

Linear optimization assumes that a system of
equations is written as a scalar product; non-linear
optimization assumes that it is written as a non-lin-
ear kernel function. In this work, Gaussian radial
basis function is chosen.

Discussion of the results

To estimate the accuracy of a short-term predic-
tion, we used LTE traffic data for 6 days (August 20—
25, 2018) provided by MTS mobile operator in Saint-
Petersburg, Russia (Fig. 3). The time series consists
of 144 observations averaged by 1440 values of the
service amount V.

Since most machine learning methods are sen-
sitive to scaling, the data should be pre-processed,
using the procedures of data normalization if the
nominal features can be put into the range from 0
to 1, or standardization if each feature has a mean
value equal to 0 and dispersion equal to 1. In Fig. 4,
you can see standardized LTE traffic from Fig. 3.
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of autoregression and moving average. Fig. 6 shows
graphs demonstrating the difference between the
real traffic and predicted one obtained through
ARIMA. The results do not contradict the state-
ments that autoregression models are currently the
best tool for time series prediction.

For obtaining medium- and long-term predic-
tions, we need long records of traffic traces [20]. This

1
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£ h

B Fig. 4. Standardized LTE traffic by MTS

The short-term prediction was built for
August 25, 2018. Fig. 5, a—d contains graphs de-
monstrating the difference between the real traffic
and the predicted one, obtained through machine
learning. Table 1 contains the values of MSE from
which you can judge the prediction error, along with
the key parameters selected during the training.

In [12] it was shown to be possible to obtain
MSE = 0.04 by using ARIMA, an integrated model

B Table 1. MSE values and key parameters of machine
learning

Machine
learning MSE Key parameters
method
Decision 0.54 | Depth of the tree is 15
tree
Bagging, and randomly generated
Random 0.525 | subsets from the training set with
forest iy
repetitions
Support Gaussian kernel with radial basis
vector 0.41 .
. function
machines
Architecture (4) is a multilayer
perceptron with 3 hidden layers.
Neural The number of the hidden layers &
network 0.62 | i3 chosen experimentally:
lim A(k) —> min(MSE)
0<h<9
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B Fig.5. Real traffic (—) and traffic short-term prediction (---) through machine learning: a — decision tree; b — ran-
dom forest; ¢ — support vector machines; d — neural network
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B Fig. 6. Real traffic (—) and traffic prediction (---)
through ARIMA model

seemingly unsatisfiable demand was satisfied due
to the open publication of internet traffic data by a
Japanese MAWI research group, WIDE project. The
training set has 24-hour traces for September 05,
2018 and September 04, 2019, 48-hour traces for
September 01, 2007-November 01, 2007, 72-hour
routes for March 18—20, 2008, and 96-hour traces
for March 30, 2009 and February 01-04, 2009.

Figure 7, a—d contains graphs demonstrating
the difference between the real traffic and predict-
ed one obtained through machine learning.

The values of MSE in ARIMA model, as applied
to long records of traffic traces with medium- and
long-term predictions do not significantly change,
being equal to 0.035.

Table 2 shows the predicted values of #;;,, t, .. for
the storage at RAIDO, RAID3 and RAID5 levels with
the following parameters: capacity of one 2.5” SSD is
3840 Gbytes; number of the discs is 50; total capacity
is 192 Tbytes; time of switching between the discs at
RAID3 level is 1 minute for taking into account the
difference in performance between RAID3 and RAID5;
time given by the administrator for scaling is 9 hours.

After applying different machine learning
methods to the analysis and prediction of filling up
the storage, we can make the following conclusions:

1. In spite of the fact that ARIMA model shows
good results when its parameters are properly set
up, it should be noted that the parameters are cho-
sen through auto-correlation analysis which can
take an order of magnitude more time as compared
to machine learning.

2. There is no commonly accepted model for the
prediction of filling up a data-storage system in or-

B Table 2. Predicted values of the onset of time of the
maximum and real storage capacity

RAID Capacity, Efficient Him» tnax,

level Thytes capacity, Thytes | days days
RAIDO 192 192 14.27 | 14.57
RAID3 192 188.16 14.06 | 14.36
RAID5 192 188.16 13.98 | 14.28
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t, days t, days
B Fig. 7. Real traffic (—) and traffic long-term prediction (---) through machine learning: a — decision tree,

MSE = 0.047; b — random forest, MSE = 0.047; ¢ — support vector machines, MSE = 0.013; d — neural network,

MSE = 0.056
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der to make a decision about timely scaling of the
system. However, based on the obtained results, we
can recommend the following:

— ARIMA model for short-term predictions;

— machine learning models for long-tern predic-
tions.

