_MPOrPAMMHDIE U AMNMNAPATHbIE CPEACTBA IS

UDC 004.431.4
doi:10.31799/1684-8853-2021-2-33-42

A method for decompilation of AMD GCN kernels to OpenCL

K. I. Mihajlenko®b, Master Student, Junior Programmer, orcid.org/0000-0002-6168-2653,

Kristina.Mihajlenko@gmail.com

M. A. Lukin®b, PhD, Tech., CTO, orcid.org/0000-0002-1088-3324, lukinma@gmail.com

A. S. Stankevich?, PhD, Tech., Associate Professor, orcid.org/0000-0002-3532-8941, stankev@itmo.ru
a]TMO University, 49, Kronverkskii Pr., 197101, Saint-Petersburg, Russian Federation

bSudo Ltd., 20, Nahimov St., 199226, Saint-Petersburg, Russian Federation

Introduction: Decompilers are useful tools for software analysis and support in the absence of source code. They are available
for many hardware architectures and programming languages. However, none of the existing decompilers support modern AMD
GPU architectures such as AMD GCN and RDNA. Purpose: We aim at developing the first assembly decompiler tool for a modern
AMD GPU architecture that generates code in the OpenCL language, which is widely used for programming GPGPUs. Results: We
developed the algorithms for the following operations: preprocessing assembly code, searching data accesses, extracting system
values, decompiling arithmetic operations and recovering data types. We also developed templates for decompilation of branching
operations. Practical relevance: We implemented the presented algorithms in Python as a tool called OpenCLDecompiler, which
supports a large subset of AMD GCN instructions. This tool automatically converts disassembled GPGPU code into the equivalent
OpenCL code, which reduces the effort required to analyze assembly code.

Keywords — decompiler, disassembler, OpenCL, AMD GCN, GPGPU, control flow graph, reverse engineering.

For citation: Mihajlenko K. I., Lukin M. A., Stankevich A. S. A method for decompilation of AMD GCN kernels to OpenCL. Informatsionno-
upravliaiushchie sistemy [Information and Control Systems], 2021, no. 2, pp. 33—42. doi:10.31799/1684-8853-2021-2-33-42

Introduction

OpenCL [1] is a widespread standard for high
performance computing. It is supported by all of the
modern graphics processing unit (GPU) and central
processing unit (CPU) vendors in contrast to ven-
dor locked Compute Unified Device Architecture
(CUDA) [2]. In particular, both Nvidia and AMD
GPU support OpenCL. There are great gener-
al-purpose computing on graphics processing units
(GPGPU) development tools in the Nvidia ecosys-
tem, but AMD development tools have fallen behind
the Nvidia ecosystem. Sometimes developers need
to analyze assembly code for implementing better
optimizations or reverse engineering. Nevertheless,
there is no public decompilation tool for AMD GPU
assembly. Decompiler also allows supporting pro-
grams without source code and checking for undoc-
umented functions and backdoors. [3, 4]

OpenCL is designed to unleash the power of
massively parallel processors. The OpenCL plat-
form consist of a host (typically a CPU) and a set of
compute devices (or, simply, devices). In this paper,
devices are AMD GPUs. To avoid confusion, we de-
note by program the code executed on the host and
by kernel, the code executed on the device. Each
compute device consists of a set of compute units.
Each compute unit consists of a set of processing el-
ements.

Massive parallelism means a large number
of launched processes. The process index space
could be one-, two-, or three-dimensional. The set
of launched process indices is called NDRange [5].

NDRange is divided by equal-sized work-groups
(Fig. 1). NDRange size must be divisible by work-
group size on each dimension. Otherwise NDRange
size is automatically increased on each dimension
to fulfill this requirement. The single process is
called work-item. Each work-item has a unique iden-
tifier (ID) in NDRange index space (global id) and
a unique ID in its work-group (local id). Each work-
group also has a unique ID (work-group ID).
OpenCL defines four types of memory:

— global memory — a memory accessible to
read and write to host and all work-items in the
NDRange space;

— constant memory — a region of host-allocat-
ed global memory that is not changed during kernel
execution;

— local memory — a memory accessible to work-
items in a single work-group;

— private memory — a memory accessible to a
single work-item.

