yd YNPABAEHVE B MEANUNHE N1 BUONOIM N /

UDC 004.895
doi:10.31799/1684-8853-2020-5-70-79

Comparative assessment of text-image fusion models

for medical diagnostics

A. A. Lobantsev?, Programmer Engineer, orcid.org/0000-0002-8314-5103

N. F. Gusarova?, PhD, Tech., Associate Professor, orcid.org/0000-0002-1361-6037, natfed@list.ru
A. S. Vatian?, PhD, Tech., Associate Professor, orcid.org/0000-0002-5483-716X

A. A. Kapitonov®, Post-Graduate Student, orcid.org/0000-0003-1378-1910

A. A. Shalyto?, Dr. Sc., Tech., Professor, orcid.org/0000-0002-2723-2077

a]TMO University, 49, Kronverksky Pr., 197101, Saint-Petersburg, Russian Federation

bBelarus State Medical University, 83, Dzerzhinski Ave., 220116, Minsk, Republic of Belarus

Introduction: Information overload and complexity are characteristic of decision-making in medicine. In these conditions
information fusion techniques are effective. For the diagnosis and treatment of pneumonia using x-ray images and accompaniyng
free-text radiologists reports, it is promising to use text-image fusion. Purpose: Development of a method for fusing text with
an image in the treatment and diagnosis of pneumonia using neural networks. Methods: We used MIMIC-CXR dataset, the SE-
ResNeXt101-32x4d for images feature extracting and the Bio-ClinicalBERT model followed by ContextLSTM layer for text feature
extracting. We compared five architectures in the conducted experiment: image classifier, report classifier and three scenarios of
the fusion, namely late fusion, middle fusion and early fusion. Results: We got an absolute excess of metrics (ROC AUC = 0.9933,
PR AUC = 0.9907) when using an early fusion classifier (ROC AUC = 0.9921, PR AUC = 0.9889) even over the idealized case of text
classifier (that is, without taking into account possible errors of the radiologist). The network training time ranged from 20 minutes
for late fusion to 9 hours and 45 minutes for early fusion. Based on Class Activation Map technique we graphically showed that
the image feature extractor in the fused classification scenario still learns discriminative regions for pneumonia classification
problem. Discussion: Fusing text and images increases the likelihood of correct image classification compared to only image
classification. The proposed combined image-report classifier trained with the early-fusion method gives better performance
than individual classifiers in the pneumonia classification problem. However, it is worth considering that better results cost
the training time and required computation resources. Report-based training is much faster in training and less demanding for

computation capacity.
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Introduction

The richer the information flow is, the more po-
tential opportunities it provides for the organization
of effective control, but at the same time, the more
difficult it is for the decision-maker to review it and
bring it together into a single whole. Therefore, in
conditions of information overload and complexity,
information fusion techniques are increasingly used.
At the substantive level, information fusion can be
described as combining complementary information
from different sources concerning the same object or
scene to obtain complex information representation
providing more effective control. In the literature,
fused sources are often in different modalities, and
the process itself is called multimodal fusion.

A number of definitions of information fusion
are presented in the literature [1-6], emphasizing
various aspects of this process. In the context of
this article, it is vital to highlight the following as-
pects:

— information fusion aims to maximize the de-
cision maker’s or expert systems performance;

— sources of information for information fusion
can be not only physical sensors but also social media
and human intelligence reports (expert knowledge);

— information fusion is a hierarchical process
and can occur at multiple abstraction levels (meas-
urements, features, decisions).

Multimodal fusion is widely used in various prac-
tical tasks, such as web-search [7], image segmenta-
tion [8-10], image and video classification [11, 12],
emotion recognition [13, 14], analysis of social media
content [15], audio-visual speech enhancement [16],
etc. With the development of high-tech diagnostic
tools, multimodal fusion is becoming increasingly
prominent in medicine. Here, such areas are actively
developing as predicting the patient’s health based
on genomic, transcriptomic, and lifestyle informa-
tion of one [17] as well as predicting the development
of certain diseases [18, 19]. For instance, multimod-
al fusion in neuroimaging is actively developing
these days [20—24]. It combines data from multiple
imaging modalities, like positron emission tomogra-
phy, computed tomography, and magnetic resonance
imaging, to overcome the limitations of individual
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modalities. In this case, an artificially combined im-
age of the zone of interest in the brain is constructed
as subject to further visualizing. In the clinical pro-
cess, the attending physician acts as an analyst and
interpreter of those images.

