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Introduction: Electroencephalograms contain information about the individual characteristics of the brain activities and the 
psychophysiological state of a subject. Purpose: To evaluate the identification potential of EEG, and to develop methods for the 
identification of users, their psychophysiological states and activities performed on a computer by their EEGs using convolutional 
neural networks. Results: The information content of EEG rhythms was assessed from the viewpoint of the possibility to identify 
a person and his/her state. A high accuracy of determining the identity (98.5–99.99% for 10 electrodes, 96.47% for two electrodes 
Fp1 and Fp2) with a low transit time (2–2.5 s) was achieved. A significant decrease in accuracy was detected if the person was in 
different psychophysiological states during the training and testing. In earlier studies, this aspect was not given enough attention. 
A method is proposed for increasing the robustness of personality recognition in altered psychophysiological states. An accuracy 
of 82–94% was achieved in recognizing states of alcohol intoxication, drowsiness or physical fatigue, and of 77.8–98.72% in rec-
ognizing the user’s activities (reading, typing or watching video). Practical relevance: The results can be applied in security and 
remote monitoring applications.

Keywords — deep learning, multilayer neural networks, biometrics, machine learning, feature extraction, electrical brain 
activity, psychophysiological state, pattern recognition, spectrograms.
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Introduction

Today, technologies of creating neurocomput-
er interfaces transmitting commands to devices 
contact-free are actively developing. The majority 
of the neurointerfaces are based on the registra-
tion and interpretation of electroencephalograms 
(EEG), which reflect the dynamics of changes in 
brain electrical activity over time. The identifi-
cation potential of electroencephalograms is ex-
tremely high — EEG analysis is used in tasks such 
as brain-computer interfaces [1], biometric iden-
tification and authentication [2], risky behavior 
identification [3], evaluation of a personal func-
tional (physical, mental, emotional) state [4]. The 
last group of tasks is of particular interest since 
timely detection of the fact that the subject (an em-
ployee, an operator, a driver, a student) is asleep 
or intoxicated will help avoid emergencies. These 
states are characterized by reduced performance 
and reactions, distracted attention [5]. It is also 
possible to conclude the brain state (sleep, waking 
up, relaxation/meditation, concentration while 
performing heavy intellectual tasks) by analyzing 
the EEG. It allows building a continuous process 

of identifying not only a subject [2] but a type of 
a task as well (at work, in gaming, during distant 
examinations, etc.). Such methods are in particu-
lar demand when it is necessary to automatically 
monitor the subjects’ activities without direct sur-
veillance and to exclude the “human factor” in de-
cision-making.

The automatic EEG analysis is difficult to per-
form as signals are noisy and depend on many fac-
tors: equipment (frequency of electrode interroga-
tion, the number, and characteristics of electrodes), 
installation and location of electrodes, individual 
features of EEG subjects. Traditional EEG analysis 
methods based on frequency filtering and artifact 
removal provide under-represented results to be 
implemented; the resulted features prove to have 
low information value that leads to low accuracy in 
classifying EEG images.

This study focuses on the development of meth-
ods for recognizing the user identity, his or her 
psychophysiological state (PPS), and the tasks he 
or she performs on a computer using multilay-
er convolution neural networks (CNN) and deep 
learning methods [1]. These tasks are considered 
in one paper, as they are closely connected. The 
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study focuses on this connection and estimates the 
informational value of EEG rhythms in terms of 
their ability to recognize the subject identity or 
particular states.

Psychophysiological state is a set of personal 
characteristics that reflect the biological aspects of 
adaptation to changing environmental conditions 
[6]. The following key PPS are considered in the pa-
per: mild alcohol intoxication, drowsiness, physical 
fatigue, the norm. By the “norm” state it is under-
stood that before the experiment, the test person 
has not been subjected to any physical or mental 
stress or taken any medication affecting the PPS.

The research has the following objectives. 
1. To estimate the informational value of the 

EEG rhythms in terms of the possibility of identi-
fying the user and his/her PPS.

2. To propose the architecture of convolutional 
networks for the recognition of EEG images.

3. To evaluate the accuracy (a ratio of correct de-
cisions to the total number of experiments) of user 
identification, his or her PPS, as well as the tasks 
performed by the user in the “norm” state (watch-
ing an entertaining video, reading scientific litera-
ture, typing, inactivity/rest).

