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Introduction: Artificial intelligence development strategy involves the use of deep machine learning algorithms in order
to solve various problems. Neural network models trained on specific data sets are difficult to interpret, which is due to the
“black box" approach when knowledge is formed as a set of interneuronal connection weights. Purpose: Development of a
discrete knowledge model which explicitly represents information processing patterns encoded by connections between
neurons. Methods: Adaptive quantization of a feature space using a genetic algorithm, and construction of a discrete model
for a multidimensional OLAP cube with binary measures. Results: A genetic algorithm extracts a discrete knowledge carrier
from a trained neural network. An individual's chromosome encodes a combination of values of all quantization levels for the
measurable object properties. The head gene group defines the feature space structure, while the other genes are responsible
for setting up the quantization of a multidimensional space, where each gene is responsible for one quantization threshold for
a given variable. A discrete model of a multidimensional OLAP cube with binary measures explicitly represents the relationships
between combinations of object feature values and classes. Practical relevance: For neural network prediction models based on
atraining sample, genetic algorithms make it possible to find the effective value of the feature space volume for the combinations
of input feature values not represented in the training sample whose volume is usually limited. The proposed discrete model
builds unique images of each class based on rectangular maps which use a mesh structure of gradations. The maps reflect
the most significant integral indicators of classes that determine the location and size of a class in a multidimensional space.
Based on a convolution of the constructed class images, a complete system of production decision rules is recorded for the
preset feature gradations.

Keywords — classification, deep machine learning, neural network, genetic algorithm, multidimensional OLAP cube, decision
rule, semantic interpretation, visualization of classes.
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Introduction

It is known, that the up-to-date artificial intel-
ligence research and technology uses deep machine
learning algorithms, which improves quality of
modern business processes in the areas of logistics
management, optimize supply planning, financial
operations, production processes, predict risks,
increase customer satisfaction, diagnose diseases,
selects dosages of drugs and solve other narrow
classification problems, as well as the creation of a
strong artificial intelligence, universal in applica-
tion to various tasks [1-7].

But, the deep neural network models, which
trained on specific data sets, are difficult to inter-
pret for both human mind and machine algorithms.
Also, the creation of a strong artificial intelligence,
which capable of adapting and interacting with the
external environment is an actual complex scientif-
ic challenge [8, 9].

The difficulty of verbalizing the output of deep
learning and clearly clarification of the obtained
result (i. e. why the model made those or another

decisions) is associated with the using of the “black
box” model [10], in which in the process of training
neural network, the “knowledge” is formed from
the sets of links weight between the neighbor neu-
rons. Herewith, visualization and synthesis of new
solutions can be carried out using generative adver-
sarial networks [11, 12]. In this case, one network
generates artificially created examples of complex
objects, and the other network evaluates their reali-
ty based on a training set, which allows performing
creative tasks, generating variants and prototypes
of multidimensional objects.

The creation of a universal algorithm for strong
artificial intelligence can be based on the method
of complex use of multidimensional data analysis,
aimed at transforming a multidimensional feature
space into a finite set of classes, and then building a
basic discrete code that stores information in a com-
pressed form about a set of features characteristic
of a given class. This discrete form of knowledge,
not only provides the ability to interpret themselves
by the various methods, e. g., mathematical produc-
tion rules, but also allows to made cognitive visual-
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ization of multidimensional classes using descrip-
tive (explanatory) variables.

Neural network as a discretization model
of the signs space

Classifying neural network uses object data at
the training stage w;,i=1,n, which can be aggre-
gated from different sources, e. g. the Internet, or
can be inclusions of a variety of sensors in a process
control loop or some technical object. The geomet-
ric paradigm of machine learning uses an attrib-
utive description of objects of the training sample
and their representation by the points in a multidi-
mensional coordinate system. Using conversion of
nominal and ordinal variables to a binary type is
applied we are providing a numerical representa-
tion of qualitative properties.

Descriptive signs {X]-| j=1, N}, entered to the
input layer of the neural network, characterize
the properties of objects of the training sample.
The classifying output attribute indicates the be-
longing of objects w; to the one of the class sets

it is possible to form an individual space, in which
the objects of the training sample are separated by
non-intersecting class hulls (Fig. 1).