It is vitally important to make the right decision
as fast as it is possible, but this is implementable on-
ly if there are adequate diagnostic tools. As we are
trying to solve the classification of pneumonia pres-
ence problem we have to build on the diagnostic tools
used in these cases. Chest x-ray (CXR) is mandatory
for lung diseases, so it is hard to overemphasize its
importance. Developing multimodal fusion-based
technologies may improve such concerns of the CXR
as the time gap from getting the image to taking the
clinical decision and accuracy of the image interpre-
tation. Both these possible improvements should be
based on the experience of interpreting CXR’s gained
by professional radiologists because they are carriers
of context and highly specialized knowledge.

Here it is impossible to diminish the significance
of the interpretations performed by radiologists.
They are carriers of context and highly specialized
knowledge that the attending physician does not
have. Their interpretation is presented in the form of
a textual report. However, like any human opinion,
these reports are subjective and error-prone [25, 26].

On the other hand, today, a large and growing
role in interpreting medical images is assigned to
machine learning-based tools. The results of their
work can be, for instance, segmented images with
highlighted malignant zones or other areas of in-
terest, the manifestation of the alleged diagnosis,
etc. However, the use of machine learning in medi-
cine encounters well-known problems, including the
small volumes of available datasets, which do not
allow to form a full-fledged context for learning,
and the uninterpretable conclusions (the so-called
black-box problem). Hence, medical image process-
ing results with machine learning-based tools can-
not be regarded as objective and error-free.

In this regard, for the diagnosis and treatment
of pneumonia presence, it is promising to use
text-image fusion in order to provide the attending
physician with information for making a decision
in the most reliable, visible and at the same time in-
terpretable (not “black-box”) form. The article dis-
cusses the emerging challenges, and also proposes
an approach to their solution based on the specific
problem , namely the classification of pneumonia
presence using x-ray images and accompaniyng
free-text radiologists reports.

Background and related works

The analysis of reviews [6, 17, 20, 21, 27, 28] de-
voted to the problem of multimodal fusion allows us

to highlight the main aspects that determine spe-
cific technological solutions for the fusion of imag-
es and texts in medicine:

— features the fusion is based on;

— IT architecture;

— and fusion level.

With regard to images, [21] divides features the
fusion is based on into three groups: based on spa-
tial domain, based on transform domain, based on
deep learning. Features of the first group are the
result of spatial (per-pixel) image segmentation,
which can be performed according to various rules.
For example, in [29, 30], the characteristics of in-
tensity, hue and saturation are used for this. The
selected features can be semantically labelled using
anatomical brain atlases [31], special visual indexes
[31] or ontologies [32]. The ontology describes the
medical terms via a controlled vocabulary, where
the conceptualizations of the domain knowledge are
constructed as an OWL (Ontology Web Language)
model.

Features of the second group are the result of
transforming the source image to spatial-frequency
domain which gives subband images with different
scales and directions [33—35]. For example, in [35],
sparse representation algorithm is used for merg-
ing low frequency subbands.

Features of the third group are formed directly
by the neural network during the learning. As we
approach the network’s output layers, they reflect
the image’s structure with an increasing degree of
generality, thereby constituting its multi-level ab-
stract representation [36]. Nevertheless, as a rule,
they stay semantically uninterpretable up to the
last (decision) network level [7].

As for the text, the components of the text it-
self (words, terms, phrases, etc.) [37] or embed-
dings which transfer text information into a dense
representation of the semantic space [38, 39] can
be used as features. However, the texts of medical
reports demonstrate the high syntactic and termi-
nological complexity and the ambiguity in word us-
age. As shown in [40], embeddings perform signifi-
cantly better in natural language processing tasks
for such texts.

As the analysis of literature sources shows and
as confirmed by the practice of radiologists [41],
it is challenging to establish a formal correspond-
ence between any fragments of medical images
and fragments of medical reports describing them
without involving semantic interpretation in both
domains. Attempts to use external structures for
this (such as visual indexes [31] or ontologies [32])
lead to significant losses in context, which in many
cases decreases the benefits of multimodal fusion.
Therefore, in recent publications, approaches relat-
ed to the use of features that preserve contextual
domain dependencies dominate [18, 19, 21-23], and
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the deep learning methods are used as a technolog-
ical base.