Base of EEG test persons 

Data from the EEG was collected for 30 test 
persons. The location of the electrodes in all ex-
periments was as shown in Fig. 1, according to the 
standard “10-20” scheme. The recording of the EEG 
in the “normal” state was done when the test users 
were performing fore tasks (each task preceded by 
the re-installation of the electrodes):

— the test user was sitting in a chair with his 
eyes closed (standard conditions);

— the test user was typing a scientific and tech-
nical text on the keyboard;

— the user was reading a scientific article;
— the user was watching a comedy.
All the test persons have performed each task 

within 10 min. Experiments with the first task 
were carried out on different days and using two 
various devices: Mitsar EEG-201 (19 channels with 
a noise level of < 2 μV and a sampling rate (SN) of 
250 Hz per channel) and Neuron Spectrum-4/P 
from Neurosoft (21 channels with a noise level less 
than 0.3 μV and SN 500 Hz per channel) in order 
to assess the variability of the EEG over time, de-
pending on the installation and device. Neuron-
Spectrum data for each test person were recorded 
7 times on different days.

The recording of EEG data in states of intoxica-
tion, drowsiness, and fatigue was done only under 
standard conditions. In order to make the test per-
son intoxicated, necessary doses of alcohol were cal-
culated according to the modified formula Vidmark 
[see 7, formula (1)], based on a quantity of 0.7 ‰, 
which corresponds to the second stage of intoxica-
tion according to the Federal Aviation Regulation 
(CFR) 91.17 classification. In order to put the test 
persons into a state of drowsiness, they were asked 
to take 2 tablets of Leonurus cardiaca 200 mg and 
to be sitting in a chair for 20 min in a quiet and dark 
room just before starting EEG recording. To record 
the EEG in a fatigued state, the test persons experi-
enced intensive physical activity before the experi-
ment, the minimum amount of which was deter-
mined by the Martinet method (20 squats in 30 s), 
and then varied according to the physical abilities 

  Fig. 1. Mitsar connection diagram (left) and Neuron-Spectrum-4/P (right)
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of the person. EEG recordings were made for each 
subject in each state with a duration of 5 min. The 
EEG recordings for each of the test persons’ states 
were made on a separate day.

Estimation of the informational value 
of the EEG rhythms in terms of PPS

In this section, Mitsar data was analyzed, as on-
ly this data are obtained with the PPS in mind. In 
the first instance, a band-reject filter was applied 
to the original signals to suppress interference 
from power lines that operate at 50 Hz in Russia. 
EEG signals can have an ”overtone effect”, where 
interference is also observed at higher frequencies 
divisible by 50 Hz. The filtration was therefore per-
formed in the 45–55, 95–105, and 145–155 Hz fre-
quency bands.

The following EEG rhythms are distinguished by 
their frequency, duration, amplitude and waveform: 
delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta 
(13–35 Hz), gamma (30–170 Hz), lambda (4–5 Hz), 
mu (7–13 Hz), kappa (8–12 Hz), tau (8–13 Hz), sig-
ma (10–14 Hz). The main rhythms are the first five 

ones. Let us assess the informational value of the 
EEG rhythms in terms of the possibility of identify-
ing the subject, the subject’s PPS, and the task the 
subject is performing on a computer.

Spectrograms provide sufficient enough rep-
resentation of the signal, in this study they were 
calculated by applying a short-term (window) rapid 
Fourier transform using a rectangular window (the 
duration is 1 s, a window overlap is 50%). If the am-
plitude a of each harmonic with the frequency  is 
taken as a feature, it is possible to build a probabili-
ty density function (PDF) of this harmonic for each 
image class (e. g. when identifying a PPS, a class for 
each state should be formed from one-second EEG 
images if the subjects who were in the correspond-
ing state).

The area of intersection of the PDF values of a 
particular feature for two classes (with numbers j
and i) is approximately equal to the probability of 
error Er()j,i of the two-class identification of im-
ages by this feature (Fig. 2, a–d). The probability 
of correct classification is numerically equal to 
İ()j,i  1 – Er()j,i. The accuracy of this assessment 
depends on the sample size using which the rele-
vant PDFs were built. The informational value of 