The AMD GCN architecture

The AMD GCN architecture [6] is related to
OpenCL platform model. A GPU device consists
of several compute units. Each compute unit has
four single instruction, multiple data (SIMD)
Vector Units for computing and one SIMD Scalar
Unit for flow control. Each SIMD Unit has 16 pro-
cessing elements. One processing element con-
tains one arithmetic logic unit (ALU) and can
execute a single OpenCL work-item. Thus, one

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 33

7

NPOIMPAMMHBIE N ANNAPATHbLIE CPEACTBA

/

98uBY N [BUOTSUSWIP-0M} JO S[dWEXd 9} UO [9pOW UOTINIdXd THuadQ 'J "S14 m

N

U ‘W = £ ‘X dnoay JIop

u‘w =4 ‘x
dnouay 10

u‘g=~4°x
dnouy JI0p\

U ‘w = £ ‘x dnoay JI0 M 0 ‘0 = £ ‘x dnouay jIop

901A9(T

/

0‘w=A4A‘x
dnoix) JI0 M

0‘0=4x
dnous 10\

1sOH

N 2, 2021

7

NHDOPMAUNOHHO-YNPABASIIOLLUVE CUCTEMbI

7/

34

\ NPOrPAMMHBIE N ANMAPATHBLIE CPEACTBA N\

compute unit contains 64 ALU. Compute units
work independently.

GCN devices have two-level data cache hierar-
chy. Each compute unit has L1 data cache and an
entire GPU device has L2 data cache. Also they
have 32 KiB instruction cache. If kernel does not
fit in instruction cache, it has significant per-
formance decrease. This fact encourages GPGPU
developers to decompose a compute task between
small kernels.

AMD GCN devices have an equivalent to each
type of OpenCL memory. Global and constant mem-
ories from OpenCL are represented by video ran-
dom access memory (VRAM). The equivalent of
OpenCL local memory is Local Data Share (LDS).
Data access in LDS is orders of magnitude faster
than that of a VRAM. Private memory is stored
in registers. Data access in registers is orders of
magnitude faster than LDS. If there are not enough
registers, aregion in VRAM is allocated for private
memory. These additional “registers” are named
scratch registers. Usually scratch registers are in
data cache and decrease performance by not real-
ly much. Registers are 32-bit but they can be com-
bined into pairs for 64-bit instructions. Registers
are the most expensive and valuable memory re-
source. Each work item can have at most 256 vector
registers (VGPR) and 104 scalar registers (SGPR).
Moreover, a compute unit has only 2048 registers
for 64 ALU.

The lowest group of work-items that flow control
can affect is named wavefront. This means that all
the work-items in a single wavefront have the same
program counter. All the work-items in a wavefront
execute all branching paths (with the exception of a
case when all the work-items choose the same condi-
tional jump). Irrelevant branch paths are executed
without any effect. Each SIMD Vector Unit can run
from one to ten wavefronts depending on the used
VGPRs, SGPRs and LDS.

AMD GCN has two different application bina-
ry interfaces (ABI) [7]. The first one comes with
Windows Adrenaline or Linux AMDGPU-Pro driv-
er. The second one comes with Linux-only ROCm
driver. In this paper the first one is considered.
ABI defines data and kernel parameters’ location
in memory. Some parameters are stored in regis-
ters, others are in VRAM. More detailed location
of parameters will be considered in the next sec-
tions.

Statement of the problem

The purpose of this work is to create a decom-
piler for GCN assembly. It takes a disassembled
file as input and translates it into its equivalent in
OpenCL. Since there are no OpenCL decompilers for

AMD GPUgs, the following state-of-the-art theoreti-
cal [8-18] and instrumental [19, 20] solutions for C
and C++ were considered as a basis:

— Ida Pro (Hex-Rays plugin): Intel x86 / x64,
ARM;

— GHIDRA: Intel x86, ARM, AVR, MIPS, PIC,
PowerPC;

— RetDec: Intel x86 / x64, ARM, MIPS, PIC32,
PowerPC;

— Hopper: Intel x86 / x64, ARM, PowerPC;

— Snowman: Intel x86, AMD64, ARM.

As a result of research to achieve this goal, the
following tasks were formulated:

1) extraction of the body of the program and da-
ta of the CPU module;

2) search for memory accesses;

3) search for control structures;

4) data type recovery.

The result of solving these tasks is a translation
assembly code to an OpenCL code. Out method con-
sists of the following steps:

1. Separation of program body, configuration
part and kernel name.

2. Initialization of registers and kernel parame-
ters using application binary interface.

3. Assembly instructions processing: control
flow graph construction and determination of
stored in registers data types.

4. Transformation control flow graph into re-
gion graph and its further processing (determina-
tion of flow-control instructions).

5. OpenCL code generation using processed re-
gion graph.

The body extraction

Extracting the body of the program is a small,
but quite important task, serving as a preparatory
stage for further decompilation. In addition, here
we parse config section with work group size, num-
ber of index range dimensions, and other kernel
properties. An example of the structure of the pro-
gram body is shown in Listing 1.

