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Introduction: Lung cancer is one of the most formidable cancers. The use of neural network technologies in its diagnostics
is promising, but the datasets collected from real clinical practice cannot cover various lung cancer manifestations. Purpose:
Assessment of the possibility of improving pulmonary nodules classification quality utilizing generative augmentation of available
datasets under resource constraints. Methods: The LIDC-IDRI dataset was used. We used the StyleGAN architecture, to generate
artificial lung nodules and the VGG11 model as a classifier. Results: We generated pulmonary nodules using the proposed pipeline
and invited four experts to evaluate them visually. Four experimental datasets with different types of augmentation were formed,
including the use of synthesized data. We compared the effectiveness of the classification performed by the VGG 11 network when
training for each dataset. For an expert assessment, 10 generated nodules in each group of characteristics were presented: parietal
nodules, ground-glass, sub-solid, solid nodules. In all cases, expert assessments of similarity with real nodules were obtained
with a Fleiss's kappa coefficient k = 0.7-0.9. We got the values of AUROC=0.9867 and AUPR=0.9873 with the proposed approach
of a generative augmentation. Discussion: The obtained efficiency metrics are superior to the baseline results obtained using
comparably small training datasets and slightly less than the best results achieved using much more powerful computational
resources. We have shown that one can effectively use StyleGAN for augmenting an unbalanced dataset with a combination of
VGG11 as a classifier, which does not require extensive computing resources and a sizeable initial dataset for training.
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Introduction

Lung cancer is one of the most formidable can-
cers, both in terms of the development rate and the
severity of the prognosis [1]. In this case, it is a vi-
tal necessity to get the earliest possible and accu-
rate diagnosis. During the initial examination and
screening of the population, procedures such as
chest radiography and sputum cytology are wide-
spread. However, when detecting the suspicions of
lung cancer, the patient requires stronger diagnos-
tic procedures, including bronchoscopic biopsies and
computed tomography (CT) of the lungs. A bronchial
biopsy is a highly invasive procedure. It involves the
participation of proficient experts, is accompanied
by complications and side effects, and cannot be used
as a regular diagnostic procedure. Simultaneously,
CT of the lungs is a non-invasive procedure, which

does not adversely affect the patient’s health, and CT
scanners are now widely used medical equipment. In
this regard, increasing the efficiency of CT in the di-
agnosis of lung cancer is today one of the essential
tasks of information technology.

The use of machine learning technologies and,
above all, deep convolutional neural networks in this
task has led to promising results in recent years.
For instance, for the classification of malignant and
benign nodes, the following results are given in lit-
erature: accuracy =92.0%, sensitivity =100% [2];
accuracy = 96.0%, sensitivity =97% [3]. However,
such high values of metrics are achieved, as a rule,
on typical datasets (most often, the Lung Image
Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) dataset [4] is used). When
moving to other datasets or real practice, the values
of metrics drop dramatically. For example, the accu-
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racy achieved by [3] on a relatively large proprietary
dataset of 2054 images was 86% only.

The reason for such a fall in efficiency is mainly is
as follows: benign and malignant nodes in lung cancer
are very similar, both in objectively measurable fea-
tures (such as diameter, optical density, etc.); in terms
of integral visual assessment (such as smooth, lobulat-
ed, or irregular and spiculated margins, etc.) [5]. The
existing datasets collected from real clinical practice
cannot cover such a variety of lung cancer manifesta-
tions. Their size is not enough for full-fledged train-
ing of neural networks, which, as a result, leads to the
explicit overfitting on a specific dataset and the drop
in efficiency when switching to new datasets. An in-
crease the dataset volume due to traditional augmen-
tation methods, such as shifts, rotations, reflections,
ete., does not give the desired improvement in the
results of lung cancer classification. Therefore, gen-
erative adversarial networks (GAN) are considered a
promising technology for solving this problem.

Generative adversarial network, proposed in [6],
is a model to approximate an arbitrary distribution
only by sampling from that distribution. The model
consists of two parts — the generator and the dis-
criminator. The generator aims to learn the sample
distribution. It takes random noise and tries to gen-
erate the sample from the learned distribution. The
discriminator tries to distinguish these generated
objects from the real objects from the training sam-
ple with an arbitrary distribution and returns the
results to the generator via gradient back-propaga-
tion. Thus, during training, the generator generates
objects that are more and more similar to a sample.