 Fig. 2. Examples of determining the error probability in the classification of EEG images by one feature: a — subject 
identification under standard conditions in the “norm” state; b — assessment of the subject EEG variability under stand-
ard conditions in the “norm” state; c — PPS identification under standard conditions; d — identification of the task 
performed by the subject in the “norm” state
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the feature for the majority of classes can be judged 
by the average probability estimation of the correct 
classification Ϊ  m(İ()j,i) for all pairs of classes 
(the higher the Ϊ is, the more informational val-
ue the frequency has). In a first approximation, in 
terms of the ability to identify a subject the infor-
mational value of the EEG rhythm can be calculat-
ed as the average of estimates Ĭ  m(Ϊ) in the corre-
sponding frequency range. In addition, it must be 
borne in mind that the amplitude spectra of EEG 
signals may vary at different moments of time and 
depending on the installation of the electrodes. 
These changes can be estimated through the cor-
responding probability densities pj,day_1(aHz) and 
pj,day_2(aHz), which are derived from the EEG data 
of subjects recorded at identical PPS but on dif-
ferent days (see Fig. 2, b). Therefore, a correction 
of the informational value should be made to take 
into account the average probability of density 
mismatch pj,day_1(aHz) and pj,day_2(aHz) for all test 
persons in the “norm” state (hereinafter referred 
to as the Ernorm).

Figure 3 shows graphs of the informational val-
ues of EEG rhythms for the task of the user identi-
fication (under standard conditions of EEG record-
ing), with a correction made to take into account 
the dependence of the EEG on the installation and 
the subject’s PPS: Ĩ  Ĭ · ErPPS · Ernorm, where ErPPS 
is the average error probability for the two-class 
identification in the state “norm”, where the first 
class is the state “norm” and the second is any other 
state. This work reflects the probability of correct 
identification of the subject in a case of a mismatch 
between the installation and the PPS.

Figure 4, a–f shows graphs of the informational 
values of EEG rhythms for PPS identification tasks 
and the subject’s activity. This assessment takes in-
to account the dependence of the informational val-

ue on the individual features of the subjects’ EEG 
and installation.

In general, all the rhythms individually are not 
informative enough for highly accurate automatic 
identification, both of the subject identity and the 
PPS. However, some results should be noted. The 
most information-bearing signal for EEG identifi-
cation is recorded in the rear right temporal zones 
(T6). In this area, the most information-bearing 
rhythm is kappa rhythm, as well as mu and tau 
rhythms. The frequency range of 7–14 Hz in this 
area is very information-bearing when recognizing 
types of activity that require concentration (watch-
ing films, reading). The most information-bearing 
rhythms (Ĩ  0,395) are lambda and theta rhythms 
in the right frontal area (Fp2) when recognizing the 
subject’s intense activity related to typing on a com-
puter, and sigma rhythm recorded in the rear left 
side of the temporal area (T5) when identifying a 
subject. High frequencies contain less information 
about the subject’s individual EEG characteristics.

Based on the analysis carried out, it can be con-
cluded that it is not worth excluding any frequen-
cies from the input data while building a classifier, 
since all rhythmic oscillations carry parts of infor-
mation for certain classes of images (states or sub-
jects).

The mutual correlation between the amplitudes 
of harmonics with different frequencies has been 
assessed (Fig. 5, a–d).

Figure 5, d demonstrates that on average (for 
all subjects and all PPS) approximately 50% of the 
harmonic vibrations of the EEG signals have a re-
markable or high mutual correlation relationship 
(over 0.3). The nature of the correlation relation-
ships varies both from subject to subject and from 
PPS to PPS, as shown in Fig. 5. Pattern recogni-
tion methods should therefore be used that take 
into account the nature of correlative relationships 
between features (e. g., in this case, the Bayesian 
naive classification scheme is ineffective). In this 
respect, convolutional neural networks can be pre-
ferred because they can take into account the pe-
culiarities of spectrum changes over time as well 
as the correlation links between different rhythms 
and electrodes.

Identification of EEG images 

Two series of experiments were carried out.
1. Identification of a subject (from a closed set). 

The data generated by this study (Mitsar, Neuron-
Spectrum) and the Physionet data set (64-channel 
EEGs with a duration of one minute, 109 test sub-
jects in the “norm” state recorded under standard 
conditions with a sampling rate of 160 Hz) were 
used. The Physionet data set is one of the most rep-

  Fig. 3. Informational value of rhythms in multiclass 
subject identification under standard conditions in the 
“norm” state with respect to EEG variability due to 
changing mounting and a psychophysiological state
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resentative as it includes many test subjects and is 
often used to compare EEG classification methods 
[8]. The training was carried out based on the EEGs 
recorded in the “norm” state on one or more days, 
and testing was carried out by cross-checking for 
data not used in training (in the “norm” state or 
other PPS).