By the classification process, the neural network
transforms a continuous signs space into a discrete
set of classes. So, trained on data corresponding
to Fig. 1, a three-layer (one input and output lay-
er, one middle layer) neural network transform a
combination of the values of three signs into one of
four specified classes. The model defined by a set of
weighting coefficients shown in Fig. 2. This is uses

the activation function likes f(S) = where S

1
1+e S’
is the signal on the input layer.

For the clearly interpret the constructed neural
network, the information processing should be pre-
sented explicitly as connections between combina-
tions of values of N signs X, and classes Q. Such
a view can be attracted using a discrete model of a

Q., m=1, M. Having an adequate set of signs X,
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B Fig. 1. Training set objects in a multidimensional
space

Q
X

-15603.91

Q4

B Fig. 2. Structure and weight coefficients of the clas-
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multidimensional OLAP (online analytical process-
ing) cube with binary measures (cell values) [13].

The key step in this case, is the quantization
of the multidimensional space into the minimum
allowable number of cells that preserve the sepa-
rating power of the original dictionary of signs X.
Accordingly, for each signs X; the minimum num-
ber of thresholds t]-, is set, at which the distinguish-
ability of classes not violated (Fig. 3).

The number of thresholds 2 is determined by the
number of class pairs separable by the Xj signs. If
several pairs of classes have a common gap, then
one threshold is used.

Method of neural network interpretation

A discrete carrier of knowledge should be built
in the form of a binary decision matrix [14] or a
multidimensional OLAP cube with binary meas-
ures and measurement labels, which are gradations
of signs values.

The number of signs gradations and the location
of the thresholds are determined in the process of
adaptive quantization of the signs space using a ge-
netic algorithm.

The creations of the intervals of changes in the
initial signs X, within the specified classes Q, , is
performed by independently changing the value of
Xj at the input of the neural network. Herewith, we
using the set of average values for the remaining
sign, when the m-th output neuron is triggered.

If an object of the m-th class has a binary signs
(attribute) X, or the values of the quantitative signs
X ; belong to the interval (d -y . dij), then the grada-
tions of the signs value x;; for the class Q  in the
cells of the OLAP cube take single values

x;5(m) =

_ {1, JoeQy, x; € (d1yj» dij) m=1, M, i=1,t

s
0, otherwise,

where t; — the number of gradations of the sign Xj
(so-called, the nominal values).

The subcube of the discretized multidimensional
space for class Q is shown in Fig. 4.

In such a discrete classifying space, the values
of signs are set in the form of single elements of the
OLAP cube and threshold levels. By this way, it is
provided an easy semantic interpretation of the de-
cision rule, based on the trained neural network.

Interpreting an OLAP cube with binary meas-
ures, based on a system of mathematical production
(decision) rules of the form

N -
“if ]_/\l(x] S (d(ifl)j’ dz])m)’ then w e Qm‘”, m= 1, M,

X3 Ya3 0 0
Ya3 0 1
X13
Xo9 1 1
X, 0
1
X12 0 0
X11 X21
X1

B Fig. 4. Subcube Q, of a discretized multidimensional
space

which use gradations (d;_y);, d;)),, values of signs x;,
j=1, N, for each class Q) .

The object signs values points to the cells in the
OLAP cube. During the recognition process, occurs
element-by-element conjunction (logical AND) of
cells, resulting to distinguish the single cell, corre-
sponding to the class code. The space of “own” gra-
dations point out to the found object.

After the coding process in a discretized multi-
dimensional signs space, the images of the classes
are rendered using rectangular maps, that use a
mesh structure of gradations. On the basis of the
such constructed maps (with the gradations sets of
signs) we can create a complete system of mathe-
matical production rules.

Genetic model for optimizing discretized
feature signs

To describe the discretization algorithm and the
choice of the signs space, we use genetic methods
concepts, used for the solving common optimiza-
tion tasks [15-18].