3. Although any prediction is an extrapolation
of data, machine learning methods actually solve
an interpolation problem. This allows us to restore
the amounts of data written in the storage which
are not fixed in time.

Conclusion

The article discusses the importance of timely
scaling of a data storage system. A model of hori-

zontal scaling is proposed which presumes that the
number of volumes/carriers at any hierarchical
storage level is differentially increased.

Planning the scaling of storage capacity is based
on predicting the amount of the incoming data traf-
fic and the moment when the limit or maximum ca-
pacity of the storage medium is reached.

We have discussed various methods of machine
learning applied to the analysis and long-term pre-
diction of filling up a data storage system. The meth-
od of support vector machines provided predictive
estimates three times higher by MSE value than
those obtained through ARIMA which is currently
considered the best model for time series prediction.

The prediction of storage capacity scaling is nec-
essary for timely allotment of memory resources
and reduction of the incoming traffic loss.
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ITocTaHoBKa NMPOOJIEMBI: XPaHEHNE JaHHBIX TPeOyeT CBOEBPEMEHHOI'0 MAacCIITa0upOBaHUA MH(MPACTPYKTYPHI AJIA PasMelleHUd JaH-
HBIX, IIOCTYIIAIOMINX Ha XpaHeHue. C y4eTOM CTPEMUTEIHHOTO HAKOILJIEHUA JaHHBIX HEOOXOAMMBI HOBbIE MOJIEJIN YIIPABJIEHUA EMKOCTBIO
XPaHUJININA, KOTOPBIE HOJKHBI YUNTHIBATh MEPAPXUUECKYIO CTPYKTYPY XPaHUJININA TaHHBIX, padHble TPeOOBaHUS K XpaHeHU0 (ailioB
¥ orpaHWYeHUusA Ha 00beM HocuTeseil. Ilep ucciiefoBaHuA: IPEIJIOKUTHh MOJIeJIb CBOEBPEMEHHOI'0 MacIITabupoBaHua NHPPACTPYKTYPHI
XpaHeHUd JaHHBIX, OCHOBAHHYIO Ha IIPOTHO3HBIX OIlEHKAaX HACTYIJIEHUS TOI'O MOMEHTA, KOT/la 3all0JIHUTCA eMKOCTh HOCUTEJIeN NaHHBIX.
PesyasraThl: paspaboTaHa u MpuBefeHa MOJeJb YIPABJIEHUS eMKOCTHIO CUCTEeMbl XpaHEeHU JaHHBIX, OCHOBAaHHAs Ha aHaJIU3e IaTTep-
HOB COCTOSTHUS CUCTEeMbI XpaHeHus. IlaTTepH npeacTaBiisger co00il MaTPUILy, KasKaasa sueiika KOTOPOH OTPakaeT COCTOSTHUE 3all0JTHEeHU
HOCHTEJIA CUCTEMBI XPaHEHUA JaHHBIX HA COOTBETCTBYIOIIEM YPOBHE MePaAPXUYECKOU CTPYKTYPHI CUCTEMBI XpaHeHUA. Slueiika MaTPUIIB
XapaKTepus3yeTcs peaJbHbIM, IPe/eJbHbBIM U MAaKCUMAJIbHBIM 3HAUEHUAMY €MKOCTY HOCUTEJISA. 3a4aYa MacIITabMPOBAHUS CUCTEMBI XPa-
HEHUSA JaHHBIX 3aKJIOUAeTCs B IIPOTHO3HOU OIleHKE HACTYILJIEHUSA COOBITUI HOCTUIKEHUSA IPEJeIbHON eMKOCTH M MaKCUMAaJbHON eMKO-
CTU HOCUTENA JaHHBIX. PasHuIla Me)K/Ay IPOTHO3HBIMY OLIEHKAMU eCTh BPeMs, KOTOPOe BBIZEJIEHO afMUHUICTPATOPY AJA MOJKIIOUEHUA
JIOMIOJIHUTEIbHBIX HocuTeeil. IIpeyiosKeHO BhIYUC/IATh 3HAUEHUs IIPOTHO3HBIX OIlEHOK BPEeMEH! IIPOTrPAMMHBIM CIIOCO00OM, IPUMEHSS
METObI MALIMHHOTO 00yueHusi. [I0KasaHo, YTO IIPU MOCTPOEHUN KPATKOCPOYHOT'O IIPOTHO3a METO[bl MAIIIMHHOT'O 00yUYeHN A [IPOUTPLIBAIOT
B ToyHOCTH ARIMA — MHTErprpOBaHHOI MOJIEJIV aBTOPETPECCHUY U CKOJIB3AINET0 cpeqHero. OJHAKO TP IIOCTPOEHUHU JAOJITOCPOUHOTO IIPO-
THO3a MeTOJbl MAIMHHOTO O0yUeHNs HaJiu Pe3yJbTaThl, COU3MepPUMbIe ¢ TeMu, uTo obecneunBaeT ARIMA. IIpakTHyeckas 3HaYUMOCTb:
IpeAJIoKeHHAasT MOZeJIb YIIPABJIEHUS MAaCIITa0uPOBAHNEM CUCTEMbI XPAHEHU S JaHHBIX HE00XO0[UMa [JJIS CBOEBPEMEHHOTO BBIJEJICHUS M-
KOCTH AJIA IOCTYIIAIONINX Ha XPaHeHNe JaHHBIX. Peannsanusd 9Toi MOJe/Iu Ha BXO/le XPAaHUJINIIA II03BOJIAET aBTOMAaTU3UPOBATD IIPOIIECC
MOJKJIIOUEeHUS HOCUTEJIeH, UTO IIPeoTBPAaI[aeT IOTEPI0 BXOJAIINX B CUCTEMY JaHHBIX .