Modern implementations of GAN technologies
provide realistic-looking images, for example, pic-
tures for an online store, avatars for games, and vid-
eo clips. A significant advantage for the application
of GAN in medicine is the fact that they provide the
extraction of visual features by discovering the high
dimensional latent distribution of the input data [7,
8]. Thus, in principle, it becomes possible to generate
an unlimited number of images of benign and malig-
nant nodes belonging to the same distribution as real
nodes in a particular dataset and thereby augment
this dataset to a size sufficient for effective training
of the classifier. The article discusses the challenges
of using GAN for generative augmentation of small
datasets gathered in real clinical practice. To im-
prove the availability of generative augmentation to
the research community, this article focuses on the
resource efficiency of the proposed methods.

Background and related works
As the literature review shows [8], today, GANs

are actively used to analyze high-tech images in
various medical applications, including diagnostics

and treatment of diseases of the brain, lungs, spine,
cardiovascular system, etc. Within the framework
of this article, we highlight the work related to the
diagnosis of lung status. In the total flow of the
publications, the share of works devoted to using
GANS in pulmonology problems is relatively small.
They can be divided into two groups — applying
GANSs for chest X-ray and CT images.

As concerning the first one, one should first of
all mention the work [9], where the authors use a
deep convolutional GAN (DCGAN) for mimicking
common chest pathologies and then augment a la-
beled set of chest X-rays for the training of the deep
CNN across five pathological classes. The authors
in [10] use conditional GAN for improving lung seg-
mentation in chest X-ray. But, as the authors them-
selves note, their construction is resource expen-
sive and requires high computing power.

The authors [11] solve a complicated problem —
predicting the dynamics of lung position during
breathing. To do this, they use two CNNs, each of
which is built according to the GAN scheme. The
solution is very resource-intensive: to register im-
ages between any two breath phases, it uses a pow-
erful NVIDIA Tesla V100 GPU within 1 min. The
authors [12] also solve a dynamic problem — to
visualize chronic obstructive pulmonary disease
progress. They proposed a method of visualization
for regression with GAN, which is also very re-
source-intensive.

The research [13] aims to balance dataset used
in training CNN for pneumonia prediction via over-
sampling with CycleGAN [14] producing X-ray im-
ages with pneumonia from images with no pneumo-
nia. The advantage of the proposed augmentation
technique is that it does not require extensive com-
putational resources (a single NVIDIA 1070 graph-
ical card is enough).

Going to the overview of applying GANs for CT
images, it is worth noting that the general concept
behind GANSs of [6] has been transformed here in
various architectures. For example, to generate
high-quality images of pulmonary nodes on CT
scans, the authors [15] use DCGANSs [16]. With a
relatively simple architecture, their implementa-
tion required extensive computational resources
(up to 110,000 iterations), while the generated im-
ages showed low results on the Turing test (58%).
Attempts have been made to use a more complicat-
ed architecture for the same purpose: the authors
of [17] used a 3D conditional GAN [18], and the
approach in [19] suggest to apply a sophisticated
variant called 3D multi-conditional GAN. In both
works, the authors generate pulmonary nodes and
their immediate environment (context) and then
embed them into the general CT images. For this,
they condition the GAN basing on a volume of in-
terest whose central part containing the nodule has
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been erased. Nevertheless, despite the sharp in-
crease in the architecture complexity and a signifi-
cant increase in computing resource requirements,
the generated images are easily distinguished by
qualified radiologists due to artifacts in synthetic
samples [8].

Thus, as the analysis of existing achievements
shows, it is hardly advisable today to set the task of
creating realistic images of pulmonary nodes with
the help of GAN having limited resources. Instead,
researchers move on to modeling the characteristic
components of the desired images. For pulmonary
nodes, such a component is the maximum intensi-
ty projection (MIP) image. MIP [20, 21] is a post-
processing method that projects 3D voxels with
maximum intensity to the projection plane. The
advantage of MIP is that its formation is a 2D task
and therefore requires less computing resources.
Besides, radiologists use MIP images as more easily
interpretable concepts during the nodule screening
stage in their routine clinical practice.

A typical pipeline for detecting neoplasms in the
lungs using high-tech images consists of two inde-
pendently solvable tasks — detecting nodules and
their subsequent classification. When organizing
research having only small proprietary datasets,
the second task is more topical. As our analysis
evidence, in the literature, works using GANs for
detection tasks[17, 19, 22] are presented more wide-
ly and thoroughly than concerning classification
tasks [23—-26]. They used axial sections of the vol-
ume of interest centered on the pulmonary nodule
as a generated characteristic component.