Listing 1. An example of the structure of the
program body
.kernel [kernel name]
.config
dims xyz
.cws §, 8§, 2
[other kernel configuration]
text
[program body]
s_endpgm <- end of program

This config means 3D index range with work-
group size 8 x 8 x 2 (128 threads in total).

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 35

/ NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

The algorithm of body extraction is presented in
listing 2.

Listing 2. The algorithm of body extraction
parse_status = “start”
instruction_set =]
config_set =[]
program_name =
for current_row in bode_of file:
if current_row contains “.kernel”
if parse_status == “instruction”:
parse_status = “kernel”
process_data(program_name, config_set,
instruction_set)
instruction_set =[]
config_set =[]
program_name = current_row.split()[1] // take the
second word.

if current_row == “.config”:
parse_status = “config

elif current_row == “.text”:
parse_status = “instruction”

elif current_row == “instruction”:

instruction_set += current_row
elif current_row == “config”:
config_set += current_row
else:
continue
process_data(program_name, config_set, instruction_set)

The program body consists of a sequence of as-
sembly instructions. Most of GCN assembly in-
struction names consist of three parts delimited by
symbol “ 7. In this paper they are called prefix, root
and suffix.

Prefix means one of the following instruction
types:

— Scalar instructions. Operands are mostly
SGPRs. These instructions are used to control flow
instructions, VRAM access, thread synchroniza-
tion, atomic operations and others. The prefix is
“s”,

— Vector instructions. Operands are mostly
VGPRs. These instructions are used for computing.
The prefix is “v”.

— Data share operations. Instructions for ma-
nipulating with LDS. The prefix is “ds”.

— FLAT instructions. Operands are mostly
pairs of VGPRs that hold 64-bit address. These in-
structions are used to access to VRAM, LDS and
scratch buffer. The prefix is “flat”.

Suffix (if present) means data type and size.
Supported data types are indicated by the following
suffixes:

i — signed integer;

u — unsigned integer;

f — floating-point;

b — binary (for bitwise operations).

The data type size can be 8, 16, 24, 32 and 64.
Some instructions contain double suffix. For exam-
ple, V_.MUL_HI instruction family (V_.MUL_HI
132 124, V. MUL_HI U32 U24).

The rest of command name defines the oper-
ation. Some operations do not have direct equiva-
lents in OpenCL. Such operations are decompiled
to several OpenCL instructions. Otherwise, some
assembly instructions are grouped and decompiled
into a single OpenCL instruction.

AMD GCN devices do not have a call stack.
Consequently, all the function calls are inlined
into a kernel. Therefore, assembly code does not
have any information about functions. We can on-
ly guess that there was a function if we discovered
identical code fragments (ignore register renam-
ing). But such an analysis is not considered in this

paper.

Search for memory accesses

Assembly instructions processing starts from
searching for memory accesses. The basic data
structure used in the following algorithms is called
Register. It holds the information about a single
register and contains the following fields: version,
type, integrity. Integrity can hold one of these val-
ues: {entire, high_part, low_part}. Entire means
the register holds the whole 32 (or less) bit varia-
ble. Other values mean the register holds a part of
64 bit variable.

AMD ABI documentation contains description
for OpenCL work-item built-in functions.

At this stage, the following functions are sup-
ported:

get_global_id(uint dimindx);

get_global_offset(uint dimindx);

get_local_id(uint dimindx);

get_global_size(uint dimindx);

get_local_size(uint dimindx);

get_group_id(uint dimindx);

get_num_groups(uint dimindx);

get_work_dim().

The result of these functions is stored to specific
addresses. Therefore, if such an address is loaded
into a register, then further access to that register
means a call to this function.

The get_global_id(dim) function returns a global
thread identifier that is unique in the entire task
space. dim can take possible values of 0, 1 or 2.
Since the thread numbering can be shifted in ker-
nels, in order to get a thread index starting from
zero, there is the following idiom:

uint idx0 = get_global_id(0) -
get_global_offset(0);

36 7/ VHOOPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI

/7 N°2,2021

\ NPOrPAMMHBIE N ANMAPATHBLIE CPEACTBA N\

This thread index is often used to refer to an ar-
ray. We parse this index and get_global_id in the
following steps:

In the first step, we detect get_global_offset(uint
dimindx). The value of this function is stored
in global memory by address s[4:5]. So instruc-
tion s_load_dwordx2 s[2:3] s[4:5] OxO means
get_global_offset(0) stored in register pair s2, s3.

The second step is determining the local ID: get_
local_id(0). Local ID is stored in register vO before
the program starts executing, and in case of 2D or
3D index range get_local_id(1) and get_local _id(2)
are stored in v1 and v2, respectively. Therefore
the field type of these registers data is filled be-
fore the instruction processing (it corresponds to
get_local_id(uint dimindx)).

