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Introduction: Lung cancer is one of the most formidable cancers. The use of neural network technologies in its diagnostics 
is promising, but the datasets collected from real clinical practice cannot cover various lung cancer manifestations. Purpose: 
Assessment of the possibility of improving pulmonary nodules classification quality utilizing generative augmentation of available 
datasets under resource constraints. Methods: The LIDC-IDRI dataset was used. We used the StyleGAN architecture, to generate 
artificial lung nodules and the VGG11 model as a classifier. Results: We generated pulmonary nodules using the proposed pipeline 
and invited four experts to evaluate them visually. Four experimental datasets with different types of augmentation were formed, 
including the use of synthesized data. We compared the effectiveness of the classification performed by the VGG11 network when 
training for each dataset. For an expert assessment, 10 generated nodules in each group of characteristics were presented: parietal 
nodules, ground-glass, sub-solid, solid nodules. In all cases, expert assessments of similarity with real nodules were obtained 
with a Fleiss’s kappa coefficient  = 0.7–0.9. We got the values of AUROC=0.9867 and AUPR=0.9873 with the proposed approach 
of a generative augmentation. Discussion: The obtained efficiency metrics are superior to the baseline results obtained using 
comparably small training datasets and slightly less than the best results achieved using much more powerful computational 
resources. We have shown that one can effectively use StyleGAN for augmenting an unbalanced dataset with a combination of 
VGG11 as a classifier, which does not require extensive computing resources and a sizeable initial dataset for training.
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Introduction

Lung cancer is one of the most formidable can-
cers, both in terms of the development rate and the 
severity of the prognosis [1]. In this case, it is a vi-
tal necessity to get the earliest possible and accu-
rate diagnosis. During the initial examination and 
screening of the population, procedures such as 
chest radiography and sputum cytology are wide-
spread. However, when detecting the suspicions of 
lung cancer, the patient requires stronger diagnos-
tic procedures, including bronchoscopic biopsies and 
computed tomography (CT) of the lungs. A bronchial 
biopsy is a highly invasive procedure. It involves the 
participation of proficient experts, is accompanied 
by complications and side effects, and cannot be used 
as a regular diagnostic procedure. Simultaneously, 
CT of the lungs is a non-invasive procedure, which 

does not adversely affect the patient’s health, and СТ 
scanners are now widely used medical equipment. In 
this regard, increasing the efficiency of СТ in the di-
agnosis of lung cancer is today one of the essential 
tasks of information technology.

The use of machine learning technologies and, 
above all, deep convolutional neural networks in this 
task has led to promising results in recent years. 
For instance, for the classification of malignant and 
benign nodes, the following results are given in lit-
erature: accuracy 92.0%, sensitivity 100% [2]; 
accuracy 96.0%, sensitivity 97% [3]. However, 
such high values of metrics are achieved, as a rule, 
on typical datasets (most often, the Lung Image 
Database Consortium and Image Database Resource 
Initiative (LIDC-IDRI) dataset [4] is used). When 
moving to other datasets or real practice, the values 
of metrics drop dramatically. For example, the accu-
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racy achieved by [3] on a relatively large proprietary 
dataset of 2054 images was 86% only.

The reason for such a fall in efficiency is mainly is 
as follows: benign and malignant nodes in lung cancer 
are very similar, both in objectively measurable fea-
tures (such as diameter, optical density, etc.); in terms 
of integral visual assessment (such as smooth, lobulat-
ed, or irregular and spiculated margins, etc.) [5]. The 
existing datasets collected from real clinical practice 
cannot cover such a variety of lung cancer manifesta-
tions. Their size is not enough for full-fledged train-
ing of neural networks, which, as a result, leads to the 
explicit overfitting on a specific dataset and the drop 
in efficiency when switching to new datasets. An in-
crease the dataset volume due to traditional augmen-
tation methods, such as shifts, rotations, reflections, 
etc., does not give the desired improvement in the 
results of lung cancer classification. Therefore, gen-
erative adversarial networks (GAN) are considered a 
promising technology for solving this problem.