Individual objectsin a population represent a dis-
cretized multidimensional space X; x Xy x ... x Xy
using phenotype — a set of combinations of
levels of signs of the working vocabulary X ,

Xy ={X; ‘ j=1, N,}, containing a list of measura-

ble properties of objects.

The match function (so-called, fitness-function)
of an individual objects determined by its separat-
ing ability — the proportion of combinations of lev-
els of signs, indicating that the object m belongs to
the one of the pairwise disjoint classes Q,, Q< Q,
Q=0,0Q,U...uUQ,.

At the level of the heritable structures, informa-
tion about space is determined by the genotype —
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a set of genes of a given individual objects, aggregated in a chromosome series. An individual objects in a
population can be represented by a genotype or a single chromosome, when the genotype consists of one chro-
mosome. The coding system for heritable information is a genetic code.

We use a kind of genetic-like algorithm that represents chromosomes using bit strings. Only one gene in a
chromosome corresponds to each level of quantization of a signs in a phenotype. A gene is a fixed length bit
string containing the value of this level. Thus, a combination of values of all quantization levels for measura-
ble properties of an object is encrypted in the chromosome of an individual.

Improving the quality of the individual’s matching function is associated with minimizing the volume of
the signs space

Nw
V(Ny, t;)=] [t; > min
=1

providing I(X,) = 1, ensure error-free division of the sample into M classes in the discretized space of the
1, where j=1, N,,, N, =|X,|. Thus, for choosing the

best individual, we should reduce both the number of object signs and the number of their gradations £ which
makes it possible to increase the extrapolating power of the classifying rule [19].

For these conditions, the length of the chromosome depends on the unknown number of gradations of the
signs.

Therefore, the size of the chromosome is fixed by specifying for each signs the minimum number of thresh-
olds, which makes it possible to separate all completely separable classes for which the intervals of change in
the values of the signs do not intersect.

Chromosome G consists of two gene groups: G = {g,, g,}.

Gene groups g, contains single-bit genes bit(xj), indicating the occurrence of a signs Xij in optimizing space X :

working vocabulary, and natural limits %; € [%) min> % max

g, = {bit(xy), ..., bit(x), ..., bit(xy)h

Gene groups g, combines genes that in binary format represent quantization threshold values dj sign Xj,
i=1, p;, pi=t—1, where ¢;— minimum number of sign quantization levels:

g4={bin(dyy), ..., bin(d,), ..., bin(d,y ).

Number of bits to represent the threshold gene bit string

Xijmax ~ *jmin
e | ,

S

Kj=10g2£
J

where 3. — accuracy of representation of sign X]-.
Structure of chromosomal thread Ch

1001101101 00101011...10100010... 0110 ... 1011 ..01100010...10001011.

N positions K positions K positions  K; positions  K; positions Ky positions Ky positions

)41 Dj PN

The head gene group determines the structure of the signs space, the rest of the genes are responsible for
setting the quantization of the multidimensional space, where each gene is responsible for one quantization
threshold for a given variable.

The values of the quantization thresholds are determined by the genes of the found individual

_ bin(dy)

sz 1 (ijax _ijin) +ijin'

ij

Therms “individual” means the value of the chromosome vector belonging to the range of permissible val-
ues, Ch e Ch

permissible:

Ch

‘permissible

={chlI(x,)=1(X)},
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where I(X,) — separating power of the signs system X , X < X, which is defined as the number of class
pairs completely separable by a given system to the total number of class pairs M(M — 1)/2.
The work of the genetic algorithm is generally described as follows [16, 18].
. Initialization. An initial population is randomly generated from N; binary chromosomes.
. Computation of the match function and assessment of the fitness of chromosomes in the population.
. Selection of parents for crossing (performed using a selection operator).
. Execution of the operator of crossing.
. Mutation of offspring (descendant) chromosomes.
. Formation of a new population by selecting the best individuals in a generation.
. Switch to the next generation of parents and descendants by repeating steps 2—6 until the stop rule is met.
This algorithm implements adaptive quantization of the signs space. The solution of this algorithm is the
discrete neural chromosome code. It describes the space of signs of the minimum volume, while maintaining
the separating power of the trained neural network.
Individuals of the initial population contain randomly filled threshold genes, they limited by the values of
signs, and the chromosome vector Ck belongs to the range of permissible values.
The algorithm has the following parameters:
— size of population of individuals N;
— number of pairs selected for reproduction;
— mutation probability P
— crossing probability P, ..
For each population, we determine the number of mutating chromosomes, the number of pairs of crossing
chromosomes, a given level of convergence of the algorithm ¢.
Probability of selection of an individual for reproduction
fi
N