2. Identification of the PPS and the activity of 
the subjects (from a closed set). Only the Mitsar da-
ta set was used (30 subjects). The training sample 
was formed from all EEG data of 25 subjects, da-

ta from other subjects (not included in the training 
sample) were used for testing.

Electroencephalograms records were divided 
(with a 50% window overlapping) into shorter frag-
ments: 2.5 s each (for Neuron-Spectrum data), 5 s 
each (for Mitsar data) and 2 s each (for Physionet 
data), as shown in Fig. 6. Each fragment obtained 
is an EEG image.

Images were submitted to the artificial neural 
network (ANN) input in two variants: as initial 
signals (IS) and as spectrograms (SG). The spectro-

  Fig. 4. The informational value of rhythms in the two-class identification of psychophysiological state and the tasks performed by 
the subject, where the first class is the “norm” state, and the second is: a — intoxication; b — drowsiness; c — fatigue; d — watching a 
movie; e — typing; f — reading
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grams were calculated with window 64 and step 16 
of the reports and further normalized to the mini-
mum and maximum amplitude values of all signals 
for all subjects (to bring them to a single amplitude 
value interval [0; 1]).

Many ANN architectures were formed, focused 
on both IS and SG processing. Each architecture 
was built with respect to the peculiarities of a par-
ticular data set: sampling frequency, the number 
of electrodes, the number of identifiable classes 
(test subjects). The process of creating a network 
model based on some architecture consisted of sev-
eral stages. At the architecture design stage, the 

neural network structure (the number of layers, 
the number of neurons in layers) was selected and 
hyperparameter calibration was done. The model 
was trained 10 times, and each time the EEG data 
were randomly divided into training and test sam-
ples (in the proportions originally set). During the 
training, an initial accuracy assessment was made 
on the validation sample (which was a subset of 
the test sample and includes 5–10% of the test ex-
amples). The primary accuracy estimates for each 
model were averaged. Next, the best models (with 
an accuracy margin of more than 10%) were fully 
tested (using the full test sample), after which the 
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 Fig. 5. Histograms of the relative frequencies of the pair correlation coefficients between the amplitudes of different 
harmonics (with frequencies from 1 to 128 Hz): a — for the test subject 1 in the “norm” state; b — for the test subject 2 
in the “norm” state; c — for the test subject 1 in a state of intoxication; d — for all subjects in all states

 Fig. 6. Division of EEG into fragments of 2.5 s (Neuron-Spectrum data)
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average Q accuracy estimates for each model were 
determined.

The networks were formed from constructions 
in a form of BLOCKS (from two to four per net-
work). Each BLOCK consisted of two convolution 

layers (CL) with ReLu neuron activation functions, 
one layer of batch normalization (BN) and a drop-
out layer. The categorical cross entropy was used as 
an error function [9]. Each network also included 
an input (IL) and two fully connected layers (FL). 

  Table 1. Configuration of one of the promising ANNs for analysis of spectrograms

Layer Type Layer Parameters

Input Layer Dimension  11, 32, 75 ([channel][frequency][time])

B
L

O
C

K
_

2
d

 

Convolutional 2D Number of filters  10, convolution window  3.3, stride  2.2

Convolutional 2D Number of filters  10, convolution window  3.3, stride  2.2

Batch Normalization

Dropaut Rate  0.125

B
L

O
C

K
_

2
d Convolutional 2D Number of filters  20, convolution window  3.3, stride  2.2

Convolutional 2D Number of filters  20, convolution window  3.3, stride  2.2

Batch Normalization

Dropaut Rate  0.175

B
L

O
C

K
_

2
d Convolutional 2D Number of filters  30, convolution window  2.1, stride  1.1

Convolutional 2D Number of filters  30, convolution window  1.5, stride  1.1

Batch Normalization

Dropaut Rate  0.25

Fully connected layer Number of neurons  30, activation function: sigmoid

Fully connected layer Number of neurons  number of classes, activation: softmax

  Table 2. The results of subject identification by EEG

Input, quantity of 

channels
ANN structure

Quantity of 

epochs, batch size
Training sample per 1 man

Test sample 

(PPS)
Q, %

Neuron-Spectrum (30 classes, transit time (image size) 2.5 s, sampling rate 500 Hz)