Generative adversarial network, proposed in [6], 
is a model to approximate an arbitrary distribution 
only by sampling from that distribution. The model 
consists of two parts — the generator and the dis-
criminator. The generator aims to learn the sample 
distribution. It takes random noise and tries to gen-
erate the sample from the learned distribution. The 
discriminator tries to distinguish these generated 
objects from the real objects from the training sam-
ple with an arbitrary distribution and returns the 
results to the generator via gradient back-propaga-
tion. Thus, during training, the generator generates 
objects that are more and more similar to a sample. 

Modern implementations of GAN technologies 
provide realistic-looking images, for example, pic-
tures for an online store, avatars for games, and vid-
eo clips. A significant advantage for the application 
of GAN in medicine is the fact that they provide the 
extraction of visual features by discovering the high 
dimensional latent distribution of the input data [7, 
8]. Thus, in principle, it becomes possible to generate 
an unlimited number of images of benign and malig-
nant nodes belonging to the same distribution as real 
nodes in a particular dataset and thereby augment 
this dataset to a size sufficient for effective training 
of the classifier. The article discusses the challenges 
of using GAN for generative augmentation of small 
datasets gathered in real clinical practice. To im-
prove the availability of generative augmentation to 
the research community, this article focuses on the 
resource efficiency of the proposed methods.

Background and related works

As the literature review shows [8], today, GANs 
are actively used to analyze high-tech images in 
various medical applications, including diagnostics 

and treatment of diseases of the brain, lungs, spine, 
cardiovascular system, etc. Within the framework 
of this article, we highlight the work related to the 
diagnosis of lung status. In the total flow of the 
publications, the share of works devoted to using 
GANs in pulmonology problems is relatively small. 
They can be divided into two groups — applying 
GANs for chest X-ray and CT images.

As concerning the first one, one should first of 
all mention the work [9], where the authors use a 
deep convolutional GAN (DCGAN) for mimicking 
common chest pathologies and then augment a la-
beled set of chest X-rays for the training of the deep 
CNN across five pathological classes. The authors 
in [10] use conditional GAN for improving lung seg-
mentation in chest X-ray. But, as the authors them-
selves note, their construction is resource expen-
sive and requires high computing power.

The authors [11] solvе a complicated problem — 
predicting the dynamics of lung position during 
breathing. To do this, they use two CNNs, each of 
which is built according to the GAN scheme. The 
solution is very resource-intensive: to register im-
ages between any two breath phases, it uses a pow-
erful NVIDIA Tesla V100 GPU within 1 min. The 
authors [12] also solve a dynamic problem — to 
visualize chronic obstructive pulmonary disease 
progress. They proposed a method of visualization 
for regression with GAN, which is also very re-
source-intensive. 

The research [13] aims to balanсe dataset used 
in training CNN for pneumonia prediction via over-
sampling with CycleGAN [14] producing X-ray im-
ages with pneumonia from images with no pneumo-
nia. The advantage of the proposed augmentation 
technique is that it does not require extensive com-
putational resources (a single NVIDIA 1070 graph-
ical card is enough).

Going to the overview of applying GANs for CT 
images, it is worth noting that the general concept 
behind GANs of [6] has been transformed here in 
various architectures. For eхample, to generate 
high-quality images of pulmonary nodes on CT 
scans, the authors [15] use DCGANs [16]. With a 
relatively simple architecture, their implementa-
tion required extensive computational resources 
(up to 110,000 iterations), while the generated im-
ages showed low results on the Turing test (58%). 
Attempts have been made to use a more complicat-
ed architecture for the same purpose: the authors 
of [17] used a 3D conditional GAN [18], and the 
approach in [19] suggest to apply a sophisticated 
variant called 3D multi-conditional GAN. In both 
works, the authors generate pulmonary nodes and 
their immediate environment (context) and then 
embed them into the general CT images. For this, 
they condition the GAN basing on a volume of in-
terest whose central part containing the nodule has 
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been erased. Nevertheless, despite the sharp in-
crease in the architecture complexity and a signifi-
cant increase in computing resource requirements, 
the generated images are easily distinguished by 
qualified radiologists due to artifacts in synthetic 
samples [8].