2
i=1

O Otk W

mut’

Pi:

where i — individual number; f; = V(N) — V(N,), i =1, N; — individuals match function.

Probability of using the crossing operator P, =0.9..1. We use some elite individuals in the crossing
procedure with quantity N,=(1 — P,,,,)N;. In conditions when P, . <1 the best individuals of the current
population moves into the population without any changes.

In relation to our task, the crossing operator must ensure the process of study of the set of signs for which
the head gene group is responsible, and the set of thresholds, encoded by the corresponding genes. Parent-
encodings transfer genetic material to new descendant-encodings. To reproduce them, we use a two-parent
crossover, which exchanges parts of the bit string of genes at break points.

Reproduction of parent individuals with chromosomes Ch! and Ch* looks as follows

l l Lplypl o1 l lplyl l l Lyplyl l l lplyl
by_1..-bp...babiby bk, 1...by...bab1by ... bKj—l"-br-"b2b1bO v by 1-+-bp . bbby
+
k k kyki kb Lk k kypkik k k kypkyk k k kykyk
bN—l"‘br ...b2 bl bO bKl—l"‘br ...b2 bl bO cee bKj—l"'br' ...b2 bl bO een bKN—l‘“br ...b2 bl bO
{
k k4l Ipl 1k k4l Iyl k k l Iyl k k3l Iy
bN?l- . .bp+1bp- . -blbo bKI*].' . -bp+1bp- . -blbO soe bK]_lo . obp+1bp- . oblbo eoe bKNil- . .bp+1bp. . .blbO
and
l l k kyk 3l l k kyk l l k kyk l l k kypk
by_1---bpi1bp..brby bg, q...bp 10 b1 b bKj_l...bp+1bp...b1 by - bgy-1---bpi1bp---b1bg,
where the p-th bits of genes act as the breaking point, b, = random(0, K — 1), K — number of gene encoding bits.
When exchanging pieces of parental-encodings, the existing fragments of alleles will be redistributed
among the genes of the descendant-encodings while preserving their loci.
To enforce the genetic variability of alleles, we use the mutation operator, which leads to the appearance of
new alleles from fragments that were not previously contained in the parental genes.

Chromosomes descendants are exposed with random changes with probability P, ,(0.001...0.01). The num-
ber of changes made to the chromosome is defined as follows
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K, =B random(l, K),

where K — size of the chromosomes, K =
N

=N+ Z p;Kj; B — mutation power coefficient,
j=1

B [0;1].

Mutation stands in inverting the binary se-
quence, which position in the chromosome deter-
mined strongly randomly:

where r, =random(1, K), n=1, K, ;4.

During the simulation modeling we config-
ure the power of mutation because this is one of
the most important properties of the search algo-
rithm.

The rule (decision) for stopping the genetic al-
gorithm is to achieve a given level of convergence
fi max — [i min < & — determining such power of
match of individuals in the population, at which
their further improvement does not occur.

The result of the genetic algorithm computa-
tion leads to the choice of an individual from a fi-
nite population that has the maximum value of the
matching function f;.

The genetic algorithm makes it possible to find
the effective value of the volume of the signs space
V(X,), for neural network prediction models based
on a “black box” type and trained on a samples. This
type of space provides us with a prediction for those
combinations of values of input signs that were not
represented in the training sample, which is usual-
ly strongly limited by size.

Visualization and interpretation of classes

Strictly accurate mapping of characteristic and
general signs of object classes is a challenged issue
when visualizing solutions in multidimensional
continuous spaces [20—27]. It is required to analyze
N,(N,— 1)/2 slices to unambiguously identify a
class based on an OLAP cube.