In tasks of semantic processing of medical texts,
contextual word embeddings, primarily BERT [38],
consisting of multiple layers of transformers which
use self-attention mechanism, show the best results
[40, 42, 43]. For example, for fusing text and speech
in depression detection [19] features were extract-
ed by BERT-CNN and VGG-16 CNN in combination
with Gated Convolutional Neural Network (GCNN)
followed by a LSTM layer. Additionally, [42] shows
that BERT performs better than traditional word
embedding methods in feature extraction tasks,
and the BERT pre-trained on the clinical texts
shows itself better than pre-trained on the general
domain texts.

Thus, as the analysis shows, today, the CNN +
BERT bundle is a popular architecture for joint
processing of information from semantically loaded
images and texts, a typical medicine case. However,
the question of the fusion level remains open.

In a semantic sense, the information fusion can
be performed at various levels of abstraction: meas-
urements, features, decisions [1]. In [44], these lev-
els correspond to various technological (architec-
tural) solutions: recognition-based (also known as
early fusion), decision-based (also known as late
fusion), and hybrid multi-level.

In [45], feature map (DenseNet) and embeddings
(BERT) are fused in an intermediate level using
cross attention mechanism and afterward are sup-
plied to fully connected layers. [12] compares the
effectiveness of three fusion options: early fusion
and late fusion combine information on the first
convolutional layer and the first fully connected
layer respectively, and slow fusion is a balanced mix
between the two approaches such that higher layers
get access to progressively more global information
in both dimensions. The third option revealed some
advantages and a strong dependence of efficiency
on the context (the content of the dataset). In [46]
and [8], the identical structures of late fusion with
different weighting options are implemented, with
opposite efficiency estimates obtained.

The work [9] explores several options for merg-
ing information of different modalities to highlight
objects in an industrial landscape, including late
sum fusion, late max fusion, late convolution fu-
sion, and early fusion. Early fusion showed the best
results; simultaneously, it was revealed that perfor-
mance is highly problem dependent. Similar results
were obtained in [10].

Authors of the work [23] implement a hybrid
multi-level fusion based on a particle swarm search
method to obtain optimal results. In [47], the au-
thors propose a specialized module for intermediate
fusion. The module operates between CNN streams
and recalibrates channel-wise features in each mo-

dality. This module is generic and, in principle,
suitable for any task, but, as the authors themselves
note, the optimal locations and number of modules
are different for each application.

Late fusion is rather popular in different appli-
cations [7, 18, 19, 37]. However, as noted in [47],
this can be mainly due to resource reasons: the
network for each unimodal stream can be designed
and pre-trained independently for each modality.
At the same time, late fusion can give rise to losing
cross-modality information [27]. On the other hand,
as the literature review reveals, the implementation
of early and, even more so, multi-level fusion is a
complex technological task and highly dependent
on the subject area.

In conclusion of the review, it should be said that
there are few works devoted directly to the fusion
of texts and images for the diagnostics of particu-
lar diseases [18, 48] — this emphasizes the urgency
of the problem.

Considering that the formation and training of
deep learning models that implement multimodal
merging for medical applications is a complex and
resource-intensive process, the authors set them-
selves the task of experimentally assessing the effect
of the fusion level on the effectiveness of the classi-
fication of pneumonia presence using x-ray images
and accompaniyng free-text radiologists reports.

Method and materials

Datasets and data preprocessing

We used MIMIC-CXR [49-51] — the extensive
publicly available chest radiographs dataset with
free-text radiology reports. The dataset contains
more than 300,000 images from over 60,000 pa-
tients. Labels were made with CheXpert labeler
[50]. We used pl10 and pl1 data split folders.

‘We have performed the data preprocessing as fol-
lows. For images, pixel values were normalized to
the range [0.0, 1.0]. Then, according to the DICOM
field “Photometric Interpretation (0028, 0004)” im-
ages pixel values were inverted such that air in the
image appears white (highest pixel value), while
the patient’s body appears black (lower pixel value).
Then, the scikit-image library [52] was used to histo-
gram equalization of the image to enhance contrast.
Histogram equalization involves shifting pixel val-
ues towards 0.0 or 1.0 such that all pixel values have
approximately equal frequency. All images were re-
sized to 224 x 224 px size. For reports, we excluded
all the text punctuation, and then used tokenizer
from the pretrained BERT model (see next section).

Models and training procedure
We consider the model’s architecture as a combi-
nation of feature extractors for image and text da-
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extracted features. Training pipeline describing
our training approach is shown in Fig. 1.

