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Introduction: There is growing evidence of a connection between tumor clonal profile and its clinical impact. However, there
is a lack of a feasible and reliable method for clonal profiling in actual clinical practice. Myelodysplastic syndrome is a clonal
hematopoietic stem cell disorder characterized by morphological dysplasia, cytopenia and a high risk of evolution to acute my-
eloid leukemia. The clinical outcome of myelodysplastic syndrome is greatly heterogeneous; therefore, specific examination of
clonal profiles is needed to resolve the prognosis of patients with such complex disorders. Purpose: Development of a pipeline
specifically for determining the clonal profiles in patients with myelodysplastic syndrome on the basis of target next-generation
sequencing data. Results: The pipeline was developed and evaluated on a set of 35 patients with high-risk myelodysplastic syn-
drome. It is possible to use the target sequencing data in order to assess the heterogeneity of clonal profiles and characterize
their genetic features. This approach allows you to identify the consistency between a specific individual profile and the disease
prognosis, which can be critical for the treatment decision. Herein, the characterization and analysis of clonal profiles are pre-
sented. Practical relevance: The information about relation patterns between clonal profile characteristics (number of subclones,
mutations-per-clone rate) and clinical outcome can be used by doctors in current practice for a more accurate therapy selection
depending on the identified individual specificity of the disease.
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Introduction

Adult myelodysplastic syndrome (MDS) occurs
as a result of the gradual accumulation of somatic
mutations [1]. A set of cells derived from a mutated
cell is called a clone. Subclones arise from a prima-
ry clone (so-called subclones) in the process of ac-
quiring new somatic mutations (tumor progression,
clonal evolution), therefore, they are also consid-
ered as clones. To predict the tumor development
pathway, it is essential to characterize the clone
with its subclones [2].

Each clone is defined by its unique mutational
profile providing to trace the relation between clone
genotype and prognosis of the disease. The presence
of subclones with driver mutations in oncogenes has
been shown to negatively affect the outcome of the
disease in case of chronic lymphocytic leukemia
[3]. A correlation between a large number of sub-

clones and an unfavorable prognosis was identified
in lung, breast, prostate, kidney tumors, as well as
low-grade glioma [4—6].

One of the main approaches of next-genera-
tion sequencing (NGS) is targeted sequencing (TS)
method focused on specific genes panel in order
to determine the current mutation load. High pre-
cision, relatively low cost, multiple genes analysis
at once are the main advantages of TS. However,
there are some technical issues associated with the
implementation of this technique in actual clinical
practice: lack of verification methods and standard
pipelines for analysis of sequencing data, a need to
adapt for particular diseases. TS method used with
additional bioinformatic tools could be helpful in
clonal profile deduction.

Thus, the purpose of present work is to build
an analytical pipeline using modern bioinformatic
tools specifically adapted for determination of the
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clonal profiles in patients with MDS on the basis of
TS. Such evaluation might help to derive the rela-
tion and corresponding patterns between the num-
ber and the genotype of subclones, and subsequent
disease prognosis.

Materials and methods

1. Group selection.

Next-generation sequencing of 35 patients with
high-risk MDS was performed (Table 1) [7].

2. DNA sequencing.

Genomic DNA was extracted from bone marrow
using TriZ reagent extraction Kit (Inogene, Russia)
and stored at —80 °C. The quality of the samples
was analyzed with Qubit 4.0 (Thermo Fisher, CA,
USA). The libraries for target sequencing of the
genes were prepared using KAPA HyperPlus Kit
(Roche, Switzerland). The enrichment of targeted
genome sequences was performed using SeqCap EZ
Target Enrichment System (Roche, Switzerland).
Sequencing was performed by MiSeq benchtop se-
quencer using MiSeq Reagent Kits v2 (Illumina,
USA).

B Table 1. Characteristics of patients before and after
filtering of germinal and false positive variants

Value
Parameter before after
filtering filtering
Age med;z;r; 1f';nterval), 49 (18-80) (;gi,;o)
Male/female 21/14 16/11
Aftetrr:ffslgf:ftrmw 25 (71,4%) | 20 (74,1%)
ehemo.or radiotherapyy | | 0 043%) | 508:5%
Diagnosis
5q deletion 1(2,9%) 1(3,7%)
Excess of blasts I 13 (37,1%) | 10 (37,0%)
Excess of blasts I1 19 (54,3%) | 14 (51,9%)
Multilineage dysplasia 2 (5,7%) 2 (7,4%)
Risk according to IPSS-R
Very low 0 0
Low 1(2,9%) 1 (37%)
Intermediate 5 (14,3%) 4 (14,8%)
High 15 (42,8%) | 12 (33,3%)
Very high 14 (40,0%) | 13 48,1%)

3. Data preprocessing.

The quality of sequencing reads was analyzed
using FastQC (http://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/); adapters were elimi-
nated by Trimomatic 0.39 [8].