The authors [24] aiming to generate high-qual-
ity synthetic nodules images proposed a new GAN
architecture named forward and backward GAN
(F&BGAN) and formed a hierarchical learning
framework based on multi-scale VGG11 network
as a classifier. They tested different augmentation
approaches including traditional methods, DCGAN
generative augmentation, and proposed F&BGAN
generative augmentation. The part of LIDC-IDRI
[28] was used as the initial dataset. The accuracy
from 88.09% up to 95.24% was obtained depending
on the augmentation approach.

In [25], the authors used Wasserstein GAN
(WGAN) to generate malignant nodes differing by
the only feature — the presence of spicules. They
used a relatively small proprietary CT dataset con-
sisting of 60 cases for training. Due to the low res-
olution of the formed nodes, the authors obtained
not very good classification accuracy values — up
to 63.0% for benign nodes and 84.8% for malig-
nant nodes. In [26], they improved these metrics by
increasing the network complexity (moving to three
CNNs).

In [238], the authors used LUNA16 [27] database
to extract candidate areas of images and nodules

and imitate them using GAN. The authors divided
the nodules extracted from the dataset into three
groups: large, medium, and small. Then, they gen-
erated artificial nodules using the GAN for each
group separately. Synthesized nodules allowed
them to change the distribution of node sizes in
the generated dataset by weighting each group’s
share. As the authors write, they tested their meth-
od for 15 variants of the CNN of six different fea-
ture extraction types and classifiers on the newly
generated images dataset. They received accuracy
values with a wide scatter — from 78.21 to 95.13%.
Unfortunately, no technical details of the develop-
ment are provided, making it impossible to repro-
duce their results.

Considering all of the above, in our article, we
set the task of experimentally testing the possibil-
ity of improving pulmonary node classification in-
to malignant and benign utilizing generative aug-
mentation of available datasets under resource con-
straints. The problem is solved in the 2D projection.

Method and materials

Initial dataset and data preprocessing

As the source of lung cancer nodules, we used
the LIDC-IDRI dataset containing more than 1018
CT scans in DICOM format from about 1010 differ-
ent patients. The characteristics of lesions in the
dataset and specifics of the annotation of the data
can be accessed in [28]. It should be noted that au-
thors of the dataset are aware that the term nodule
is more appropriately used for a spectrum of abnor-
malities in lung tissue, and according to that, they
state that during the annotation procedure, each of
four participating radiologists provided their own
“noduleness” interpretation.

For the experiments, we selected only those
DICOM series that contain tumor nodules. The
DICOM series is a 3D scan of the lungs, and the tu-
mor nodule is a 3D image. Therefore, by capturing
part of the images from a series of images, we can
extract the 3D nodule. The extraction of a nodule is
performed as follows. We form a cube circumscrib-
ing the desired nodule. The bounding cube size is
selected to capture the nodule completely and, if
necessary, a small margin around the nodule. In
our experiments, we used circumscribing cubes
with a side length from 1 to 40 mm.

After extracting the bounding cube with a nod-
ule, we resampled it to a size of 128 x 128 x 128
pixels, and cut off the pixel values that are outside
the range [-1000, 800] on the Hounsfield scale [29]
according to the formula

pixelyalye = min(SOO, max(—lOOO, pixel2d . ))
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The resulting pixel values are scaled to the range

[-1, 1] by the formula

x =200, —ing;) / (g, — ing,) — 1),

where in_ . =800, in ; =-1000 are boundary
values on the Hounsfield scale. As a result, we got
695 cubes, of which 294 have a malignant nodule.
Examples of nodules which were used as input
data to train the generative network are shown in
Fig. 1, a—e.

As discussed in the previous section, there are
two ways to go from 3D to a 2D image of a nodule:
either to select a central slice (i. e., passing through
the center of the nodule) in one of the projections
or to build MIP for the central slice. As our exper-
iments have shown, using MIP projection provides
some advantages, namely:

— it shows the picture of the lungs in more de-
tail;

— it rather clearly displays the nodules;

— it allows representing the nodules with the
context around.

All of the above simplifies facilitates the task of
classifying a cancerous tumor. We have performed
a MIP lookup operation using the NumPy package.

Models and model training

The complete pipeline of our experiments is
shown in Fig. 2.

As an architecture for GAN, we chose StyleGAN
[30] — one of the leading in the generation of pho-
torealistic images. Considering that generating
nodes in 2D is not more difficult than generating
faces (on the example of StyleGAN was tested), this
choice can be regarded as justified.