For images feature extracting we used the SE-
ResNeXt101-32x4d [53] which is the ResNeXt101-
32x4d model with added Squeeze-and-Excitation
[54] module. In order to get word embeddings to
feed the report feature extractor we used the pre-
trained Bio-ClinicalBERT Model [565]. The Bio-
Clinical BERT model was trained on all notes from
the MIMIC III database containing electronic
health records from ICU patients at the Beth Israel
Hospital in Boston [51].

The report feature extractor prepares report-lev-
el embeddings, which we train with the network we
called the ContextLLSTM layer. The ContextLSTM
includes two-layer stacked LSTM network, and one
fully connected layer. As input, ContextLLSTM takes
the sequence of word embeddings from the report.
Then, each embedding vector from the sequence is
stacked (concatenated) with the next N neighbours
in the sequence, forming the context vectors for
each entry of the sequence. We used context size
N=2.

We compare five architectures in the reported
experiment.

Image classifier. To classify pneumonia using
only x-ray images, on top of the image feature ex-
tractor, we placed a fully connected classification
layer followed by the softmax activation.

Report classifier. To classify pneumonia using
only reports, on top of the report feature extractor,
we placed a fully connected classification layer pre-
pended by the ReLU activation and followed by the
softmax activation.

Fused classifier. As a fusion model we used the
model consisting of the both feature extractors, fol-
lowed by the single fully-connected classification
layer. We consider three scenarios of the fusion:

Late Fusion: fully-connected classifier is train-
ing on top of completely frozen pre-trained image
and report feature extractors.

Middle Fusion: fully-connected classifier is
training on top of the pre-trained image and text
feature extractors with unfrozen last block of the
SE-ResNeXt101-32x4d image feature extractor and
the entire unfrozen ContextLSTM report feature
extractor.

Early Fusion: the entire network is trained
(except the BERT word embedding extractor) in-
cluding SE-ResNeXt101-32x4d feature extractor,
ContextLSTM report feature extractor, and the last
fully-connected classification layer.

To compare the model quality we use the met-
rics: accuracy, model sensitivity and model spec-
ificity (at 0.5 probability threshold), area under
ROC curve, area under precision-recall curve. Of
these, the ROC AUC and PR AUC metrics — in-
tegral metrics for all possible decision thresh-
olds — are key to conclusions. Metrics accuracy,
specitifcity and sensitivity, typical for the medi-
cal literature, are auxiliary in this case. They are
indicated at a typical threshold value of 0.5; the
task of selecting the optimal threshold value was
not posed here.

Training procedure we used looks as follows.
First, we pre-trained each feature extractor as a
separate classifier with the same task of classify-
ing the presence of pneumonia. Then we trained
late- and middle-fusion scenarios on the top of
the pre-trained feature extractors. Finally, we
trained the early fusion scenario network. All ex-
periments were conducted with Adam optimizer
(betas =0.9, 0.999), learning rate was optimized
with the Cosine Annealing scheduler [56] with the
following hyperparameters of the scheduler: base
LR=1e-8, T 0=50, T mult=2, eta_max = le-4,
GAMMA =0.1. We used batch size=16, image
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size = (224, 224). During training, images were
augmented with random flips, shifts, scales, rota-
tions, and small elastic transforms. NVIDIA RTX
2080Ti was used for training.

Results and discussion

We present the obtained metrics values for all
types of classifiers in the Table, using the follow-
ing abbreviations: ROC AUC — area under the
ROC curve, PR AUC — area under precision-re-
call curve. These curves for each type of classifier
is illustrated by Fig. 2, a—e. The last column in the
Table shows training time comparison.

Figure 3 shows examples of Class Activation
Maps [57] for results of image classifier and image
feature extractor in early-fusion model indicating
the most distinctive areas used by each classifier to
determine the category to which the image belongs:
0 — no pneumonia, 1 — pneumonia. Areas with
higher activation values have more impact on the

network decision. Color graduations correspond to
the level of activation of the image features on the
last convolution layers. Lighter areas are more crit-
ical for the network to gain the decision than the
darker ones. Here we can see that the image feature
extractor in the fused classification scenario still
learns discriminative regions for pneumonia clas-
sification problem.

Analysis of the results obtained allows us to
draw the following statements.