The third step is identifying the work-group ID:
get_group_id(uint dimindx) . The result of calling
this function is also compile-time constant and
stored before the program execution. If “useargs”
is used by the kernel in the configuration,
get_group_id(0) is stored in register s6, and (in
case of 2D and 3D index range) get_group_id(1) and
get_group_id(2), are stored in s7 and s8, respective-
ly. This instruction is processed like the previous
one. The registers fields type are filled with corre-
sponding values before the instruction processing.

The fourth step is discovering the work-group
size. In OpenCL this value can be retrieved using
get_local_size function. It is impossible to deter-
mine the call to this function from the assembly
code. This is because the value of this function call
is replaced by numeric constant. Therefore, we have
no semantic information about this number in the
assembly code. However, we have obtained work-
group size in the previous section.

The last step is multiplying the work-group ID by
the work-group size, and then the local thread ID.

Function get_global_id(uint dimindx)is decon-
structed in similar way but with the addition of the
offset value.

The result of a function that returns the
size of the workspace in a given dimension,
get_global_size(uint dimindx), is stored in glob-
al memory by address s[4:5]+ Oxc, 0x10 or Ox14
depending on the dimension. Processing of this
instruction is same with get global offset: da-
ta type inference is done using instruction
s_load_dword with offsets (Oxc, 0x10, 0x14).

Next, consider a function that returns the num-
ber of work-groups that will run the kernel for a
given dimension, get num_groups(uint dimindx).
The value is obtained by dividing the size of the
workspace by the size of the work-group for a given
dimension.

The last function to consider is get_work_dim().
It returns the number of dimensions used. The val-
ue is obtained when dword is loaded from the reg-

isters storing a pointer to kernel settings — s[4:5],
with an offset of 0x20010. Processing of this in-
struction is the same with get global_offset u
get_global_size.

The result of matching with the presented tem-
plates is a restoration of work-item built-in func-
tions.

Also, calls to array elements and simple arith-
metic operations were supported.

Search for control structures

The decompiler was implemented using an al-
gorithm based on structural analysis [21]. At first
step, we construct the control flow graph [22]. After
that, we transform it to region graph. Initially, each
instruction represents one region.

The analysis process in based on depth-first
search. Each node is checked whether it is a header
of one of known templates. If the template is deter-
mined, all the nodes corresponding to this template
are merged into a single node. This process is iter-
ated until the single node remains.

Our decompiler supports the if construction. The
template presented for it in Fig. 2, corresponds to
the one described in theoretical solutions, and does
not require any additional transformations for de-
tection and decompilation.

The region graph processing algorithm is illus-
trated by the example shown in Fig. 3. The algo-
rithm consists of the following steps:

1. Regions ##1-3 are not beginning of any
known templates. Region #4 in conjunction with
regions #5 and #6 constitute an if template.
However, region #6 is connected with another re-
gions. So, we merge only regions #4 and #5 into a
new region #7.

2. Regions #1 and #2 are not beginning of any
known templates. Regions #3 and #7 constitute a
linear region. Merge them into a new region #8.

3. Region #1 is not beginning of any known tem-
plates. Regions #2, #8 and #6 constitute an if tem-
plate. Region #6 is connected with another region
(region #1), so merge only regions #2 and #8 into a
new region #9.

Checked
condition

v
Label

B Fig. 2. Template for if statement

Body if condition

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 37

/ NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

4. Regions #1, #9 and #6 constitute an if tem-
plate. Merge them into a new region #10.

5. There is a single region now. So, we extracted
all flow-control information from the region graph
and can now generate OpenCL code.

The main difference with CPU if-else template
is the presence of a 64-bit mask, which is respon-
sible for the execution of threads. This is because
64 threads have the same instruction pointer. AMD
compiler generates if-else construction in several
forms. We demote the most frequent form as the
first form. The first form is shown in Fig. 4, a. For
more convenient processing, this template was re-
duced to the form shown in Fig. 4, b (standard
form).

In this paper we also consider another two fre-
quent forms. We denote them as the second form
and the third form. The second form is shown in
Fig. 5, a. The third form is shown in Fig. 5, b. The
reduction the second form of if-else template to
the standard form (see Fig. 4, b) consists of two
steps:

1. Transformation to the first form of if-else tem-
plate.

2. Reduction to standard form.

The second form of if-else template looks like the
if template. But the main difference is the second
change exec mask and else condition body before
restoration of exec mask. The main difference be-
tween the first form and the second form is a quan-
tity of “goto” labels.

The transformation of the second form to the
first form is made by fake insertion of the second la-
bel after the else condition body and condition jump
to the second label before it. The transformation of
the third form is made similarly.