Thus, as the analysis of existing achievements 
shows, it is hardly advisable today to set the task of 
creating realistic images of pulmonary nodes with 
the help of GAN having limited resources. Instead, 
researchers move on to modeling the characteristic 
components of the desired images. For pulmonary 
nodes, such a component is the maximum intensi-
ty projection (MIP) image. MIP [20, 21] is a post-
processing method that projects 3D voxels with 
maximum intensity to the projection plane. The 
advantage of MIP is that its formation is a 2D task 
and therefore requires less computing resources. 
Besides, radiologists use MIP images as more easily 
interpretable concepts during the nodule screening 
stage in their routine clinical practice. 

A typical pipeline for detecting neoplasms in the 
lungs using high-tech images consists of two inde-
pendently solvable tasks — detecting nodules and 
their subsequent classification. When organizing 
research having only small proprietary datasets, 
the second task is more topical. As our analysis 
evidence, in the literature, works using GANs for 
detection tasks [17, 19, 22] are presented more wide-
ly and thoroughly than concerning classification 
tasks [23–26]. They used axial sections of the vol-
ume of interest centered on the pulmonary nodule 
as a generated characteristic component. 

The authors [24] aiming to generate high-qual-
ity synthetic nodules images proposed a new GAN 
architecture named forward and backward GAN 
(F&BGAN) and formed a hierarchical learning 
framework based on multi-scale VGG11 network 
as a classifier. They tested different augmentation 
approaches including traditional methods, DCGAN 
generative augmentation, and proposed F&BGAN 
generative augmentation. The part of LIDС-IDRI 
[28] was used as the initial dataset. The accuracy 
from 88.09% up to 95.24% was obtained depending 
on the augmentation approach.

In [25], the authors used Wasserstein GAN 
(WGAN) to generate malignant nodes differing by 
the only feature — the presence of spicules. They 
used a relatively small proprietary CT dataset con-
sisting of 60 cases for training. Due to the low res-
olution of the formed nodes, the authors obtained 
not very good classification accuracy values — up 
to 63.0% for benign nodes and 84.8% for malig-
nant nodes. In [26], they improved these metrics by 
increasing the network complexity (moving to three 
CNNs).

In [23], the authors used LUNA16 [27] database 
to extract candidate areas of images and nodules 

and imitate them using GAN. The authors divided 
the nodules extracted from the dataset into three 
groups: large, medium, and small. Then, they gen-
erated artificial nodules using the GAN for each 
group separately. Synthesized nodules allowed 
them to change the distribution of node sizes in 
the generated dataset by weighting each group’s 
share. As the authors write, they tested their meth-
od for 15 variants of the CNN of six different fea-
ture extraction types and classifiers on the newly 
generated images dataset. They received accuracy 
values with a wide scatter — from 78.21 to 95.13%. 
Unfortunately, no technical details of the develop-
ment are provided, making it impossible to repro-
duce their results.

Considering all of the above, in our article, we 
set the task of experimentally testing the possibil-
ity of improving pulmonary node classification in-
to malignant and benign utilizing generative aug-
mentation of available datasets under resource con-
straints. The problem is solved in the 2D projection. 

Method and materials

Initial dataset and data preprocessing
As the source of lung cancer nodules, we used 

the LIDC-IDRI dataset containing more than 1018 
CT scans in DICOM format from about 1010 differ-
ent patients. The characteristics of lesions in the 
dataset and specifics of the annotation of the data 
can be acсessed in [28]. It should be noted that au-
thors of the dataset are aware that the term nodule 
is more appropriately used for a spectrum of abnor-
malities in lung tissue, and according to that, they 
state that during the annotation procedure, each of 
four participating radiologists provided their own 
“noduleness” interpretation.

For the experiments, we selected only those 
DICOM series that contain tumor nodules. The 
DICOM series is a 3D scan of the lungs, and the tu-
mor nodule is a 3D image. Therefore, by capturing 
part of the images from a series of images, we can 
extract the 3D nodule. The extraction of a nodule is 
performed as follows. We form a cube circumscrib-
ing the desired nodule. The bounding cube size is 
selected to capture the nodule completely and, if 
necessary, a small margin around the nodule. In 
our experiments, we used circumscribing cubes 
with a side length from 1 to 40 mm.