Though the values of all metrics for the image
classifier (see Table) are relatively poor compared to
the report classifier, they entirely correspond to the
current world level [58—60]. Note that during train-
ing the report classifier, only obviously correct text
reports were used; in reality, it is necessary to con-
sider the human factor associated with errors and
fatigue of radiologists, which reduces the received
metrics. Under these conditions, fusing text and
images increases the likelihood of correct image
classification. Besides, Table shows that we got an
absolute excess of metrics when using an early fu-

B Metrics values for different classifiers

Classifier type Accuracy Sensitivity Specificity ROC AUC PR AUC Training time
Image classifier 0.6823 0.5718 0.7637 0.7195 0.6438 6 h 14 min
Report classifier 0.9590 0.9696 0.9511 0.9921 0.9889 20 min
Late-fusion classifier 0.9484 0.9558 0.9430 0.9876 0.9800 15 min
Middle-fusion classifier 0.9613 0.9669 0.9572 0.9897 0.9838 29 min
Early-fusion classifier 0.9579 0.9684 0.9504 0.9933 0.9907 9 h 45 min
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sion classifier even over the idealized case of text
classifier.

Comparing Figures 3, a and b shows that in the
case of the image classifier, the network learns on-
ly from those areas of the image that are directly
affected by pneumonia. Simultaneously, in the case
of the fusion classifier, the network takes into ac-
count not only these areas but also the surrounding
context, which is more consistent with the approach
of a radiologist to the medical images classifica-
tion. Besides, as shown in Table, the report classi-
fier learns much faster than all other classifiers.
However, Fig. 3, b indicates that introducing a text
classifier into the fusion pipeline does not lead to
training only on the textual data, i.e., image feature
extractor in the fused network model still learns
correct semantic image areas for classification.

Comparing the results of the Table for three
types of fusion shows an exchange ratio between
the classification and training efficiency metrics:
the higher the desired classification efficiency met-
rics, the more computing resources are required to
train the network. This circumstance must be taken
into account when choosing the proposed models in
areal clinical process.

Conclusion

We have presented that combining x-ray images
and accompanying free-text radiologists reports in
neural network model training improves the quali-
ty of the model’s decision in the classification task.

In the experiment, we have compared five train-
ing scenarios for the pneumonia classification task.
Two individual classifiers based on each modality
and three fused classifiers differ in training meth-
ods: late, middle, and early fusion. The proposed
combined image-report classifier trained with the
early-fusion method gives better performance than
individual classifiers in the pneumonia classifica-
tion problem. However, it is worth considering that
better results cost the training time and required
computation resources. Report-based training is
much faster in training and less demanding for
computation capacity.
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6BesopyccKuii rocyAapCcTBeHHBIH MeUIIMHCKIH YHIBEPCUTET, J]3epKIMHCKOTO 1Ip., 83, 220116, Muuck, Benopyccus

