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Introduction: To solve the Helmholtz equation is important for the branches of engineering that require the simulation of wave
phenomenon. Numerical methods allow effectiveness' enhancing of the related computations. Methods: To find a numerical solution
of the Helmholtz equation one may apply the boundary element method. Only the surface mesh constructed for the boundary of the
three-dimensional domain of interest must be supplied to make the computations possible. This method's trait makes it possible to
conduct numerical experiments in the regions which are external in relation to some Euclidian three-dimensional subdomain bounded
in the three-dimensional space. The later also provides the opportunity of not using additional geometric techniques to consider the
infinitely distant boundary. However, it's only possible to use the boundary element methods either for the homogeneous domains
or for the domains composed out of adjacent homogeneous subdomains. Results: The implementation of the boundary element
method was committed in the program complex named Quasar. The discrepancy between the analytic solution approximation and
the numerical results computed through the boundary element method for internal and external boundary value problems was
analyzed. The results computed via the finite element method for the model boundary value problems are also provided for the
purpose of the comparative analysis done between these two approaches. Practical relevance: The method gives an opportunity
to solve the Helmholtz equation in an unbounded region which is a significant advantage over the numerical methods requiring the
volume discretization of computational domains in general and over the finite element method in particular. Discussion: It is planned
to make a coupling of the two methods for the purpose of providing the opportunity to conduct the computations in the complex

regions with unbounded homogeneous subdomain and subdomains with substantial inhomogeneity inside.
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Introduction

One of the most vastly used instruments applied to
solve differential equations is the boundary element
method (BEM) because it’s possible to use BEM for
the computations in regions with infinitely distant
boundaries in order to find a solution to the so-called
external boundary problem. This is particularly im-
portant for the problems of wave propagation.

The method has been in use for a long time. Its
first mentions may be found in [1-5]. These papers
consider the collocation version of BEM. In present
days, the versions of BEM based on Galerkin’s form
are much more preferred. Probably, the first papers
describing these versions are [6—9].

There’re two versions of BEM: direct and indi-
rect. The direct method is based on the so-called
reciprocity relation, which may be seen while ana-
lyzing problems based on the concept of fundamen-
tal solution of differential equation. For example,
the classic work describing BEM in the mentioned
context is [10]. The indirect approach of BEM ap-
plied to the problem of acoustics is described, for
instance, in [11]. In our work, the direct version of
BEM is under consideration.

The classic disadvantage of the original ver-
sions of BEM is the necessity to work with dense
matrices of SLAE produced by the method. Hence
there are many different techniques helping to
minimize the asymptotic complexity of BEM while
working with such matrices. The techniques are
the method of T-spline curves[12], the wavelet ap-
proach [13—16], the adaptive cross-approximation
[10, 17-19] and the fast multipole method [20—
24].

It is also worth mentioning that BEM is only
capable of handling the cases of the domains that
can be decomposed into subdomains with homo-
geneous media. However, it’s possible to get rid of
this problem by coupling BEM with FEM (finite ele-
ment method) so that significantly inhomogeneous
domains are handled by the FEM part and the re-
maining domains are taken care of by BEM. Such
coupling is done in [25—29].

The Helmholtz equation of acoustics

The wave equation in a homogeneous medium Q
is of the form:
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62u(x, t)

Au(x, t)= 2o

+F(x,t), xeQ. 1)

The parameters of (1) in terms of acoustics can
be seen as follows: u — velocity potential; x —
point-vector in space; ¢ — time; v — speed of sound
in the medium; F — intensity-function of volume
sources of sound; Q@ — the homogeneous domain
where the problem (1) is to be solved [30].

For the boundary I' of the domain Q let the fol-
lowing be true:

F:F1 Urz, Fl ﬁrz =d.

The boundary conditions on I'; and I', are writ-
ten as follows:

u(x, t) . =Fp(x 1); (@)
ou(x, t
%XEH = Fy(x, t), 3)

where n is a normal vector defined on I" and external
with respect to Q.