4. Alignment, analysis and generation of the
detected variants list.

Bioinformatic analysis was performed accord-
ing to the GATK-4 manual [9], with alignment to
the GRCh38 version of the human genome using
BWA 0.7.17[10], and determination of somatic var-
iants was accomplished with Mutect2 4.1.5.0 [11].
The resulting list of variants was annotated us-
ing Ensemble Variant Effect Predictor 99 [12] and
ANNOVAR [13].

The custom scripts used in the analysis on the
basis of GATK Best Practices pipelines, were de-
posited to the Github portal (https://github.com/
bugds/BashGATK). Parallelization was performed
using GNU Parallel [14].

5. Filtering of the germinal variants.

When analyzing the identified gene variants, we
excluded those variants whose frequency in differ-
ent populations according to GnomAD [15] exceeds
1%, and the allelic load (taking into account the chi-
merism) was in the range of 30—-70% and 90-100%
[16].

6. Removing false positives.

Variants not filtered by Mutect2 were not taken
into account. Additionally, variants found in two
or more samples with the same allelic load were re-
moved from the analysis that indicate a direct sign
of mispriming [17].

Samples were removed from the analysis in cas-
es where less than two variants remained as a result
of filtering (the study of tumor progression is based
on comparing allelic loads of variants and is possi-
ble only if there are two or more variants). Finally,
27 patient samples remained in the study (see
Table 1).

7. Computation of tumor burden and beta-allele
frequencies.

Beta-alleles are the polymorphisms detected
during sequencing (Fig. 1, a). Their allelic load must
be taken into account when calculating copy-num-
ber variations (see point 8): for instance, a germinal
variant in a heterozygous state with an allelic load
of about 33 or 67% indicates a duplication of this
region (Fig. 1, b). The Deep Variant 0.10.0 software
tool was used to determine polymorphisms [18].

In each sample, variants with the maximum allel-
ic load were identified — they are primary, and ap-
proximately reflect the proportion of tumor cells in
the sample. In this case, we assume that the variants
with the maximum allelic frequency in each sample
are not located in the regions of the genome with a
copy-number variation (insertions and deletions),
and are also heterozygous. In this case, the pro-
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the mutation (d)

Group
selection

>

4

Acquisition
of bone marrow
samples

library

L and enrichment
The pipeline

DNA extraction, v Sequencing

preparation Generation
of fastq-

files

Trimmomatic

(—
Adapter
trimming

control

FastQC

Alignment
(BWA)

_—>
Copy-number
variations
GATK, analysis
VEP, ANNOVAR, l Clonal

Deep Variant profiling

Variant calling and filtering,

removing false positives, .
computation of tumor burden

and beta-allele frequencies

3 PyClone

‘—
Quality

v

@sequencel
ACCCATGAC

+
ITHHHIHITHIHIT
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portion of tumor cells can be calculated as the dou-
ble number of variant allelic loads (Fig. 1, ¢). Cases
where variants with maximum loads are located in
regions of the genome with copy-number variation
require high-attention. For example, if a variant is
found in 50% of the reads, this may indicate both a
100% tumor load and the above phenomena associat-
ed with a copy-number variation (Fig. 1, d). Similar
phenomena can be suspected when studying allelic
loads of the other variants found in the same sample.
They were analyzed manually, and if interpretation
was not possible, they were excluded (it was consid-
ered that there is copy-number variation when iden-
tifying stable change of reading depth in the region
with an allele mutation with the maximum frequen-
cy, and the mutation with the maximum allelic fre-
quency cannot be considered primary).