The paper aims to increase the cancer nodules
classification quality under resource constraints.
Hence the model with a simpler and more light-
weight architecture suits better. Experiments
show that VGG11 is the most appropriate mod-
el, which gives competitive results. We used the
VGG11 model [31] as a classifier — a reasonably
clear and easy-to-understand classifier model,
which is often the baseline for research. We used
the torchvision package to implement the model.
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B Fig. 1. Examples of extracted nodules (left column — nodules; right column — a corresponding lung slice): a —
ground glass nodules; b—d — nodules of parietal localization; e — solid nodule
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B Table 1. Classifier training parameters It should be emphasized that both models are rel-
atively undemanding in terms of computing re-
Name Value sources and can be applied in everyday machine
learning practice [32].
Model VGG-11 . .
ode To adapt the StyleGAN architecture following
batch size 16 the prepared data, we made some changes to the
— model. The original implementation is configured
learning rate le-5 to work with 3-channel images. To adjust the mod-
el in accordance with the prepared data, we have
optimizer Adam transformed the number of channels in the input
. ] . c and output layers in such a way as to be able to
Loss function type BinaryCrossEntropy work with single-channel images. Besides, we made
Training epochs 300 F:hanges to the parameters of the model presented
in Table 1.
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Experimental datasets

To test the hypothesis that the binary classifica-
tion of cancerous tumors in the lungs is better per-
formed on a dataset augmented with synthesized
GAN data, we formed four experimental datasets:

1) dataset A: original dataset with class imbal-
ance;

2) dataset B: with the elimination of class imbal-
ance by random copying of data of a smaller class
(upsampling);

3) dataset C: with the elimination of class imbal-
ance by transforming data of one class (vertical and
horizontal reflection, and elastic transformation
from the albumentations package [33]);

4) dataset D: balanced dataset using synthesized
data. The imbalance was eliminated by generating
new data using a pre-trained GAN model.

Results and discussion

Examples of nodules generated by our GAN
model are presented in Fig. 3, a—h. As shown in
the previous section, it is not required to achieve
an exhaustive execution of the Turing test on the
generated nodules in the task under consideration.
Therefore, we carried out an expert assessment of
the “similarity” of the generated nodules for indi-
vidual characteristics, including parietal nodule,
solid nodule, subsolid nodule, ground-glass nodule.
Four qualified radiologists participated in the ex-
amination, ten nodules in each group of character-
istics were presented for assessment. In all cases,

positive expert assessments were obtained with a
good Fleiss’s kappa coefficient ¥ = 0,7-0,9.

Figure 4 shows the ROC-curves for the best
learning epochs for each experimental dataset de-
scribed above, which makes it possible to compare
the efficiency of the different augmenetation tech-
niques. As can be seen, the best values of AUROC:
0.9867, AUPR: 0.9873, accuracy: 94.35% were ob-
tained with the proposed approach of a generative
augmentation (see Fig. 3, d). Note that the obtained
values are superior to the [25] results obtained
using comparable training datasets (balanced ac-
curacy: 81.7%), [26], (balanced accuracy: 85.6%),
and comparable with the results of [24] (best ac-
curacy: 95.24%, best AUROC: 0.984). Worth not-
ing that the classifier model in [24] has approx-

B Table 2. Results

Dataset Acct,‘/:acy’ AUROC | AUPR
Original (A) 84.68 0.945 0.922
Upsampling (B) 87.50 0.949 0.933
Augmentation (C) 91.13 0.955 0.967
Synthetic (D) 94.35 0.987 0.987

B Fig.3. Examples of generated nodules: a, ¢ — subsolid nodules of parietal localization nodules; b—d, f, h — solid nod-

ules; e — subsolid nodule
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imately 143 million trainable parameters, while
used VGGI11 has 128 million trainable parameters.
Hence, our proposed method has a lower GPU mem-
ory consumption with comparative quality results
(Table 2).