Suppose for the functions in (1)—(3) the following
representation is justified:

F(x, t)=F(x)e""; @)
Fp(x, t)=Fp(x)e™"; (5)
Fy (x, t)=Fy (x)e', (6)

where i designates the imaginary unit; ® is the
angular frequency.
As a corollary of (4)—(6):

u(x, t):u(x)eiwt. (N

Substituting (7) into (1) one derives the
Helmholtz equation:

Au(x)+F*u(x)=F(x), k=—. ®)

The boundary conditions then may be represent-
ed accordingly:

u(x)|xerl =Fp(x); 9)
ou(x) ~
an xerz = FN (X). (10)

The boundary element method

The method exploits the boundary representa-
tion of the unknown function u (8) implementing
the concept of the so-called trace operators. Let us
define the trace operators for the domain Q: the
Dirichlet trace yg and the Neumann trace y7":

(ygu)(x): lim u(r), xeT; (11)
reQ,r->x
(y?u)(x): }Zim n(x)-Vu(r), xel, 12)

where n is the unit normal vector specified for the
point x on I" and it’s directed to the outside of Q.

The resulting function of the Dirichlet trace
operator applied to the function u 1s called the
D1rlch1et data and is designated as yo u, whereas
yl u stands for the Neumann data respectively.

“The solution u to the equation (8) inside Q can
be expressed by using Green’s theorem and the trace
operators defined in (11)—(12) [10]”

u(y)= _[ Gr(y, x)vTu(x)dsy —

xel”

= [ vixGi (v, x)v5u(x)dsy, (13)

xel’

where G, is the fundamental solution of the
Helmholtz equation:

s
Gr(y, x)=—> (14)

4rfx—y]
and || is the Euclidian norm in the three-

dimensional space.

By applying the two trace operators (11), (12)
to the equation (13), one can formulate a system of
integral equations with the unknowns: y(g)zu u yiu.
To formally define the mentioned system, the
half-integer Sobolev spaces are introduced:

H1/2 {g|g Yof,fGHl( )}

H—1/2 {g|g Vs f,fEHl( )}

where HY(Q) is the Sobolev space of differentiable
functions defined on Q. For the details related
to the half-integer Sobolev spaces see [27]. Let us
introduce as well the linear boundary integral
operators V,, K,, Kgdd and D,, following [10]. The
single layer operator V,, is defined as follows:

(Vif )y _[Gk ¥, x)f(x)dl,

For what follows next, suppose that F=0, so V. HY2(r) - gY2(T
there’s no volume sources of sound waves in Q. ke ( ) ( )’ (15)
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the adjoint double layer operator (K wf ):

(Krf)(y IYl,ka ¥, X)f(x)dTly,
r

K, :H Y2(r) > HY2(1), (16)
the double layer operator K ,:

(ka J. Y1 XGk(y’ )f( )dsx,
xell

Ky, :HY?(1) > HY?(1), an

and the hypersingular operator D,;:

(Daf)(¥) =71y [ 1ixGr(y> %)f(x)dsy,

xel’

Dy, : HY*(T)—» HY*(T). (18)

Here’s also the definition of the duality pairing
between the half-integer Sobolev spaces HY/2 and
H1/2;

(u, wy= .[ u(x)w(x)dsy, ueHY2 weH Y2, (19)

xel’

Using relations (15)—(18), the Galerkin rep-
resentation of integral equation can be obtained in
the following form [10]:

Vyitu, wy = <@I +K,, )yglu, w> Ywe H Y2(T); (20)
(DyyGus v) =<(§I—K;;jy?u, v>, voe HY2(T). (21)

If there’s only the Dirichlet data function defined
on I' then through the substitution of the known da-
ta into (20) one derives the variational problem with
the Neumann data as the only unknown. The varia-
tional problem (21) allows determining the Dirichlet
data when the Neumann data is predefined. The lat-
er problem is solvable and has a unique solution on-
ly when the number —£2 is not an eigenvalue of the
Laplace operator [28]. When the two conditions are
mixed on the border of Q then a variational problem
has to be solved. This problem can be formulated in
terms of the Steklov — Poincare operator [10]:

(SpY6u, v) =iy, v), (22)
where S, is defined as follows:

S, =Dy, +@I+K,;jv,;1 (%Iﬂ{k} 23)

and the test function vis from the space of functions,
that are equal to zeroonI7.