8. Copy-number variations analysis.

To determine the copy-number variation,
CNVKkit 0.9.5 was used, an algorithm that utilizes
both target gene reads and non-specifically cap-
tured non-target reads to identify the copy-numbers
evenly across the entire genome [19]. This tool has a
relatively high accuracy [20] and is designed specif-
ically for detecting acquired copy-number variation
together with TS. To study somatic insertions and
deletions, it is necessary to take into account the
proportion of tumor cells in the sample determined
at the previous stage (see point 7). The copy-num-
ber is calculated by comparing the reading depth
in certain positions in the control and pathological
samples, taking into account the proportion of tu-
mor cells and the size of the beta allele. In CNVKkit,
a pooled or single reference can be used as a refer-
ence material. In this study, the usage of a sample
with more than 99% chimerism and a normal kary-
otype was chosen as a reference, which corresponds
to complete cytogenetic remission taken from a pa-
tient 4 weeks after bone marrow transplantation.

9. Clonal profiling.

PyClone 0.13.1 software tool was used to deter-
mine the clonal profiles [21] — the algorithm per-
forms Bayesian clustering method to group somatic
mutations into assumed clonal clusters with an as-
sessment of their cellular prevalence (the propor-
tion of affected cells) and taking into account the
allelic imbalances introduced by copy-number vari-
ations and contamination of normal cells.

The complete workflow of analysis is presented
in Fig. 2.

Results

The whole analysis took 7 hours 2 minutes
(Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 32G).

Under the analysis, one of the main issues was
the lack of an out-of-the-box tool for reformatting
the CNVkit output format into the one suitable for
PyClone. However, our pipeline avoids the majori-
ty of such complications by using a single package
(GATK) for the most part of the analysis.

Mutational profiles of the patients were derived
in form of tables; each variant was annotated with
its original allele frequency, the calculated tumor
load (i. e. a fraction of cells where this variant was
observed), the standard deviation of the tumor load,
and the cluster-ID that included the variant itself,
based on the calculated tumor burden. Two matri-
ces were obtained based on the patients’ clonal pro-
files: one, depicting the co-occurrence of primary
and secondary variants from the genes perspective
(Fig. 3), and another, describing genes affected by
mutations in the same clusters (Fig. 4).

The dynamics of tumor progression was de-
scribed for a patient, who was sequenced twice with
samples taken in 45 days (Fig. 5 [22]). A subclone
with RUNXI1 mutation overcame the detection
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threshold, and two other clones identified previous-
ly have grown.

Discovered paths of tumor progression were
plotted (Fig. 6). Moving along the arrows depicts
acquiring a mutation in a specific gene by a clone.
The diagram demonstrates all variants of tumor
progression that may be inferred from the observa-
ble clonal profiles.

N\

Discussion

We have developed and tested the pipeline for
clonal profiles determination in patients with MDS.
It is advantageous to identify the correlation be-
tween the clonal profile, their genotypic features
and disease prognosis, that has been effectively
demonstrated for other pathologies [3—6].

Genotypes of clones and subclones were plotted
(Fig. 7). Whiskers indicate the standard deviation
of tumor burden of a certain variant. The color of
a mark shows the affiliation to a specific cluster
(clone or subclone). Genes affected by a variant and
its genomic position in chromosomes are marked on
a horizontal axis.

Five mutations were found in the same sample
(Fig. 7, a) herewith two variants (in LAG3, DICERI1
genes) grouped in a single cluster. This fact, con-
sidering their high tumor load (> 50%), can be
interpreted as their coexistence in the same cells.
Otherwise, such a clonal profile would only be ob-
served if the mutation occurs again in the same po-
sition, which is highly improbable.

In the other case (Fig. 7, b), eight mutations were
discovered in genes: DICERI, TET2-AS1, RUNXI,
TP53, and TET2. Probably, the variant present in
the largest number of cells (marked brown, muta-
tion in DICERI) occurred almost simultaneously
with the mutation in TET2-AS1, which led to the ne-
oplasm formation. Then, all the other variants de-
veloped within the proliferating tumor. Three mu-
tations located in the same cluster (marked in blue)
appeared in a small fraction of cells, thereby having
relatively low clonal load, and therefore, their co-
existence and contribution to the current clinical
course is questionable. Such variants probably in-
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dicate the possibility of new subclones genesis, and
the diversification of a further clonal population
within the existing tumor.

Matrix of primary and secondary mutations
(see Fig. 3) shows that the primary mutations
mostly developed in DICERI1, TP53, and ASXLI
among the examined samples. It is in compliance
with the well-known fact that ASXL1 gene is fre-
quently affected primarily in patients with MDS
[23]. A clonal evolution path with TP53 as a driv-
er mutation was also described [24]. RUNX1 and
ASXLI lesions were the most frequent among the
secondary mutations.