IS, 10 IL + 3BLOCKS_1d + 

+ 2FL
20, 50 Day 1 (4 min), day 2 (1 min) Norm, day 2

 99.99

IS, 2 (Fp1, Fp2) 95

SG, 10 IL + 3BLOCKS_2d + 

+ FL + BN + FL

 99.99

SG, 2 (Fp1, Fp2) 96.47

Mitsar (30 classes, transit time (image size) 5 s, sampling rate 250 Hz)

IS, 11
IL + 3BLOCKS_1d + 

+ 2FL

100, 20

Day 1 (5 min)

Norm 94

100, 20

Intoxication, 

drowsiness, 

fatigue

28.3

SG, 11
IL + 3BLOCKS_2d + 

+ 2FL (Table 1)

20, 20 Norm 98.5

20, 20

Intoxication, 

drowsiness, 

fatigue

41.8

25, 20 Days 1 & 2 (2.5 min each) 64

35, 30 Days 1, 2 & 3 (2.5 min each) 78.7

50, 30 7 days (2.5 min each) 97.59

Physionet (109 classes, transit time (image size) 2 s, sampling rate 160 Hz)

IS, 64
IL + 4BLOCKS_1d + 

+ FL + BN + FL
70, 50

40 s Norm

96.97

SG, 64
IL + 2BLOCKS_2d + 

+ FL + BN + FL
100, 50 98.5
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Thus, each neural network included from six to 
ten hidden layers (CL and FL). The parameters of 
the convolutions differed in various network im-
plementations. One-dimensional convolutions were 
used for the IS analysis (time series analysis [9]), 
and two-dimensional convolutions were used for SG 
(image analysis [9]). Table 1 provides a description 
of one of the CNN architectures used in the exper-
iment. The most representative results, as well as 
consolidated data on the parameters of the exper-
iment (a number of training epochs, a mini-batch 
size, layers used, description of samples, etc.), are 
presented in Tables 2 and 3 (these tables describe 
CNN architectures in a shorter form).

Analysis of the obtained results 
for the identification of the EEG 
and their comparison with previous 
achievements 

The survey has shown that traditional methods 
of signal analysis (frequency filtering, removal of 
artifacts, reduction of feature space dimension by 
the principal component analysis method (PCA)) 
and pattern recognition (k-nearest neighbors meth-
od (k-NN), support vector machine (SVM), C4.5 
decision tree algorithm, etc.) are used more often 
to solve the problems under consideration [2, 4]. 
Artificial neural networks (ANNs) are also used in 
EEG analysis, with CNN giving better results in 
some tasks (emotion recognition in particular) [10].

The great majority of known studies consider the 
problems of identity recognition and human PPS 
identification as independent [2, 4]. There is little 
data available on the robustness of the identifica-
tion results obtained in cases where subjects were 

in different PPS during the training and testing 
phases. The use of the EEG method of identification 
in practice requires that the results are consistent 
in a case of changes in the installation, and a state 
of the subject is identified.

The experiment carried out has shown that the 
accuracy of identification by EEG is reduced to un-
satisfactory results if the subject’s PPSs do not co-
incide during the training and testing stages. This 
indicates a high variability of the EEG depending 
on the subject’s state (and possibly installation). In 
previous studies, this aspect has either not been 
taken into account or has been taken into account 
indirectly (for example, by normalizing signals to 
alpha rhythm [8], that does not guarantee their in-
dependence from PPS). It is proposed the network 
to be trained on EEG data recorded by the subject 
on different days. This has led to a significant in-
crease in the reliability of the identification, includ-
ing when the PPS changes, which follows from the 
results obtained — training with the 2-day data in-
creases the accuracy by 22.2%, with the 5-day data 
by 53.5% (see Table 2).

When identifying an individual without respect 
to PPS (see Table 2), the high accuracy was ob-
tained — it was 98.5% for Mitsar (30 classes) and 
Physionet (109 classes). When using the Neuron-
Spectrum-4/P device, which has an increased sam-
pling rate and low internal noise levels, the accu-
racy exceeded 99.99% (no errors were recorded). It 
is significant that when only two frontal electrodes 
were used, the accuracy on this device was 96.47%.