The discretization of (20) and (21) is possi-
ble via projecting the unknown data to the finite
dimensional subspaces U, ([,)c HY2(T,) =
Wy, (T )< HY/2(T},), where I, may stand for a sur-
face mesh which geometry approximates I, & is a
discretization parameter.

Let the dimension of U,(I';) be equal to N and the
dimension W, (I';) be equal to M respectively. Let al-
so g,, p=1, N be the basis functions in U,(I")), Wes
g =1, M — the basis functions in W,(I’;). In order
to construct the corresponding discreate system,
one can approximate the Dirichlet and Neumann
data using the linear combinations of the vectors
belonging to the corresponding finite-dimensional
subspaces:

rou(x Z 0pgp(x), gp €Uy (I); (24)

viu( qu g (%), wg Wy (T). (25)

Substituting (24), (25) into (20), (21) one derives

a SLAE:
M AN 26
@ olafle) @

where o is a vector of coefficients o in decomposition
(24); B — vector of coefficients Bq in (25). SLAE
blocks in (26) can be expressed as follows:

Vi =(Vyw;, wj), i, j=1, M; 27

DL,J:<Dkgl9 g])y l,]:l, N; (28)
K, = <[;I+Kkjgl, ]>,z—1 N, j=1, M; (29)
® =(Fy, &), i=1, N. (30)

The indirect integration of the function G,
stands in the formulae (27)—(29) because of the
definitions (15)—(18). This is why the computation
of (27)—(29) is not trivial. The traditional methods
of numerical integration are inapplicable to the
problem of computing the correct values because
the fundamental solution G, (x, y) is not continuous
when the arguments x and y are equal. Different
solutions to this problem are suggested in [29—-35].

FEM and BEM comparison conducted
via model problems

As a part of the computer program implemen-
tation of BEM, a mesh composed out of triangular
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elements was exploited to approximate the bound-
ary of the computational domains specified for the
model problems. The basis functions g, of W,(I7;)
used to approximate the Neumann data were cho-
sen to be piecewise constant functions equal to one
only on their corresponding local supports that are
triangles of the mesh I',. The basis functions w,
of U,(I';) are piecewise linear functions. See more
about the basis functions in [10]. For the finite el-
ement method program implementation, the quad-
ratic basis was chosen. See more about quadratic
basis implementation for the Helmholtz equation
solved via FEM in [36].

To test the efficiency of the computation strate-
gies, let us consider the model problems described
below.

The first model problem geometry looks like this:
in a closed domain of a cube with 20 m length of its
edges, a ball of radius equal to 1.5 m and a central
point coincident with the center of the cube is situat-
ed. The wave number % in (8) is equal to 2 m™1, which
corresponds to the case of the sound speed equal
to 400 m/s and the frequency equal to 127.32 Hz.
The boundary conditions for all the boundary parts
can be expressed as follows:

u(x)| . =cos(kx), (31

where x is a coordinate of x along OX axis. Every
axis of the Cartesian coordinate system is parallel
to one of the edges of the cube. It’s clear that with
conditions (31) the corresponding analytic solution
of (8) takes a form

u(x)=cos(kx) (32)

everywhere in the computation domain.

The surface mesh (Fig. 1) used for BEM compu-
tations consists of 3284 elements. The number of
nodes is equal to 1646. The volume mesh (Fig. 2)
used for the FEM computations is composed out
of 17133 elements. The corresponding number of
nodes is 26007.

B Fig.2. An example of the cube mesh used for the FEM
computations

Figure 3 illustrates the curves of relative dis-
crepancies of the solutions resulted from the im-
plementation of numerical approaches in relation
with the analytic solution. The values are given at
the points situated along the OX axis. The value of
relative discrepancy is equal to:

u(x) - (x)

*
maxiu

As one can see, the solution resulted from BEM
turns out to be more accurate than the one obtained
with FEM.