The processing of nested structures is the fol-
lowing. Firstly, the most nested structures are
detected using control instruction templates.
Detected structures are combined in the region

graph. After that, the most nested of the remain-
ing structures can be detected. The processing is
continued until the root structure is combined in
the region graph.

When processing branches, it was taken into
account that at a vertex that has several ances-
tors, the values of registers can be determined
ambiguously. And if in the future some of these
registers were used, then variables were created
for them. In the implementation, this was done by
assigning versions to registers and working with
them [23, 24].

The last considered in this paper control struc-
ture is the ternary operator. It is represented in the
assembly code of one instruction and does not re-
quire overlapping templates.

_____ <

|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
]

Save and
change exec

a) mask

Check jump to
label 1

Body if condition

Change exec
mask

—

Check jump to
label 2

~ @@

Body else
condition

Label 2

Restore exec
mask
Check condition
in if part

b)

Body if
condition

Body else
condition

6 6
______ 4 N —__= -
Step 2 Step 3 Step4 Stepb . . .
B Fig. 4. Templates for if-else conditions part 1: a —
B Fig. 3. Example of region graph handling with two labels; b — standard form
38 7/ VHOOPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI 7/ N=2,2021

\ NPOrPAMMHBIE N ANMAPATHBLIE CPEACTBA N\

a)

Save and
change exec
mask

—

Check jump to
label 1

Body if condition

Changeexec
mask

Body else
condition

Restore exec
mask

b)

Save and
change exec
mask

Body if condition

Change exec
mask

Check jump to
label 2

Body else
condition

Restore exec
mask

B Fig.5. Templates for if-else conditions part 2: a — with label in the if part; b — with label in the else part

Data type recovery

Two ways of data type recovery were imple-
mented: from the .config section of kernel and
using assembly instructions. The .config section
contains data types for kernel arguments. For ex-
ample, the .config section of kernel with signature
void copy(__global int *data, int x) is shown
in Listing 2. As can be seen from Listing 2,
data type for kernel arguments can be restored un-
ambiguously.

Listing 3. Kernel arguments
.kernel copy
.config

.dims x

.cws 64,1, 1

.sgprsnum 13

vgprsnum 3

.floatmode 0xcO

.pgmrsrc1 0x00ac0040

.pgmrsrc2 0x0000008¢c

.dx10clamp

.ieeemode

.useargs

.priority O

.arg_.global_offset_0, “size_t”, long

.arg_.global_offset_1, “size_t”, long

.arg_.global_offset_2, “size_t”, long

.arg _.printf_buffer, “size_t”, void*, global, , rdonly
.arg_.vqueue_pointer,”size_t”, long
.arg_.aqglwrap_pointer,”’size_t”, long

.arg data, “int*”, int*, global,
.arg x, “int”, int

Data type determination using assembly in-
structions is based on instruction suffixes. For ex-
ample, instruction

s_add_u32s0, s4, s0

means sum of two unsigned 32-bit integers.

Practical implementation

As a practical implementation of this research,
the OpenCL Decompiler tool was developed. At this
moment, it supports only a reduced set of AMD
GCN ISA.

The OpenCL Decompiler was implemented in
Python 3. It requires an assembly file compatible
with CLRX Disassembler [25] output or CodeXL as-
sembly listing as input data.

The output of the OpenCL Decompiler is a valid
OpenCL file. All decompiled kernels can be com-
piled and executed on AMD GPUs. The exception is
case when the decompiler gets an unsupported in-
struction. In this case decompiler lefts unsupport-
ed assembly code as is in inline assembly (inline
assembly is not supported by AMDGPU-Pro driver
and cannot be compiled).

The source code is available at https://
github.com/sudo-team-company/OpenCLDecom-
piler.

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 39

/ NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

The repository has about 931 synthetic tests and
real free open-source kernels. Decompiler passes all
the tests in the repository, which confirms correct-
ness described functionality.

The examples of the real kernels are mask kernel
and weighted sum_kernel (https://github.com/ga-
nyc717/Darknet-On-OpenCL/blob/master/darknet_
cl/cl_kernels/blas_kernels 1.cl). The result of their
decompilation isin folder real tests (https://github.
com/sudo-team-company/OpenCLDecompiler/tree/
master/tests/real kernels).

These tests confirm the compliance of the theo-
retical considerations and practical results.

Conclusion

In this paper, a decompiling method for AMD
GPU assembly was described. It has an implementa-
tion called OpenCLDecompiler and was introduced
into Sudo Ltd. The OpenCLDecompiler tool was
demonstrated on real open-source projects. All of
this reveals the practical applicability of described
method.

The described method is based on standard tech-
niques for CPU decompilers but some techniques
required significant modification for massive par-
allel architecture.