Since the information about the combinations
of gradations of the initial features for any class is
contained in a compressed form, in a trained dis-
crete knowledge carrier with binary measures, we
can use a rectangular map to form a unique image
of each class, which use a mesh structure of grada-
tions.

After coding in a discretized multidimensional
space of signs, the images of classes reflects the
most significant, integral indicators of classes and
smooth out the insignificant signs, which observed
on image maps, representing the ranges of changes
in signs and signals at the input of the output neu-
ron with varying signs.

The class image for each output neuron of the
trained network can be mapped in grayscale (Fig. 5)
or in 3D. We used the values of linear combinations
of inputs coming to the output neurons and the val-
ues of the corresponding activation functions. This
mappings introduce the proportion of the training
sample, objects belonging to the given m-th class
(also known as estimation of the “conditional proba-
bility” of the class), in which the j-th characteristic
lands into the i-th interval.

We use a bar chart (Fig. 6) to assess the inter-
val of changes in a signs within the considered m-th
class. The columns formed by independently vary-

Q

X; Xy X3 X; X X3

Q3 Qy

X; X X3 X; X2 X3

B Fig. 5. Class images representing signals at the input of the output neuron when signs vary

X, X2 X3 X, X2 X3

X, X2 X3 Xy X2 X3

B Fig. 6. Class images representing ranges of signs variation in a normalized space

N°6,2020 N\

VNH®OPMALIVIOHHO-YMNPABASIOLLIVIE CUCTEMBI N\ 17



7 VH®OPMAUMOHHO-YNPABASIIOLLVIE CUCTEMbI /

ing the value of each initial signs at the input of the
multilayer neural network (with the set average val-
ues of the remaining signs), when the m-th output
neuron is triggered. Input indicators (showings) are
normalized linearly to the interval 0...1.

Variation ranges of signs at the input of a trained
neural network, at which triggered a neuron of the
classQ,is: X; =0...0.4, X, =0...0.57, X5 = 0.0...0.59.

Triggered a neuron of the class Q, is:
X;,=0.50...1.0, X, =0...0.47, X5 = 0.0...0.43.

Triggered a neuron of the class Qg is:
X;,=0..0.86, X, =0..0.89, X; = 0.63...1.0.

Triggered a neuron of the class €, is:
X;=0.17...1.0, X, = 0.30...1.0, X3 = 0.31...0.77.

As it was disclaimed early, after the coding pro-
cess, we get the images of the classes that rendered
using rectangular maps with a mesh structure of
gradations. Note, that as we says early, this algo-
rithms use a discretized multidimensional signs
space. The maximum number of gradations T set
to according to the most featured (discrete) sign
(Fig. 7). We set “free” gradations, if the signs val-
ues in the class correspond to the highest grada-
tion — that’s need for the maximum conformity of
the images and a bar chart with continuous ranges
of signs values.

With the using of the cognitive images, we can
clearly determine the classes that have the mini-
mum and maximum values of integral indicators
(showings) — the sum of gradations for all bina-
rized signs Sg(Q2,) and the spread of signs values
R(©,)

Q) =argextr Sg(Q H
QY =argextr R(Q .

Small signs values have a class Q;, Sg(();)=
=1-(1 + 1+ 1)=3. Classes with the highest char-
acteristic values follows Qg m Q,: Sg(QQ5)=1-(1 +
+1)+2-A+1)+3-(1+1+1)=15,Sg(Q,)=
=1-1+2-1+1+1)+3-1+1)=14. Class Q,
has the smallest spread of signs values R(Q;)=
=+/1-1-1=1. Class with the highest spread of val-
ues Qg, R(Q3)=+3-3-1=3.

Using the convolution of the constructed images
(of classes) for the set gradations of signs, we can

produce a complete system of mathematical produc-
tion rules as follows:

“f (X; € X;y) and (X, € X,,) and (X3 € X3y),

then o € Q,”.

Thus, by varying the values of the descriptive
variables at the input of the trained neural net-
work, we used the genetic algorithm to extract a
discrete carrier of knowledge. This makes it possi-
ble to clearly interpret the classes using cognitive
maps and produce a full system of mathematical
production rules.