KaroueBsie c10Ba — cucTeMa XpaHEHUA JaHHBIX, HOCUTEJIN, MHOTOYPOBHEBOE XPaHEHNe JaHHBIX, XPAHUJINIIE JaHHbIX, MaCIITa0pO-
BaHUe XPAHUJININA, yIPAaBIeHE XPAHUINIIEM, IPOrHO3UPOBaHNUE TPEOYEeMOIl eMKOCTH XPaHEHU .
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YBAXXAEMbIE ABTOPbI!

Hayunsnie 6asb! ganubix, Braouas SCOPUS u Web of Science, o6pabaTsiBaioT JaHHBIE aBTO-
maTudecKku. C OQHOM CTOPOHBI, 9TO YCKOPAET IIPOIlece 00paboTKMU JaHHBIX, C APYTOM — Pasanyus
B TpaucauTepamnuu ®VO, HeTOUHbIE JaHHBIE 0 MecTe PaboThl, 00JIaCTH HAYUHOI'O 3HAHUS U T. [I.
MPUBOIAT K TOMY, UTO B 0a3aX OKa3bIBAeTCA HECKOJbKO aBTOPCKUX CTPAHMUIL AJIS OLHOTO U TOTO
JKe ueJIoBeKa. B pesysbTaTe A BCeX IO OTAEIbHOCTU CUUTAIOTCS WHAEKCHI IIUTUPOBAHUS, UTO
CHUIKAEeT PeUTUHT YUEHOrO.

Ons npentuduranuu aBTopoB B ceTsix Thomson Reuters mpoBoauT perucTpariuio ¢ IpucBoe-
HUeM YHUKaJbHOTO nHAeKca (ID) misa KasKaI0To 13 aBTOPOB HAYUHBIX IIYOJMKAIII.

IIpouenypa monyuenus ID GecniaTHa 1 OUeHBb IIPOCTA, €CTh BOSMOYKHOCTH IIPOBECTU PErucTpa-
muio Ha 12-TM A3bIKaX, BKJOUAA PYCCKUH (UTOOBI BHIOPATH A3BIK, KIUKHUTE HA 3eJIeHOe II0JIe
BBEPXY CIIpaBa Ha CTapTOBOM cTpaHuIile): https://orcid.org
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