The percentage of correct decisions for two-class 
identification of PPS (see Table 3) ranged from 82 
to 94%, and for two-class identification of tasks 
performed by a user on a computer — from 77.8 to 
98.72%. For multiclass identification, the accuracy 

  Table 3. The results of the identification of the subject’s PPS and activity by the EEG

Input, 

quantity of 

channels

ANN structure

Quantity of 

epochs, batch 

size

Classes Q, %

IS, 11 IL + 3BLOCKS_1d + 2FL 100, 50 4 (norm, intoxication, drowsiness, 

fatigue)

35

SG, 11 IL + 3BLOCKS_2d + 2FL (Table 1) 40, 50 41.5

IS, 11 IL + 3BLOCKS_1d + 2FL 100, 50 4 (norm, typing, reading, watching 

a movie)

56.68

SG,11 IL + 3BLOCKS_2d + 2FL (Table 1) 40, 50 59.21

SG,11

IL + 3BLOCKS_2d + 2FL (Table 1) 20, 25 2 (norm, fatigue) 94

IL + 3BLOCKS_2d + FL + BN + FL

20, 25 2 (norm, reading) 92

20, 25 2 (norm, drowsiness) 84

20, 25
2 (norm, intoxication)

82

IS,11 IL + 3BLOCKS_1d + FL + BN + FL 50, 25 72

SG,11
IL + 3BLOCKS_2d + 2FL

(Table 1)

20, 25 2 (norm, movie) 98.72

20, 25 2 (norm, typing) 77.8
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is significantly reduced (approximately twofold). 
The most difficult to identify is when the user is 
typing texts in real time on the keyboard (for this 
task, the accuracy was 77.8%).

Based on the results, it can be concluded that 
recognition accuracy and training rates increase 
(fewer epochs are required) if spectrograms are 
used as input data (see Tables 2 and 3).

Let us give a brief summary of the achieved ac-
curacy rates of the subject’s recognition and the 
PPS identification by EEG (Tables 4 and 5). The 
results of the analytical study on these issues are 
described in more detail in [2, 4].

As can be seen (see Table 4), convolution net-
works allow obtaining higher EEG identification 
accuracy with much shorter transit times. The re-

sult achieved in this paper surpasses the previous 
results. 

The accuracy achieved in this paper in detect-
ing drowsiness using the EEG is comparable to that 
obtained by other researchers; for intoxication, 
the result is on average slightly lower. However, 
the results of the recognition of fatigue, as well as 
the tasks performed by the user on the computer, 
are quite high. No direct analogy of these results 
have been found in the literature for direct com-
parison. The paper [3] should be mentioned that 
presents several hypotheses about the possibility of 
defining a subject’s “risky behavior” based on EEG 
data (the possibility of performing dangerous or 
illegal actions), and a number of experiments have 
been carried out to test them. Sixty-two volunteers 

  Table 4. Comparison of the results of user recognition by EEG

Number of test 

persons
Methods

Transit 

time, s

Accuracy,

%

45

Analysis of the activity of the brain areas responsible for read-

ing and recognizing words based on artificial neural networks. 

A combination of 3 classifiers was used: cross-correlation, 

“naive” Bayes and feed forward ANN. Single-channel EEGs 

were used

50 97 [11]

50

Evaluation of individual brain reactions to various stimuli: pri-

mary visual perception, recognition of familiar faces, tastes. 

A time series cross correlation (fragments of EEG signals) was 

used as a classifier. Testing was repeated to account for the ef-

fect of EEG variability on the result over time. PPS was not 

monitored. The test subjects were placed in a camera protected 

from radio frequencies

27
No error recorded 

[12]

15

The application of an algorithm of generating 256-bit EEG-

based keys using P300 evoked potential and two-layer neural 

networks trained in accordance with GOST R 52633.5.2011 

(EEG authentication, one-to-one comparison). To be authenti-

cated the user made a certain movement with his eyes (left, 

right, up, down etc.)