Let’s solve the problem for which the analytic
solution is known. An incident wave in a medium is
represented as follows:

¥ ei(—k~x)

inc = >

where i is an imaginary one; k is the direction of
the incident wave; x — radius vector characterizing

B Fig. 1. An example of the surface mesh of the sphere
used for the BEM computations

1 .
0 .
B
_2 E
_3 E
2 4 6 8 10
x, m
— BEM — FEM
—— BEM, with subdivision —— FEM, with subdivision

B Fig. 3. The numerical errors’ curves produced for the
plane wave solution compared with the numerical methods’
results working with the original mesh and its subdivision
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the position in space. The spheric boundary of the
ball is the source of the scattered wave ¥, .. The sum
of ¥,. and ¥,,, is denoted as Y. Let the Dirichlet
condition be imposed on the sphere:

Pl =Wine + Wclp =0,

or

Yselp, ==Yinelr =0, (33)

sc |rs

where I, is the spheric boundary of the ball.
The scattered wave should then take a form
[87]:

o0

Yee(x)= D (2m+1)i"™B, (cos(e)) x

m=0
(o () 220 )| ). 01

where P, — the Legendre polynomial of order m;
0 is the angle between x and k; j,, — the spherical
Bessel function of order m; £ — the modulus of
k or its length; a — the sphere radius; h,, — the
spherical Hankel function of order m.

To compare (34) with the numerical solution of
the Helmholtz equation, one has to take as an ap-
proximation of ¥, .(x) a sum composed out of a finite
number of terms in (34):

Yk (x)= f: (2m+1)i"" P, (cos(@))x

m=0

x [jm (kr)—%hm(kr)}ex'k. (35)

To make such comparison possible, the value of
K was chosen to be equal to 20, which provides six
digits of the approximation accuracy.

Let the value of £ be equal to 0.1 m™. To be able
to solve this problem, FEM requires the area of sig-
nificant volume to be set up. In our framework, it’s
a cube with the edge length equal to 20 m. That’s
why the FEM geometry of the computation domain
is left unchanged in comparison with the previous
problem description. The cube boundary also re-
quires the Dirichlet condition to be homogeneous.
The BEM variation of this problems is solved in the
open region.

Figure 4 illustrates that the numerical dis-
crepancy grows for FEM when the point argument
approaches the border of the computation domain
that is far away from the sphere. The set of points
used for the comparison (see Figs. 3 and 4) is the
same.

Figure 5 demonstrates the curves of relative
discrepancy only for the case of BEM computations.

0.10 A
0.08 1
0.06 -
=X
0.04 1
0.02 A1
0.00 A
2 4 6 8 10
x, m
— BEM — FEM
BEM, with subdivision —— FEM, with subdivision

B Fig. 4. The scattered wave numerical error curves

0.008 1

0.002 1
0.001

0.000 1 /\
0.001 \/

%

0.002 A
2 4 6 8 10
x, m
— BEM BEM, with subdivision

B Fig. 5. The comparison for the scattered wave with
the wave number equal to 2 m~1

FEM requires a significant number of volume ele-
ments in case of the border distant from the sphere
when £ = 2 m™l. That’s why we were unable to ob-
tain adequate FEM results.