Decompiler works with any valid assembly code.
However, restoration of some complicated loop con-
structions and some instructions is not implement-
ed. In this case all supported assembly instructions
are decompiled into a pseudo-code in accordance
with their documentation. Unsupported instruc-
tions are remained unchanged. This approach does
not provide full-fledged OpenCL code but signifi-
cantly facilitate further manual code analysis.

It is further planned to extend the set of sup-
ported instructions and support the new RDNA ar-
chitecture [26] and processing of more complicated
flow control instructions.

Financial support
This work was supported by Sudo Ltd, project No

cr-776, and National Center for Cognitive Research
of ITMO University.

References

1. OpenCL Overview — The Khronos Group Inc. Availa-
ble at: https://www.khronos.org/opencl (accessed
25 January 2020).

2. Jedel’ G. E. Parallel’nye vychislenija na graficheskih
processorah Nvidia CUDA. In: Sbornik izbrannyh
statej nauchnoj sessii TUSUR [Parallel computing on
GPU Nvidia Cuda. In: Collection of selected articles
of the TUSUR scientific session]. Tomsk, Tomskij go-
sudarstvennyj universitet sistem upravlenija i radio-
jelektroniki, 2020, no. 1-1, pp. 41-43 (In Russian).

3. Kondakov E. V. Parallel computing on GPUs. Materi-
aly XL nauchno-prakticheskoj konferencii “Nauka
XXI veka: problemy, poiski, reshenija” [Materials of
the XL Scientific-Practical Conference “Science of
the 21st Century: Problems, Search, Solutions”].
Miass, 2016, pp. 34—-39 (In Russian).

4. PryadkoS. A., Troshin A. Y., Kozlov V. D., Ivanov A. E.
Parallel programming technologies on computer
complexes. Radio industry, 2020, vol. 30, no. 3,
pp. 28-33 (In Russian). doi:10.21778/2413-9599-
2019-30-3-28-33

5. The OpenCL Specification. Version: 1.2. Available at:
https://www.khronos.org/registry/OpenCL/specs/
opencl-1.2.pdf (accessed 26 January 2020).

6. Yifan Sun, Trinayan Baruah, Saiful A. Mojumder,
Shi Dong, Xiang Gong, Shane Treadway, Yuhui Bao,
Spencer Hance, Carter McCardwell, Vincent Zhao,
Harrison Barclay, Amir Kavyan Ziabari, Zhongliang
Chen, Rafael Ubal, José L. Abellan, John Kim, Ajay

Joshi, and David Kaeli. MGPUSim: Enabling Mul-
ti-GPU performance modeling and optimization. The
46th Annual International Symposium on Computer
Architecture (ISCA ’19), June 22—-26, 2019, Phoenix,
AZ, USA. ACM, New York, NY, USA, 2019, 13 p.
https://doi.org/10.1145/3307650.3322230

7. ROCm — AMDGPU Compute Application Binary In-
terface. Available at: https://github.com/ROCm-De-
veloper-Tools/ROCm-Compute ABI-Doc/blob/master/
AMDGPU-ABI.md (accessed 12 April 2020).

8. Mikhailov A. A., Khmelnov A. E. Control flow graph
visualization. BSU Bulletin. Mathematics, Informat-
ics, 2018, no. 2, pp. 50-62 (In Russian). doi:10.
18101/2304-5728-2018-2-50-62/issn2304-5728

9. Klimenko V. Y., Saradzhishvili S. E. Optimization of
loop search in flowgraphs. Veles, 2019, no. 10—1 (76),
pp. 63—66 (In Russian).

10. Menshikov M. A. Effective translation of directed
acyclic graphs to intermediate representation. Pro-
cessy upravlenija i ustojchivost’, 2020, no. 1, pp. 271—
275 (In Russian).

11. Jumaganov A. S. A combined method of similar code
sequences search in executable files. V mezhdunarod-
naja konferencija i molodjozhnaja shkola «Informa-
cionnye tehnologii i nanotehnologii» [The V Interna-
tional Conference and Youth School “Information
Technology and Nanotechnology”]. Samara, 2019,
pp. 639-646 (In Russian).