After extracting the bounding cube with a nod-
ule, we resampled it to a size of 128 128 128 
pixels, and cut off the pixel values that are outside 
the range [–1000, 800] on the Hounsfield scale [29] 
according to the formula

  new old
value valuepixel 800  1000  pixelmin , max , 
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The resulting pixel values are scaled to the range 
[–1, 1] by the formula

x 2(xin – inmin) / ((inmax – inmin) – 1),

where inmax800, inmin –1000 are boundary 
values on the Hounsfield scale. As a result, we got 
695 cubes, of which 294 have a malignant nodule. 
Examples of nodules which were used as input 
data to train the generative network are shown in 
Fig. 1, a–e. 

As discussed in the previous section, there are 
two ways to go from 3D to a 2D image of a nodule: 
either to select a central slice (i. e., passing through 
the center of the nodule) in one of the projections 
or to build MIP for the central slice. As our exper-
iments have shown, using MIP projection provides 
some advantages, namely:

— it shows the picture of the lungs in more de-
tail;

— it rather clearly displays the nodules;
— it allows representing the nodules with the 

context around.

All of the above simplifies facilitates the task of 
classifying a cancerous tumor. We have performed 
a MIP lookup operation using the NumPy package.

Models and model training
The complete pipeline of our experiments is 

shown in Fig. 2. 
As an architecture for GAN, we chose StyleGAN 

[30] — one of the leading in the generation of pho-
torealistic images. Considering that generating 
nodes in 2D is not more difficult than generating 
faces (on the example of StyleGAN was tested), this 
choice can be regarded as justified.

The paper aims to increase the cancer nodules 
classification quality under resource constraints. 
Hence the model with a simpler and more light-
weight architecture suits better. Experiments 
show that VGG11 is the most appropriate mod-
el, which gives competitive results. We used the 
VGG11 model [31] as a classifier — a reasonably 
clear and easy-to-understand classifier model, 
which is often the baseline for research. We used 
the torchvision package to implement the model. 

 Fig. 1. Examples of extracted nodules (left column — nodules; right column — a corresponding lung slice): a — 
ground glass nodules; b–d — nodules of parietal localization; e — solid nodule
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It should be emphasized that both models are rel-
atively undemanding in terms of computing re-
sources and can be applied in everyday machine 
learning practice [32].

To adapt the StyleGAN architecture following 
the prepared data, we made some changes to the 
model. The original implementation is configured 
to work with 3-channel images. To adjust the mod-
el in accordance with the prepared data, we have 
transformed the number of channels in the input 
and output layers in such a way as to be able to 
work with single-channel images. Besides, we made 
changes to the parameters of the model presented 
in Table 1.

  Fig. 2. Pipeline of our experiments

Classifier

Classifier

Classifier

Classifier

StyleGAN

Albumentations

Upsampling

B
e

n
ig

n
B

e
n

ig
n

B
en

ig
n

M
a

li
g

n
a

n
t

M
a

li
g

n
a

n
t

M
a

li
g

n
a

n
t

M
a

li
g

n
a

n
t

B
e

n
ig

n

401

294

401401

401

401

401

401

  Table 1. Сlassifier training parameters

Name Value

Model VGG-11

batch_size 16

learning_rate 1e-5

optimizer Adam

Loss function type BinaryCrossEntropy

Training epochs 300
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Experimental datasets
To test the hypothesis that the binary classifica-

tion of cancerous tumors in the lungs is better per-
formed on a dataset augmented with synthesized 
GAN data, we formed four experimental datasets:

1) dataset A: original dataset with class imbal-
ance;

2) dataset B: with the elimination of class imbal-
ance by random copying of data of a smaller class 
(upsampling);

3) dataset C: with the elimination of class imbal-
ance by transforming data of one class (vertical and 
horizontal reflection, and elastic transformation 
from the albumentations package [33]);

4) dataset D: balanced dataset using synthesized 
data. The imbalance was eliminated by generating 
new data using a pre-trained GAN model.

Results and discussion

Examples of nodules generated by our GAN 
model are presented in Fig. 3, a–h. As shown in 
the previous section, it is not required to achieve 
an exhaustive execution of the Turing test on the 
generated nodules in the task under consideration. 
Therefore, we carried out an expert assessment of 
the “similarity” of the generated nodules for indi-
vidual characteristics, including parietal nodule, 
solid nodule, subsolid nodule, ground-glass nodule. 
Four qualified radiologists participated in the ex-
amination, ten nodules in each group of character-
istics were presented for assessment. In all cases, 

positive expert assessments were obtained with a 
good Fleiss’s kappa coefficient  0,7–0,9.

