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Introduction

An analysis of Mersenne matrix existence [1,
2] has raised the question of quasi-orthogonal
matrices belonging to the Hadamard type ma-
trix family [3], the special cases of which are
Belevitch (C-matrices) [4, 5], Hadamard [6, 7],
Mersenne [8, 9], Euler [10], and Fermat matri-
ces [11]. The matrices are listed in descending
order for n = 4k — d, where d =0, 1, 2, 3, k> 0
is integer.

A quasi-orthogonal matrix, of order n, is a square
matrix A, with |ai]-| < 1 in each column (and row),
with maximum modulus 1, has ATA = o),
with I the identity matrix and w(n) is the weight.

Purpose: This paper considers two-level quasi-orthogonal matrices, complementing the Mersenne and Euler matrices
belonging to the class of Hadamard type matrices, which were first highlighted by J. Hadamard and V. Belevitch. The goal
of this note is to develop a theory of such matrices based on preliminary research results. The definitions are provided.
Methods: Extreme solutions (using the determinant) have been established by minimization of the absolute values of the
elements of the matrices followed their subsequent classification. Results: We give the definitions of a section and a layer of
quasi-orthogonal matrices. An example of continuous matrices with varying levels is used to show that the branch of golden
ratio matrices is closely associated with the Hadamard and Belevitch matrices. Commentary on the applied aspects of the
two-circulant golden ratio matrices and illustrations for some elementary and some interesting cases of Fermat, Mersenne
and Euler matrices are provided. Practical relevance: Web addresses are given for other illustrations and other matrices
with similar properties. Algorithms to construct golden ratio matrices have been implemented in developing software of the

Keywords — Quasi-Orthogonal Matrices, Hadamard Matrices, Belevitch Matrices, Mersenne Matrices, Euler Matrices,

The values of the entries we will call “levels”
of the matrix. An Hadamard matrix with entries
{1, -1} is a two-level matrix. A Mersenne matrix with
entries {1, b}, 0 < b < 1 is also a two-level matrix.
Now matrices, themselves, can belong to a layer.

Definition 1. In this paper a matrix layer is a
set of quasi-orthogonal matrices with known func-
tions for entries describing their dependence
on n = 4k — d for some d and all possible & > 0.

A Mersenne matrix, of order n, has negative
entries —b, described by some function b = f(n) and
determined for all orders n =4k — 1. Any fixed (non-
varying) Mersenne matrix belongs to this layer.
In the same way, Hadamard and Euler matrices
with sizesn =4k —d,d =0, 2, as described in [1-3],

b)

B Fig.1. Fermat matrix F,, (a) and histogram of moduli of its elements (b)
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belong to layers. Fermat matrices [11] do not form
such layer, as their level functions are defined
within a narrow set of values n = 2% + 1 for even
and some odd values of integer k.

Definition 2. In this paper a section is a set of
quasi-orthogonal matrices of different layers,
which depend on n = 4k — d for some & and all pos-
sibled =0, 1, 2, 3.

A particular (wider) section can be expand-
ed by Fermat matrices using the same princip-
le — the Fermat matrix (Fig. 1) with size 4k + 1
can be used to find the corresponding Hada-
mard matrix (Fig. 2) with size 4k (the main
order of the section). The Hadamard matrix
can then be used to find a Mersenne matrix

. . .. (Fig. 3, 4) with size 4k — 1. This last matrix can
be used to find an Euler (Fig. 5) matrix with
B Fig.4. Normalized Mersenne M, size 4k — 2[3].
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B Fig.5. Buler matrix E;, (a) and histogram of moduli of its elements (b)

Matrices with Few Levels

The matrices mentioned above are the
manifestation of a mathematical object, described
by its layers and sections [3]. The existence of any
matrix in a section entails the existence of all other
matrices of the same section because these matrices
are mutually dependent.

Besides Hadamard matrices with entries {1, —1}
and similar to them Mersenne matrices with entries
{1, -b}, 0 <b < 1, there are other matrices with small
numbers of levels. The Euler matrix E,[3, 11](shown
in Fig. 5) is a square matrix of order n = 4k — 2

with entries {1, -1, b, ~b}, where E.E, = £1,,
_ (n+2)+(n—2)b?
2 9’

1 _
and bZE, when n = 6, in other cases b:%
q_

I, is an identity matrix, ¢

’

where g =n + 2.

The number of levels is an important
characteristic of a matrix set. The low number of
levels does not guarantee existence of Belevitch
matrices (conference matrices) [4, 5], they do not
exist for order n =4k — 2,if n — 1 is not sum of two
squares.

The number of matrix levels increases with
the value d in the interval n = 4k — d. Hada-
mard matrices have single level (by modulus
of elements) matrices as the elements are 1
or —1. Mersenne matrices are two-level matrices;
Euler matrices are four-level matrices. All these
matrices have some minimal number of levels
guaranteeing their existence for pre chosen
orders [3].

Many sets of quasi-orthogonal matrices with
low numbers of levels do not belong to a layer, they

are special orthogonal per columns (Hadamard
type) matrices: conference matrices with three
levels of entries {0, 1, —1} are defined for orders
shared with the bigger family of four levels Euler
matrices. Paley[7] noted that any Hadamard matrix
(or quasi-orthogonal matrix respectively) can be
used to give matrix of the double size using the
Sylvester algorithm. These we call these Sylvester
constructions.