12. Treshhev I. A, Serikov V. A. A practical approach to
the implementation of the decompilation of machine
code. Sbornik materialov IV Vserossijskoj nauch-

40 7 VHOOPMAUVIOHHO-YMPABASIOLLVIE CUCTEMEI

/7 N°2,2021

\ NPOrPAMMHBIE N ANMAPATHBLIE CPEACTBA N\

no-prakticheskoj konferencii (s mezhdunarodnym sium on Software Testing and Analysis (ISSTA 2020),
uchastiem) “Informacionnye tehnologii v jekonomike Association for Computing Machinery, New York,
i upravlenii” [Collection of Materials of the IV NY, USA, pp. 475-487. d0i:10.1145/3395363.3397370
All-Russian Scientific-Practical Conference (with in- 19. Ayoshin I. T. Reverse engineering of software by IDA
ternational participation) “Information Technologies Pro. Aktual’nye problemy aviacii i kosmonavtiki,
in Economy and Management”]. Mahachkala, 2020, 2018, vol. 3, no. 4 (14), pp. 808—-809 (In Russian).
pp- 168-173 (In Russian). 20.Vorob’ev A. M., Bocvin A. S., Nagibin D. V. Function-
13.Izrailov K. E. Applying of genetic algorithms to de- al analysis of Ghidra — a framework for reverse engi-
compile machine code. Zashhita informacii, Insajd, neering. Metody i tehnicheskie sredstva obespechenija
Saint-Petersburg, 2020, no. 3(93), pp. 24—30 (In Rus- bezopasnosti informacii, 2019, no. 28, pp. 86—88 (In
sian). Russian).

14. Andreev A. A., Datsun N. N. Optimization analisys 21. Derevenec E. O., Troshina E. N. Structural analysis
of fore language translation stages. Materialy Vser- in a decompilation problem. Prikladnaya informati-
ossijskoj nauchno-prakticheskoj konferencii molodyh ka, 2009, no. 4(22), pp. 87-99 (In Russian).
uchenyh s mezhdunarodnym uchastiem “Matematika 22.Blank Ya. A., Savkin M. K. Control flow graph. Mate-
i mezhdisciplinarnye issledovanija” [Materials of the rialy regional’noj nauchno-tehnicheskoj konferencii
All-Russian Scientific and Practical Conference of “NaukoemkEie tehnologii v priboro- i mashinostroenii i
Young Scientists with International Participation razvitie innovacionnoj dejatel’nosti v vuze” [Materi-
“Mathematics and Interdisciplinary Research”]. als of the Regional Scientific and Technical Confer-
Perm’, 2020, pp. 11-15 (In Russian). ence “Science-Intensive Technologies in Instrument

15. Katz D. S., Ruchti J., and Schulte E. Using recurrent and Mechanical Engineering and the Development of
neural networks for decompilation. IEEE 25th Inter- Innovative Activities in the University”]. Kaluga,
national Conference on Software Analysis, Evolution 2016, pp. 75—78 (In Russian).
and Reengineering (SANER), 2018, pp. 346—356. doi: 23.Masud A. N., and Ciccozzi F. More precise construc-
10.1109/SANER.2018.8330222 tion of static single assignment programs using

16. Andrea Gussoni, Alessandro Di Federico, Pietro Fez- reaching definitions. Journal of Systems and Soft-
zardi, and Giovanni Agosta. A comb for decompiled C ware, 2020, vol. 166. doi:10.1016/j.jss.2020.110590
code. 15th ACM Asia Conference on Computer and 24.Masud A. N., and Ciccozzi F. Towards Constructing
Communications Security (ASIA CCS’20), October the SSA form using Reaching Definitions Over Dom-
5-9, 2020, Taipei, Taiwan, ACM, New York, NY, inance Frontiers. 19th International Working Confer-
USA, 15 p. https: //doi.org/10.1145/3320269.3384766 ence on Source Code Analysis and Manipulation

17. Gusenko M. The use of regular expressions for de- (SCAM), 2019, pp. 23—33. doi: 10.1109/SCAM.2019.
compiling static data. Software Systems and Compu- 00012
tational Methods, 2017, no. 2, pp. 1-13. doi:10. 25.CLRadeonExtender. Available at: http://clrx.native-
7256/2454-0714.2017.2.22608 boinc.org (accessed 11 April 2020).

18.Liu Z., and S. Wang. How far we have come: Testing 26.Secrets of the new RDNA graphics architecture re-
decompilation correctness of C decompilers. Proceed- vealed. Otkrytye sistemy. SUBD, 2019, no. 3, p. 5 (In
ings of the 29th ACM SIGSOFT International Sympo- Russian).