Figure 4 shows the ROС-curves for the best 
learning epochs for each experimental dataset de-
scribed above, which makes it possible to compare 
the efficiency of the different augmenetation tech-
niques. As can be seen, the best values of AUROC: 
0.9867, AUPR: 0.9873, accuracy: 94.35% were ob-
tained with the proposed approach of a generative 
augmentation (see Fig. 3, d). Note that the obtained 
values are superior to the [25] results obtained 
using comparable training datasets (balanced ac-
curacy: 81.7%), [26], (balanced accuracy: 85.6%), 
and comparable with the results of [24] (best ac-
curacy: 95.24%, best AUROC: 0.984). Worth not-
ing that the classifier model in [24] has approx-

 Fig. 3. Examples of generated nodules: a, g — subsolid nodules of parietal localization nodules; b–d, f, h — solid nod-
ules; e — subsolid nodule

 Table 2. Results

Dataset
Accuracy, 

%
AUROC AUPR

Original (A) 84.68 0.945 0.922

Upsampling (B) 87.50 0.949 0.933

Augmentation (C) 91.13 0.955 0.967

Synthetic (D) 94.35 0.987 0.987

a) b) c) d)

e) f) g) h)
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  Fig. 4. ROC- and PR-curves for the datasets: a — dataset A; b — dataset B; c — dataset C; d — dataset D
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imately 143 million trainable parameters, while 
used VGG11 has 128 million trainable parameters. 
Hence, our proposed method has a lower GPU mem-
ory consumption with comparative quality results 
(Table 2).

Conclusion

It is not rare in common practice when a machine 
learning practitioner can encounter a lack of data to 
train the classification model properly. However, as 
our experiments have shown, augmenting an unbal-
anced dataset with synthetic data improves the clas-
sifier efficiency with comparatively no significant 

effort. Regarding the classification of pulmonary 
nodules, we have shown that one can effectively use 
a combination of StyleGAN and VGG11, which does 
not require extensive computing resources and a 
sizeable initial dataset for training. We suggest 
that in future works, the use of StyleGAN in gener-
ative augmentation can be extended to conditional 
augmentation to synthesize the nodules with the 
specific parameters.
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Введение: рак легкого — один из самых опасных видов рака. Использование технологий нейронных сетей для его диагностики 
является многообещающим, но датасеты, собранные из реальной клинической практики, не могут охватить различные проявле-
ния рака легких. Цель: оценка возможности улучшить классификацию легочных узлов посредством генеративной аугментации 
доступных датасетов при ограниченных ресурсах. Методы: использован датасет LIDC-IDRI, архитектура StyleGAN для создания 
искусственных изображений легочных узлов и модель VGG11 в качестве классификатора. Результаты: проведены генерация изо-
бражений легочных узлов с помощью предложенной схемы и их визуальная оценка с привлечением четырех экспертов. Сфор-
мированы четыре экспериментальных датасета с различными типами аугментации, включая использование синтезированных 
данных, и проведено сравнение эффективности классификации, выполняемой сетью VGG11 при обучении на каждом датасете. 
Для экспертизы отобраны по 10 генерированных изображений легочных узлов в каждой группе характеристик. Во всех случаях 
получены экспертные оценки схожести с реальными экземплярами с коэффициентом каппа Флейса  0,7–0,9. Предложенный 
подход генеративной аугментации позволил получить значения AUROC 0,9867 и AUPR 0,9873. Обсуждение: полученные по-
казатели эффективности превосходят результаты бейзлайна с использованием сравнительно небольших обучающих датасетов 
и немного уступают лучшим результатам, достигнутым с применением гораздо более мощных вычислительных ресурсов. Тем 
самым показано, что для аугментации несбалансированного датасета можно эффективно использовать StyleGAN в комбинации 
с VGG11 классификатором, которая не требует больших вычислительных ресурсов, а также большого начального датасета для 
обучения.

Ключевые слова — классификация легочных узлов, аугментация данных, генеративные состязательные сети, StyleGAN, КТ-
изображение.
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