In this case, a new matrix branch appears:
it does not intersect with any of the previous
branches. Paley’s observation induces us to
study artifact matrices from the orthogonal
matrix family (the Hadamard family), including
the two-circulant golden ratio matrix. This is
considered in this paper. The golden ratio matrix
[13] and the two-circulant golden ratio matrix of
order 10 lead to G-matrices of orders n = 10 - 2k,
these sizes 10, 20, 40, 80, 160, 320, 640, etc.
hold a special place in image processing algo-
rithms.

Continuous Matrices

Continuous matrices are different from previously
observed section matrices of the orthogonal (Hada-
mard) family, their level functions depend on
more than one argument n. Therefore, for each n
they generate not one, but a continuum of quasi-
orthogonal matrices, described by a parametric
dependence. This possibility follows from the
interpretation of orthogonal or quasi-orthogonal
matrix as a table of vector projections of the
required orthogonal basis. We use optimal to
denote matrices with maximal determinant. This
allows us to get non-varying matrices for this
continuum, known as orthogonal (Hadamard)
matrices [6, 7].
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Sub-optimal solutions are known for M-matrices
[14, 15] with a small number of levels. Fig. 6 shows
a continuous M-matrix M.

g a -¢c —¢c a —-a a b b a
a g a -¢c —¢c a -a a b b

-c a g a - b a -a a b

- —¢c a g a b b a —-a a
a —-¢c —«¢c a g a b b a -a

Mo =

-a a b b a -g -a ¢ ¢ -a
a -a a b b -a —-g —-a c ¢
b a -a a b ¢ -a -g -a c
b b a -a a c c -a —-g —a
a b b a -a —-a c c -a —¢g

The upper module level from set of levels
a>b>c>gisa=1. The second and the third
levels depend on the lower level g as b2+ 2(b — 1) +
+2(g-0c)+c2=0,c=1/(g+1).

The coloured matrix portrait represents the
structure and levels of entries — every level has its
own colour.

The continuous matrix M;, is a matrix with
a low number of changeable levels and is notable
by its solutions: two bounds (Fig. 7, 8) of a conti-
nuum.

One solution (see Fig. 7) is the two-circulant
Belevitch matrix C;, since when b=c=a =1 we
have g=0.

We call the second solution (see Fig. 8),
with b = c =g <a =1, as two-circulant golden ratio
matrix Gy.

B

b)

B Fig.6. Portrait of matrix M, (a) and histogram of moduli of its elements (b)

a)

Tl

b)

B Fig.7. Belevitch matrix C;, (a) and histogram of moduli of its elements (b)
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‘ﬁ

bi

B Fig.8. Golden ratio matrix G, (a) and histogram of moduli of its elements (b)

X

]

B Fig.9. Euler matrix E,, (a) and histogram of modules of its elements (b)

g§ a —-§ —§ a —-a a g & a
a § a -§ ¢ a -a a § ¢
-£ a § a —-§ § a -a a g
¢ ¢ a g a g £ a —-a a
a & €& a g a g & a -a
Gy =
-4 a g g€ a —-& -a g g -a
a -a a g g -a - -a g& ¢
g a —a a g & -a —-g —-a g
g§ & a -a a § g§ —-a —g -—a
a ¢ &€ a -a -a g g -a —g

It is distinguished by the equation g2+ g—1=0,
well known by its irrational roots called the golden
ratio in the Fibonacci number theory. In this case
we are interested in the lower level g = 0.618...

that proportional to the inversion of 1.618....
Matrices with such elements were for the first time
provided in [13].

Let’s note that histograms for golden ratio
matrix Gy, and Euler matrix E;, are similar to
each other (see Fig. 8, 9), they both are two-level (by
modulus) matrices.

Golden ratio matrices

Consequently, all golden ratio matrices are
defined on orders n = 10 - 2%,

For them, as for all Hadamard family matrices,
matrix Gy is the starting point for the sequence of
matrices, found by iterations

G, G,
G2n - [Gn _Gn]'

NeS, 204 N\

VNH®OPMALIVIOHHO-YMNPABASIIOLLIVIE CUCTEMBI N\ 9



4 OBPABOTKA VIHOPMALIIN U YNPABAEHVE /

b)

B Fig. 10. Hadamard matrix H,, (a) and golden ratio matrix Gy, (b)

The value of modulus level g is constant. This
implies, that golden ratio matrices and Hadamard-
type matrices are two boundary solutions of a con-
tinuum matrix (Fig. 10).
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Conclusion

This paper describes a golden ratio matrix Gy
and sequence of such G-matrices, represented by the
example G,,. These matrices are closely associated
with Belevitch and Hadamard-type matrices, their
specific structures and algorithms to find them.

Golden ratio matrices, represented by G;,, con-
nect with Belevitch matrices as bounds of con-
tinuum. The latter (coexisting with Euler matrices)
have no solutions for the orders 22, 34, 58 and so on.
So golden ratio matrices do not have a layer by the
determination.

The range of application of mathematical models
as orthogonal bases is wide [3]. There is a curious
idea to use the continuous matrix as a model of
phase transformations taking place during the
crystallization of cooled alloys [16].

The special boundary points of the continuous
matrix can explain the patterns, observed in the
tests. The two level golden ratio matrix can be
a model reflecting the details of crystal structure
[17]. The peculiarities of the quasi-crystal problem
are present here — the dichotomy of elements,
associated with the golden ratio level and specific
orders [18]. Matrix models may be calculated and
used to predict the existence of new materials [19].
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