Conclusion

It isnot rare in common practice when a machine
learning practitioner can encounter a lack of data to
train the classification model properly. However, as
our experiments have shown, augmenting an unbal-
anced dataset with synthetic data improves the clas-
sifier efficiency with comparatively no significant

effort. Regarding the classification of pulmonary
nodules, we have shown that one can effectively use
a combination of StyleGAN and VGG11, which does
not require extensive computing resources and a
sizeable initial dataset for training. We suggest
that in future works, the use of StyleGAN in gener-
ative augmentation can be extended to conditional
augmentation to synthesize the nodules with the
specific parameters.
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BBenenmne: pak JIerkoro — OJUMH U3 CAMBIX OITACHBIX BI/I0OB paka. VICcIosb30BaHue TeXHOJOT U HEHPOHHBIX CeTeH AJIs ero JUarHOCTUKYI
ABJIAETCS MHOTOO0EIIAIONINM, HO JaTaceThl, COOPaHHbIE U3 PeaJbHOUN KINHUYECKON IPAKTUKY, He MOTYT OXBATUTh PA3JIUYHBIE IIPOABIE-
HUSA paka Jerkux. 1lesb: oleHKa BOSMOYKHOCTHU YJIYUIIUTE KJIaCCU(UKALINIO JIETOUHBIX Y3JI0B IIOCPEICTBOM I'eHepaTUBHOM ayrMeHTaIluu
IOCTYIIHBIX JaTACETOB IIPU OIPAHMUYEHHBIX pecypcax. Meroasl: ucrnoabsoan garacer LIDC-IDRI, apxurexkrypa StyleGAN mis cospauuns
MCKYCCTBEHHBIX N300pasKeHM JIErOUHBIX y3710B 1 Mogesnb VGG11 B kauecTBe Kaaccuduraropa. Pe3yabpTaTel: IDOBEJEHBI TeHePaIua 130~
OpasKeHUil JIerouHbIX Y3JI0B C IIOMOIIBIO IPEIJIOKEHHON cXeMbl U UX BU3yaJbHAas OIleHKA C IPUBJIeUeHNeM YeTbIpexX sKcmepToB. Cdop-
MUPOBAHBI YeThIPE SKCIEPUMEHTAJIBHBIX JaTaceTa C Pa3JIUYHBIMU TUIIAMM ayrMeHTAIlMU, BKJIUAsa KCIIOJIb30BaHUE CUHTE3UPOBAHHBIX
MaHHBIX, U IIPOBEJEHO cpaBHeHNEe 3()(EKTUBHOCTU KaacCU(UKAINY, BEITOJIHAeMON ceThbio VGG11 mpu o0yueHUHN HA KaKJIOM JaTaceTe.
151 sKcriepTussl 0ToOpanbl Mo 10 reHeprupoBaHHBIX N300paKeHUI JIETOYHBIX Y3JI0B B KaXKA0M IPyIIe XapaKTepucTuK. Bo Bcex cayyasax
TOJIyYeHbI 9KCIEePTHBIE OIEHKU CXOXKECTU C PeaJbHBIMU dK3eMILIsApamMu ¢ Koaddurmuenrom kanmna Pieiica k = 0,7-0,9. IIpeanoskeHHBINR
OAXO0J TeHEePATUBHON ayrMeHTanuu mo3BoIu noayuuts 3uadyenus AUROC = 0,9867 u AUPR = 0,9873. O6cy:xaeHue: osiyueHHbIE 110~
Kasareau 3(PGEeKTUBHOCTY IIPEBOCXOJAT Pe3yabTaThl Oeii3/iaiiHa ¢ MCII0Jb30BAHUEM CPABHUTEJNHHO HEOOJBIINX 00yYAIOIUX JaTaceTOB
¥ HEMHOTI'O YCTYIAIOT JIYUIIUM Pe3yjbTaTaM, JOCTUTHYTHIM C IPUMEHEHHEM ropasgo 0oJiee MOIIHBIX BBIUHCIUTEJbHBIX PecypcoB. Tem
caMBIM IIOKa3aHo, UYTO JJIA ayIrMeHTaIuu HecOaJIaHCUPOBAaHHOTO JaTaceTa MOKHO 3(h(PeKTuBHO ncnoirb3oBaTh StyleGAN B KomMOuHanmn
¢ VGG11 xumaccudpuraTopoM, KoTopas He TpedyeT GOJbIINX BBIUYUCIUTEIbHBIX PECYPCOB, a TaKsKe GOJIBIIIOro HaYaJIbHOTO JaTacera [JIs
o0yueHUs.

KiroueBsie ciroBa — KjaaccuUKAIU JIETOUHBIX Y3JI0B, ayTMEeHTAIINA JaHHbIX, FTeHePpATUBHBIE CcOCTsa3aTeabHbIe ceTn, StyleGAN, KT-
unsobpaskeHue.
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