BBenenue: B MeIuIHe IPYU IPUHATUM PEIIeHUN XapaKTepHbI MHGOPMAIMOHHASA IEePEerpy3Ka U CJI0KHOCTh. B 9TUX ycIoBUAX 3d-
(heKTUBHBI METOABI CANAHUS MHGopMaruu. s IUarHOCTUKY U JIeUeHUs THEBMOHUY C UCII0JIb30BAHNEM PEHTTeHOBCKUX CHUMKOB U UX
TEKCTOBBIX OIMCAHU, BBIIOJIHAEMBIX PAIU0JIOTaMy, IEPCIEKTUBHO UCIIOIb30BATh CIUAHNE TEKCTA ¢ n300parkenueM. Ilenn: paspaboTka
Mo/ieJiell CAMAHUA N300paKeHNs ¥ TeKCTa IPY JUarHOCTUKE THEBMOHUU C IIOMOIIBI0 HEHPOHHBIX ceTeli. MeTobl: NCII0Ib30BAJICS JaTaCeT
33 MIMIC-CXR; puist 00paboTKu n3obparkenuii ucmnosb3oBana ceTb SE-ResNeXt101-32x4d; gyia 06paboTKY TEKCTA UCIIOJIH30BAHA MOJEb
Bio-Clinical BERT B coueranuu co cioem ContextLSTM. IIpoBefjeHO sKCIIepUMEHTANbHOE CPABHEHNE IISATH aPXUTEKTYD HEHPOHHOU CEeTH:
KJaccu(uKaTop n3o0paskeHui, KaacCu@UKaTop TEKCTOB U TPU KJjaccudUKaTOpa Ha OCHOBE CIUSHUSA, a UMEHHO II03[HETr0, PAaHHEero u
IIPOMEKYTOYHOI'O CAUSHUA. Pe3ybraTsl: IPU UCIOJIb30BAHUN KJIacCU(GUKATOPA PAHHErO CAUAHUS IIOJYUYEHO aOCOII0THOE IPEBhIIIe e
nokasareseit (ROC AUC =0,9933, PR AUC =0,9907) naske 110 CpaBHEHUIO C UAeaIU3UPOBAHHBIM (T. €. 6e3 yuyeTa BO3MOYKHBIX OIIUO0K
pazumoJsora) caydaeMm TekcroBoro Kiaaccuduraropa (ROC AUC =0,9921, PR AUC =0,9889). Bpemsa o0yueHus ceTu BapbUPOBAJIOCH OT
20 MUHYT AJI5 TO3LHETO CIAUAHUA 10 9 yacoB 45 MUHYT A paHHero causaaus. C nCIob30BaHNEeM KapThl aKTHUBAIIUU KJIACCOB HATJIALHO
IIOKa3aHo, YTO BO BCEX KJacCU(PUKATOPAaX Ha OCHOBE CAUAHUA AeHCTBUTEIHHO BRIIEIAIOTCA HanboJiee XapaKTePHBIE A KJIacCU(MUKAIIUN
mHEeBMOHMU 00J1acTu n3obpakenus. O6cy:xaeHne: cIuAHNe TeKCTa U N300paskeHUil YBeJINYNBAEeT BEPOSATHOCTh IPABUJILHOM KJacCudu-
Kamuy n300paskeHuil M0 CPaBHEHUIO ¢ KJaccuuKramueil ToabKo nsobpaskenuii. IlokasaHo, 4To B 3azaue KJIacCU(MDUKAIUYA THEBMOHUK
KJaccu(ukaTop n300pakeHUil ¥ TeKCTOB, 00YUEHHBIN C IIOMOIIIbIO0 METOa PAHHEr0 CAUSHUS, JaeT JIYUIIYI0 IPOU3BOJUTEIbHOCTD, YeM
KJaccu(uKaTopbl N300pakeHul U TEKCTOB 10 OTAeIbHOCTH. OZHAKO CTOUT YUYECTh, YTO JIYUIIIe Pe3yJIbTAaThl TPEOYIOT 3aTPAT BPEMEH! Ha
0o0yJueHre U BBIYUCIUTEIbHBIX pecypcoB. O6yueHne Ha OCHOBE TEKCTOBBIX OTUETOB IIPOXOAUT HAMHOI'O ObICTPEe U TPeOyeT MEHBIINX BbI-
YUCJIUTEIHHBIX PECYPCOB.

KuaroueBsie caoBa — causHNe TEKCTa U M300parKeHNs, MeIUIINHCKAsA TUarHOCTUKA, II03JHee CANIHNEe, DaHHee CIAUSHNE, IIPOMEKY-
TOYHOE CIAUSHNE, PEHTT€HOBCKOe U300pasKeHue.
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NAMATKA AN ABTOPOB

ITocmynawwue 8 pedakyuio cmamovu npPoxodam 0013amenvbHoe peueH3uposarue.

Ilpy HAIMYMU TOJIOKUTEIBHON PEleH3UU CTAaThd PACCMATPUBAETCSA PENAKIIMOHHON KOJLIeru-
eit. [IpuHATasA B IIeUaTh CTAThA HAIPABJIAETCA ABTOPY AJIS COTJIACOBAHUA PESAKTOPCKUX IIPABOK.
ITociie corsracoBaHus aBTOD HPECTABJISIET B PeIaKI[NI0 OKOHUATEJIbHBIM BADUAHT TEKCTA CTAThH.

IIpomenypbl COIJIACOBAHUSA TEKCTA CTATBU MOI'YT OCYIIECTBIATHCA KAK HEIIOCPEICTBEHHO
B peflaKIINM, TakK u mo e-mail (ius.spb@gmail.com).

IIpy OTKJIOHEHWHU CTATBU PEeJAKI[UA IIPEACTABJSAET aBTOPY MOTHBHPOBAHHOE 3aKJIOUEHNE
¥ PEIeH3UI0, IPU HeOOXOANMOCTH AOPab0OTaTh CTATHI0O — PEIEeH3UIO.
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