Matrix of variants co-occurring in the same
clusters (see Fig. 4) illustrates the lack of coex-
istence of mutations in genes of common biolog-
ical function: different splicing genes (SRSF2,
SF3BI), immune response genes (LAG3, PDCDI,
CD274), which corresponds to the common trend of
negative cooperativity where functionally similar
genes are rarely affected together [25]. However,
we have identified inconsistencies of such tenden-
cy: mutations in genes of microRNA processing
(DICERI1, DROSHA) appeared in the same clus-
ters. Additionally, it is true for genes of epigenetic
regulation (TET2, ASXL1, EZH2, DNMT3A, and
IDH1), that was also observed in another research
[23]. Such distinguishing tendencies might be re-
lated to the interdependent participation of these
genes in the same biological pathway. It should
be noted that the cluster variants with the lowest
tumor burden (up to 10%) and duplicated probes
were omitted from the resulting matrices, since
their mutational load is comparable with the size
of a method error [16].

One of the main potential applications of the tu-
mor subclones identification and characterization
is the monitoring of their size and genetic features
in dynamics. Fig. 5 demonstrates an example of a
negative tendency for disease progression where
the growth of a primary clone and its subclone led
to the emergence of another subclone.

For more reliable identification and subsequent
exclusion of irrelevant polymorphisms from the
list of detected variants, matching control material
can be sequenced for each patient using tissue with
a germinal genotype. This could also improve the
copy-number variations calling as both tumor and
normal genotype files can be introduced to CNVKkit.

In some cases the tumor load can be evaluated by
tissue morphology (in case of solid tumors) or flow
cytometry: this would be beneficial to avoid the
assumptions about the maximum allele frequency
being indicative which were included when deter-
mining the tumor load using only NGS data: we hy-
pothesized this indicative variant is heterozygous
and not affected by indels (in the absence of obvious
signs of the opposite).

B Table 2. Comparison of TS and WGS requirements

Plat- Cost (per Data size
form | sample, USD) Depth (processed bam)
Depending
WGS | 1000-3000 30-60 on coverage
~60-350 GB
Depending
WES | 500-2000 150-200 on coverage
~5-20 GB
Varies by panel
TS 300-1000 200-1000 | size and coverage
~0.1-5GB

The importance of subclones in tumor develop-
ment has also been proven in other studies. In case
of ovarian cancer heterogeneous clonal profiles of
metastases led to different courses of tumor pro-
gression in each metastasis, which caused poor
response to immunotherapy, limiting treatment
options [26]. Clonal structure in MDS was also de-
scribed earlier [1], but both papers imply the meth-
ods yet unavailable in clinical practice. In another
study, clonal architecture of prostate cancer was
reconstructed by different methods, and PyClone
was shown to be appropriate in this case [27]. For
their turn, we have demonstrated the suitability
of computational methods in MDS, endorsing this
technique and its beneficial prognostic value into
clinical practice.

PyClone uses beta-binomial distribution to mod-
el mutation frequencies. There are alternatives:
PhyloWGS [28] and DPClust [29] based on binomial
distribution; but these tools were shown to be not
applicable in all cases [27]: DPClust failed with the
rate of 3.1% due to excessive computational mem-
ory (more than 250 GB), and PhyloWGS demanded
inordinate runtime (more than 3 months). On the
contrary, PyClone successfully completes all sam-
ples in the same study, which was confirmed by our
work.

Moreover, the majority of these tools request
data from the whole genome or exome sequencing
(WGS, WES), which greatly exceeds the storage
and computational resources needed for the same
analysis performed with TS (Table 2 [30]).