Conclusion

The program implementation of the BEM allow-
ing the Helmholtz equation to be solved in bounded
and unbounded regions has been developed. The va-
lidity of this approach has been tested for internal
and external Dirichlet problems. The comparison
with analytics demonstrates effectiveness of BEM
relatively to FEM because the latter requires a fine
mesh to be used in the computation domains of sig-
nificant volume.
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Hcnonp3oBanue MeTOJa TPAHUYHBIX 3JIEMEHTOB IIPU PEellIeHN! YPABHEHU A I‘EJIBMI‘OJIBIIa JJIA 3aJaYi aKyCTUKH
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BBenenue: perreHve ypaBHeHUsA ['eIbMroJiblia IIpeACcTaBIsgeT NPaKTUUEeCKYI0 3HAYNMOCTD AJIsl OTpacjieil, B KOTOPBIX TPeGyeTcs Mo-
e ITUPOBaHMeE BOJHOBBIX IIPOIleccoB. VICIOIb30BaHNe YUCIEHHBIX METOOB IT03BOJISET HOBBICUTH 9(P()EKTUBHOCTD IPOBOJUMBIX PACUETOB.
MeTozapl: 111 YUCJIEHHOTO PellleHn A YypaBHEeHU A ['eIbMToJIbIla MOYKHO UCIIOJIB30BATh METO/| 'DAHNYHBIX 9JIeMeHTOB. [[Jid ero mpuMeHeHUA
HEeo0XO0AMMO IIOCTPOUTD TOJIHKO IIOBEPXHOCTHYIO CETKY IPAHUIIBI TPEXMEPHOM 00JI1aCTH, B KOTOPOI peltaercs 3ajada. JlaHHas 0cCOOeHHOCTh
TI03BOJIAET IIPOU3BOAUTE PACUEThl B TOM UKCJIe U BO BHEIIIHEH 06JIaCT! IO OTHONIEHNIO K HEKOTOPOII OrpaHUYeHHO 3aMKHYTOH moxo0a-
CTU TPEXMEPHOTO eBKJIN/I0BA IIPOCTPAHCTBA, YTO TAKIKE JaeT BO3SMOYKHOCTb O0XOAUTHCS 03 JOIOJTHUTEIbHBIX T€OMETPUYECKUX ITOCTPOE-
HUM, HeOOXOAUMBIX JJIs1 yyeTa 6ECKOHEUHO yaaJeHHo# rpaHutbl. OJHAKO pacueT MeTOAOM I'PAaHUYHBIX 3JI€MEHTOB BOSMOYKHO IIPOBOJUTH
TOJIBKO JJIsI OMHOPOAHOI 06siacTu inbO IJIA MHOYKECTBA CMEKHBIX OJHOPOAHBIX obJiacTeli. Pe3ynapraTsl: paspaboTaHa peaansaius MeToaa
TPAaHUYHBIX 3JIEMEHTOB [JIS PellleHUA YpaBHeHUA ['eIbMrosIblia IPUMEHUTEIbHO K 3a/jaUe aKYCTUKY B pPAMKaX IPOrpaMMHOT0 KOMILIEKca
Quasar. IIpoaHaIM3UPOBAHO OTKJIOHEHNE Pe3yJIbTaTOB, MOJYUYEHHBIX METOOM I'DAHUYHBIX 3JIEMEHTOB JIJIsi BHYTPEeHHEe! 1 BHeIIHel Kpa-
eBBIX 3a/la4, OT IPUOJMIKEHHON aHAIUTUKU. [IpUBOAATCS TaKKe Pe3yJIbTaThl, MOJYUYEHHBIE IIPU PEIIeHNN MOJAEJIbHBIX 3aJa4 METOAOM
KOHEYHBIX 3JIEMEHTOB, JIJIs1 CDABHEHUA ABYX PA3JINYHBIX 04X0/0B. [IpakTHUecKas 3HAUMMOCTD: JaHHBIA METO/| II03BOJIAET PEIIaTh yPaB-
HeHue ['eIbMIoJIblla B HEOTPaHMYEHHOM 06J1aCTH, YTO ABJISETCSA OOJBIIUM IIPEUMYIIECTBOM 10 CPABHEHUIO C YMCJIEHHBIMU METOJaMU, TPe-
OyOIUMU 00'EMHOM JUCKPETU3aIlNN PACUeTHOM 001aCTH, 1, B YaCTHOCTH, C METOIOM KOHEUHBIX djieMeHTOB. O0CyKaeHune: B faTbHeNeM
MJIaHUPYETCA OCYIeCTBUTh KOMOMHUPOBAHNE METOJOB TPDAHNYHBIX ¥ KOHEUHBIX dJIEMEHTOB /I PACUETOB B HEOTPAaHUYEHHO 1010061acTH
C IIOCTOSAHHBIMY IIapaMeTPaMu CPebl ¥ B PACUETHBIX MOA00JaCTAX, Ubs CPefia ABJIAETCSA CYIIeCTBEHHO HEOJHOPOIHOA.

KiroueBsplie cii0Ba — MeTOJ FTPAHUYHBIX 9JIEMEHTOB, METO/] KOHEUHBIX 3JIEMEHTOB, ypaBHeHUe ['elbMrosibiia, aKkyCTHKA.
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