Over 10 10–10 [13]

80

Conversion of the test subjects’ EEG in the “norm” state into a 

cryptographic key based on the fuzzy extractor method (EEG 

authentication, one-to-one comparison). The effect of alcohol in-

gestion on accuracy was studied

Before alcohol: 

0.9742 

After: 0.9389 [14]

109 

(Physionet)

The EEG was recorded under standard conditions. The EEG was 

normalized by level, a bandpass filter (1–50 Hz), STFT (Hem-

ming window) and the Fisher linear discriminant classifier 

were applied. The accuracy is higher at the moment of relaxa-

tion of the test subjects (alpha rhythm determines the optimal 

moment for authentication)

10

95.3–97.2

(64 electrodes)

93

(1 electrode)

[8]

The results obtained. Identification of images using CNN (EEG 

spectrogram analysis), one-to-many comparison. The impact of 

different PPSs was taken into account

2 
98.5 (PPS is norm)

30

(Neuron-

Spectrum)

2.5 
No errors recorded 

(PPS is norm)

30

(Mitsar)
5 

98.5 (norm)

97.59 (modified)
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(16 women and 46 men) were invited to conduct the 
experiments. The EEG was registered at 128 scalp 
areas. It was found that risk behavior is effectively 
predicted by the EEG through event-related electri-
cal potentials.

  Table 5. Comparison of results of recognizing subject’s states and actions by EEG

Test persons, electrodes Methods Accuracy, %

Sleep stage/ drowsiness

29 test persons, Fp1, A1 SVM 72.7 [15]

10 test persons, 19 electrodes: Fp1-2, F3-4, 

C3-4, P3-4, O1-2, F7-8, T3-6, Fz, Cz, Pz
ANN 83.3 [7]

12 test persons, 32 electrodes SVM, ANN, random tree and k-NN 93–97 [16]

6 test persons, 32 electrodes SVM, k-NN 95 [17]

– Hurst method 52.2 [18]

– Higher-order spectrum analysis 88.7 [19]

– Fuzzy logic, cluster analysis, Euclidian distance 80 [20]

30 test persons, 11 electrodes: Fp1, Fp2, Fz, 

F3-8, T3-6
Achieved result (drowsiness recognition) 84

Intoxication stages (the first stage — soberness)

Alcohol ingestion: 50 ml, 40% ABV, 3 times 

a day (3 stages), 

electrodes: AF3-4, F3-8, FC5-6, P7-8, T7-8, 

O1-2

The signal is divided into fragments: 1 s each with 

a step of 0.5 s. 11 features are extracted from each 

fragment

89.95 (4 stages) 

[21]

The test persons ingested beer (750 and 

1500 ml), 

1 electrode Fp1

ANN

92.3 and 59.2 

(2 and 7 stages) 

[22]

50 test persons in a “norm” state and 

50 intoxicated persons, 64 electrodes 

ANN, training — 40 subjects for each class, 

and 10 subjects for a test 

95 (1200 training 

epochs) [23]

40 test persons in a “norm” state and 

40 intoxicated persons

SVM, the training sample contains 20 subjects per 

class, the test sample contains 20 subjects. EEG 

has been processed with a filter (0.5–50 Hz)

98.83 [24]

50 intoxicated persons and in a “norm” 

state 

Features are Yule — Walker equations autocorrela-

tion coefficients. A training sample contains 

40 users, a test sample contains 10 subjects

95 [25]

1341 visual records of evoked potentials 

(EP) (1129 — for training and 212 — for a 

test)

Power spectrum of EEG signals, average and 

dispersion of EP reports, PCA, fuzzy output
98.11 [26]

10 test persons in the “norm” state and 

intoxicated, 64 electrodes (sampling rate is 

256 Hz)

PCA, С4.5, k-NN, SVM

79.3 (1 electrode) 

and 96.8 

(64 electrodes) [27]

30 test persons, 11 electrodes: Fp1, Fp2, Fz, 

F3-8, T3-6
Obtained results (recognition of intoxication) 82

Other states (obtained results)

30 test persons, 11 electrodes: Fp1, Fp2, Fz, 

F3-8, T3-6

Movie 98.72

Fatigue 94

Reading scientific articles 92

Typing 77.8

Conclusion

The tasks of identification of an individual and 
the PPS by EEG are closely connected. The EEG con-
tains information on both the individual character-
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istics of the subject’s brain and the subject’s state, 
as well as states that depend on his or her activity 
in real time. This paper estimates the information-
al value of EEG rhythms for recognizing a subject 
and a subject’s PPS (with respect to the variability 
of the EEG over time, in a case of changes in instal-
lation and in dependence on PPS), recorded by the 
electrodes Fp1, Fp2, Fz, F3-8, T3-6 (in accordance 
with the “10-20” scheme). The most informative 
personal identification signal is recorded in the rear 
right (especially kappa, mu and tau rhythms) and 
left (sigma rhythm) temporal zones. The frequency 
range of 7–14 Hz in the posterior right temporal 
area is also meaningful when recognizing types of 
activity that require concentration (watching mov-
ies, reading). When recognizing typing activities 
on a computer, the lambda and theta rhythms in the 
right frontal lobe are the most meaningful.