In conclusion, the analysis of the clonal struc-
ture, being a modern trend in predicting the out-
comes of tumors, is of highest importance for the
prognosis and the selection of treatment, which es-
tablishes the relevance for pipeline development in
case of MDS and other clonal diseases.
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BBeneHue: pe3yabTaThl IIOCIEIHUX HAYYHBIX MCCJIEOBAHUU IIOKA3BIBAIOT 0OJiee OYEBUHOM CBA3H MEKIY KJIOHAJBHBIM IIPOduIemM
OIIYXOJIU ¥ er0 KJINHUUYEeCKUM 3HaueHueM. OZHAKO B HACTOsAIee BpeMs OTCYTCTBYET JOCTYIHBIN B KINHUYECKOH IPAKTHKE U HaJEe KHBII
MeTOJ AJIsI KJIOHAJIbHOr0 npoduanupoBanusd. MuesoguciiacTudeCKuii CHHAPOM IIPEeACTaBIsAET CO00# CI0KHYIO KIOHATBHYIO ITaTOJOTHIO
TeMOIIO9TUYECKO CTBOJIOBOM KJIETKU, XapaKTepU3YIOI[YIOCsA MOP(OIOTUUECKON AUCIIa3ueil, UTOMEHNe U BBICOKUM PUCKOM TPaHC-
(opMaIuy B OCTPHII MUEJOUIHEIN Jeliko3. KInHuYecKnil UCX0a MUEIOUCILIIACTUUYECKOT0 CHHIPOMAa MOJKET OBITH UPEe3BBIYAHO TeTe-
POTreHHBbIM, IIO3TOMY MJd BBIACHEHUA MCTUHHOI'O COCTOAHUSA TeMOIIO3TUYECKON CUCTEeMbI 1 ,U;aJIbHeﬁH.IeI‘O IIPOTrHO3a OOJIBHBIX C TAKUMU
CJIO}KHBIMH HapYIIEeHUAMYU HEO0XOAUMO cuenudruecKoe n3ydyeHne KJIOHAIbHBIX npoduieii. Ileap uccienoBanusd: paspaboTka manmiaii-
Ha, IPeJHA3HAUEHHOI0 AJId ONpeeeHNusa KIOHAILHBIX IPO(uUIell MarueHToB ¢ MUEJIOAUCIIACTUYECKIM CUEAPOMOM Ha OCHOBE JaHHBIX
TapreTHOT0 CEKBEHNPOBAHUS CJIEAYIOIIEro IOKoJIeHus. Pe3yapraTsl: maiiniaiia 061y padpaboTraH u anpoOupoBaH Ha BRIOOPKe 13 35 maru-
€HTOB C MHEJIOAMCILIACTUYECKNM CUHIPOMOM IIPENMYIIIEeCTBEHHO BBICOKOTO prucKa. ITokasaHa BOBMOKHOCTD MCIIOJB30BATh JaHHBIE Tap-
TeTHOT'0 CEKBEHUPOBAHUA [JId OIeHKYU I'eTePOreHHOCTH KJIOHAJIBHBIX PoduiIeil U XapaKTepPUCTUKY UX TeHHBIX CBOUCTB. JlaHHBIN HOAXO0]
TO3BOJIUT UAEHTU(MUIINPOBATH COOTBETCTBUE MEXKAY TUIIOM MHIUBUAYAJIHLHOTO MPOMUIIA U IPOTHO30M 3a00JieBaHUSA, BJIUATH Ha BBIOOD
Tepanuu. [IpofeMOHCTPUPOBAHBI XaPAKTEPUCTUKY IIOJYUEHHBIX KJIOHAJIBHBIX IPO(dUIIell 1 onrcaH npouecc ux aHanusa. [Ipakruueckas
3HAYMMOCTE: NH(POPMAIUA O BEIABJIEHHBIX 3aKOHOMEPHOCTAX U B3BAUMOCBASHU MEXKAY XapaKTePUCTHKAMYU KJIOHAJIHHOTO IPOMUIA (KOIu-
YeCTBOM CYOKJIOHOB, YaCTOTOM MyTaluii Ha KJIOH) U KJIMHUUYECKUM UCXO0L0M MOXKEeT ObITh NCII0JIh30BaHA BpauaMU B COBPEMEHHOII IPaKTH-
Ke J1g 00oJiee TOYHOTO IT0A60pa TePAIINY B 3aBUCUMOCTHU OT BBIABJIECHHON NHANBUIYATBHON CIeNU(DUUHOCTY 3a00I€BaHUA.

KuaroueBsie ciioBa — MUEIOJUCIIIACTUYECKUN CHHAPOM, OnonHGOPMaTHIEeCKUH NaiIIaiiH, KIOHAJbHBIN IPO(UIL, IEPBUYHAL MyTa-
1usi, CyOKJIOH, TAPTeTHOE CEeKBEHUPOBaHYe, CEKBEHIPOBAaHYe CIeAYIOero MOKOJIeHU .
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