Conclusion

As it was noted before, the complex challenge of
verbalizing the output of deep learning and clearly
clarification of the obtained result (i. e. why the model
made those or another decisions) related to the using
of the common “black box” model — by the learning
process, the “knowledge” organized in form of set of
the weight coefficients of the links between neurons.

Neural network converts a continuous feature
space into a discrete set of classes by the process of
classification. For the interpretation of the trained
neural network decision, the data can be represent-
ed in an obvious form as mappings between combi-
nations of values N of signs of X, and the classes
Q,_, using discrete model of a multidimensional
OLAP cube with binary measures.

The discrete knowledge model is formed by the
process of adaptive quantization of a signs space us-
ing a common genetic algorithm. Individual’s chro-
mosome encrypts a set of values of all quantization
levels for measurable properties of an object. The
head gene group define the structure of the signs
space, the remaining genes responsible for config-
uring the quantization of the multidimensional
space, where each gene in charge for one quantiza-
tion threshold of a given variable.

The genetic algorithm makes it possible to find
the effective value of the volume of the signs space
V(X,), for neural network prediction models based
on a “black box” type and trained on a samples. This
type of space provides us with a prediction for those

Q Qg
X3 X3
X2 Xz
X1 X4
X1 X» X3 X1 X» X3

Q3 Qy
X3 X3
X2 X2
X1 X1
X1 X» X3 X1 X» X3

B Fig.7.Images of classes after encoding in a discretized multidimensional signs space
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combinations of values of input signs that were not
represented in the training sample, which is usual-
ly strongly limited by size.

Using the proposed discrete model we can form
a unique images of each class based on rectangular
maps with cellular structure of gradations. Maps
reflect the most significant, integral indicators

(showings) of classes, which strongly determine the
location and size of a class in multivariate space.

Thus, we can form a complete set of mathemat-
ical production decision rules, both in the process
of directly interpreting a discrete model of a multi-
dimensional OLAP cube, and on the convolution of
class images for signs gradations.
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I/IHTepnpeTauna OﬁyquHOﬁ Heﬁponnoﬁ CeTH Ha OCHOBE reHeTUYeCKUX AJITOPUTMOB

B. 1. IluMeHOB?, JOKTOP TeXH. HAYK, mpodeccop, orcid.org/0000-0002-7228-3009, v_pim@mail.ru

H. B. IIumenoBY, KaH/. TexH. HAYK, JOLeHT, orcid.org/0000-0002-1954-6463

aCaukTr-IleTepOyprecKuii rocyfapcTBeHHBIN YHUBEPCUTET IPOMBIIIJIIEHHBIX TeXHOJIOTUH 1 Ausaiina, Bb. Mopckasa ya., 18,
Caukr-IleTepbypr, 191186, P

STocymapcTBeHHBINH YHIBEPCUTET MOPCKOT0 1 pedHoro ¢guora uM. agmupaia C. O. Makaposa, [[BuHcKas yi., 5/7,
Caukr-IleTepbypr, 198035, P