Based on the results of the experiments, the con-
volution neural networks showed a higher accuracy 
of EEG identification (98.5–99.99% for 10 or more 
electrodes), with a shorter transit time (from 2 to 
5 s) compared to the previously achieved level. It 
is significant that high accuracy is observed when 
only two frontal sensors are used (96.47%), which 
makes it possible to use “dry” electrodes that come 
into direct contact with the skin.

The use of the EEG method of identification re-
quires results to be consistent in a case of chang-
es in the installation and a state of the identified 
subject. Without the PPS, EEG-based identification 
results are of limited value. Our experiments have 
shown a significant drop in the accuracy of identi-
fication if the subject was in different PPSs during 
the training and testing phase of the EEG. In the 
course of previous studies, insufficient attention 
was paid to this aspect, and the tasks of identify-
ing (authenticating) a subject and recognizing his 
or her EEG-based PPSs were perceived as independ-
ent. In this work, it has been suggested that the 
network should be trained on EEG data recorded by 

the subject on different days (without the control 
of the PPS). The results we have obtained indicate 
that this could significantly improve the reliability 
of identification, including the cases when the sub-
ject’s PPS changes. If systems are trained on EEG 
data recorded on several different days, the recog-
nition results become almost robust regardless of 
the condition of the subjects.

The accuracy of recognition of PPS by EEG 
achieved in this paper is comparable to the level ob-
tained by other researchers. The percentage of cor-
rect decisions for two-class identification ranges 
from 82 to 94% (depending on the PPS detected — 
“norm”, alcohol intoxication, drowsiness, physical 
fatigue). For multiclass identification, the accuracy 
is several times lower. However, it is worth noting 
that accuracy is achieved when there are 25 test 
subjects in a training sample, which indicates a 
high potential for the convolution networks in this 
task.

It was also possible to obtain the following es-
timates of the accuracy of the two-class identifi-
cation of tasks performed by the user on the com-
puter (where the first class characterizes inactiv-
ity/rest when the EEG is recorded under standard 
conditions, the second one is one of the following 
tasks): reading scientific texts 92%; watching an 
entertainment video 98.72%; typing a text on the 
keyboard 77.8%. For multiclass identification, the 
accuracy drops to 59.21 per cent. It is the first time 
these results are obtained, and they can be used 
when it is necessary to automatically monitor the 
activity of subjects without the ability to directly 
observe them (for example, when taking examina-
tions remotely).
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Введение: электроэнцефалограммы содержат информацию об индивидуальных особенностях работы мозга и психофизиоло-
гическом состоянии субъекта. Цель исследования: оценить идентификационный потенциал электроэнцефалограмм; разработать 
методы идентификации личности и психофизиологического состояния субъектов, а также действий пользователя, выполняе-
мых на компьютере, по электроэнцефалограмме с использованием аппарата сверточных нейронных сетей. Результаты: оцене-
на информативность ритмов электроэнцефалограмм с точки зрения возможности идентификации человека и его состояния. До-
стигнута высокая точность идентификации личности (98,5–99,99 % для 10 электродов, 96,47 % для двух электродов Fp1 и Fp2) 
при низком времени прохода (2–2,5 с). Обнаружено существенное падение точности идентификации, если на этапе обучения и 
тестирования сети субъект находился в разных психофизиологических состояниях. (В ранних исследованиях данному аспекту 
уделялось недостаточно внимания.) Предложен способ повышения робастности распознавания личности в измененных состоя-
ниях. Достигнута точность 82–94 % при распознавании состояний алкогольного опьянения, сонливости, физической усталости 
и 77,8–98,72 % при распознавании действий пользователя (чтение, набор текста, просмотр видео). Практическая значимость: 
результаты будут востребованы в приложениях информационной безопасности и удаленного мониторинга субъектов (при отсут-
ствии возможности непосредственно наблюдать за ними).

Ключевые слова — глубокое обучение, многослойные нейронные сети, биометрия, машинное обучение, извлечение призна-
ков, электрическая активность мозга, психофизиологическое состояние, распознавание образов, спектрограммы.
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