Beenenue: cTpaTerus pasBUTHS UCKYCCTBEHHOI'O MHTEJJIEKTA [IPEII0JaraeT IpIUMeHeHre aIrfOPUTMOB IVIYOOKOT0 MAIIUHHOIO 00yIeHI
JJ1 PeIlleHns 3aia4 PasInIHOro Kiracca. O6yueHHbIe HA KOHKPETHBIX Habopax JaHHBIX HeHPOCeTeBbIe MO TPYAHO NHTEPIPETUPOBATE, YTO
CBAI3AHO C IOAXOJOM «U€PHOT'0 ANNKA», KOTa 3HAHUA (OPMUPYIOTCA KaK Ha00p BECOBBIX K0(h(DUIEHTOB cBA3ell Mexkay Heliponamu. Ilens:
paspaboTKa JUCKPETHOM MOJeIN 3HAHUH, IPeACTaBISAIOIeH B ABHOM (DopMe 3aKOHOMEPHOCTH 06paboTKu MHMOPMAIIUY, 3aKOJUPOBAaHHBIE CBA-
3AMU MeKAy HelipoHaMu. MeToasl: afalTUBHOE KBAHTOBAHME IIPUBHAKOBOTO IIPOCTPAHCTBA C TIOMOIIbI0 T€HETUUECKOTO aJITOPUTMA U IIOCTPO-
eHue AUCKpeTHON Mogenu MHoromeproro OLAP-ky6a ¢ 6uHapHbIME MepaMu. Pe3yasTaThl: TeHeTHUEeCKUil aIrOPUTM BBIITOJIHAET U3BJIEUEHE
13 00yUYEeHHOM HEeIIPOHHOII CeTU AUCKPETHOI'0 HOCUTEJISA 3HaHUi. B XxpoMocoMe ocobu 3arndpoBbIBaeTCA KOMOMHAIINA 3HAUEHNI BCEX YPOBHEH
KBAHTOBAHUA JJI NBMEPUMBIX CBOUCTB 00beKTa. I'0JI0BHAA reHHAA IPYIIIA OIIPeesaeT CTPYKTYPY IIPU3HAKOBOI'O IIPOCTPAHCTBA, OCTAJILHBIE
TeHBI OTBEYAIOT 32 HACTPOIKY KBAHTOBAHIA MHOTOMEPHOTO IIPOCTPAHCTBA, Ife KaXK/IbIi T'eH OTBEUAET 3a OJUH ITOPOT KBAHTOBAHUSA 3aJaHHOM
nepeMeHHo#. [luckperHas mogesnb MHoromepHoro OLAP-ky6a ¢ GuHapHBIMU MepaMU IIPECTaBJISAET B ABHOU (hopMe CBAZU MeKAy KOMOMHA-
IUAMYU BHAYEHUH IPU3HAKOB 00beKTOB 1 Kiaccamu. IIpakTnyeckas 3SHAUMMOCTB: IS HEHPOCETEBBIX MOl IPeACKasaHNu A, IIOCTPOEHHBIX
1o obyuarolieii BEIOOPKe, TeHEeTUUECKU aJIrOPUTM JAaeT BO3MOKHOCTL HAlTH 9(h(heKTUBHOE 3HaAUEeHNE 00HeMa IIPOCTPAHCTBA IPU3HAKOB JIJIf
TeX KOMOMHAIUI 3HAUEHUI BXOAHBIX IIPU3HAKOB, KOTOPBIE He OBbLIU IIPECTABICHBI B 00yUarolieil BHIOOPKe, 0ObIYHO OTPAaHUYEHHOII B 00beMe.
C IIOMOIIBIO IIPEAJIOYKEHHOH ANCKPETHON Mozesn (OPMUPYIOTCA YHUKAJIbHBIE 00pasbl KaXKJ0r0 KJacca Ha OCHOBE IIPAMOYTOJIBHBIX KapT, B
KOTOPBIX UCIIOIb3yeTcs SUercTas CTPYKTypa rpaganuii. KapTe! orpaskaior Haubosee CyIiecTBeHHEBIE, HHTeTPaIbHbIe IIOKAa3aTe N KIaccoB, KO-
TOpBIE OIIPeeIAI0T MECTOIIOIOMKEeH e 1 Pa3dMep KJacca B MHOTOMEPHOM IpocTpancTBe. Ha 0CHOBe CBePTKY IIOCTPOEHHEBIX 00pa30B KJIacCoB IS
YCTAaHOBJIEHHBIX I'DAIAIi IPU3HAKOB 3aIIMCHIBAETCA ITOTHAS CUCTEMA IIPOAYKIIMOHHBIX PEITAOIINX IIPABUIL.

KualoueBsie croBa — Kiaccuuranusd, rIy0boKoe MaIInHHOe 00yUueHNe, HeHPOHHAA CeTh, TeHETUUECKUIl aJrOPUTM, MHOTOMEPHBIH
OLAP-ky0, pelaoiliiee IpaBujio, CeMaHTHUECKasa UHTEPIIPeTAI[isl, BU3yaJInu3alusa KJIacCoB.
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