YIOK 004.431.4
doi:10.31799/1684-8853-2021-2-33-42

Meton nekomnuasiuu AMD GCN agep B OpenCL

K. 1. Muxaiinesko®%, marucrpasT, MIaAIINH IporpaMMucT, orcid.org/0000-0002-6168-2653,
Kristina.Mihajlenko@gmail.com

M. A. JIykuna®0, kanj. TexH. HAyK, TeXHIUeCKHUil TupeKTop, orcid.org/0000-0002-1088-3324, lukinma@gmail.com
A. C. CrankeBUdY?, KaHJ. TeXH. HayK, HoIeHT, orcid.org/0000-0002-3532-8941, stankev@itmo.ru
aHanwmoHaNbHBIN ucciaenoarenbckuil yausepcurer 'TMO, Kporsepkckuii np., 49, Caaxr-IleTepbypr, 197101, P®
6000 «Cyno», Haxumosa yi., 20, Caukr-Iletepbypr, 199226, P®

Brenenue: 1eKOMIUIATOPBI ABISAIOTCA YIOOHBIM HHCTPYMEHTOM IS AHAJIM3A U MOAIEPKKHU IPOIPAMM IIPU OTCYTCTBUU UCXOTHOTO KO-
na. CylLecTBYIOT JeKOMIIMISATOPSI AJ15 MHOTUX aPXUTEKTYP U A3bIKOB IIPOrPAMMUPOBAHUSA, HO IJIA IpapMuecKruX IIPOIeCCOPOB CeMeCTB
AMD GCN u RDNA rakoro nHCTpyMeHTa B HacTosIee BpeMmda HeT. Ileab: paspaborars feKoMnuiaaTop accembiaeproro koga AMD GPU
B s3bIK mporpammMmupoBanusa OpenCL, IIIUPOKO MCIOIL3YEeMBbIN AJIA MPOTPAMMUPOBAHUA Ha ycTpoiicTBax Kaacca GPGPU. PesyabTaTsi:
OIIpe/iesIeHbl AJITOPUTMBI IIEPBUYHON 06pab0TKHU acceMOJIepPHOr0 KOJa: BhIAeJeHNe Ha3BaHUsA IPOrPAMMBI, IAPAMETPOB U TeJia IIPOrpaM-
MBbI; IIOMCKa OOpAIeHn K JaHHBIM U K 9JIeMeHTaM MAaCCUBOB; U3BJIEUEHNUA CUCTEMHBIX 3HAUEHU; IONCKA U JeKOMINIAIUA HEKOTOPBIX
apudmeTnuecKux omepamnuii. Takske BLIPAGOTAH METO BOCCTAHOBJIEHUA TUIIOB U IJis PAGOTHI C JIOKAJIbHON maMaThio. PaspaboTansb 1mia-
GJIOHBI IJIA OIpee/IeHNs YIPABJIAIINX KOHCTPYKIuii. [IpaKTHyecKkas 3HAYMMOCTD: IIPEIJIOKEHHbIE aJTOPUTMBL X METOJ PeaJrn30BaHbl

Ne2,2021 N\ VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ a

/ NPOrPAMMHbIE 1 ANMNAPATHBLIE CPEACTBA /

Ha sa3eike Python B Buge uncrpymenTa OpenCLDecompiler, mogaeps;xuBaoIiiero JoCTaTOUHO 0OJIBIIOE IIOJMHOMKECTBO KOMAH apXUTEK -

Typsl AMD GCN. Pazpa6oTaHHbIil THCTPYMEHT IPOU3BOJUT JeKOMIUIAINIO aCCeMOIePHOT0 KO/ia, IIOJYUeHHOTO B pe3yJabTaTe JU3acCeM-

OJIMpOBaHUA UCIOJHAEeMOro (aitia, B Kox Ha A3bike OpenCL, 4To ITO03BOJISIET COKPATUTD TPYA03aTPAThI HA aHAJIN3 acceMOJIePHOTO Koa.
Kirouesslie ciioBa — IeKOMIUIATOD, ausaccembiep, OpenCL, AMD GCN, GPGPU, rpad moToka yupasieHus, oOpaTHas paspaboTKa.

Ias puruposanua: Mihajlenko K. I., Lukin M. A., Stankevich A. S. A method for decompilation of AMD GCN kernels to OpenCL.
Hugpopmayuonno-ynpasasaoujue cucmemvt, 2021, Ne 2, ¢. 33—-42. doi:10.31799/1684-8853-2021-2-33-42

For citation: Mihajlenko K. I., Lukin M. A., Stankevich A. S. A method for decompilation of AMD GCN kernels to OpenCL.
Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2021, no. 2, pp. 33—42. do0i:10.31799/1684-8853-2021-2-
33-42

YBaxaeMmsble aBTOPBI!

IIpu moAroTOBKE PYKOIMUCeH cTaTeil He0OX0AUMO PYKOBOJACTBOBATHCA CIAEAYIOUUMH PEKOMEeH AU MM,

CraTbu JOJIKHBI COIEP;KATH U3JI0JKEHNE HOBBIX HAYUHBIX pPe3yibTaTroB. HasBaHue cTaThy JOIKHO OBITH KPDATKUM, HO MH()OPMATHUBHBIM.
B HasBaHUU HEJOIIYCTUMO UCIIOJIb30BaHUE COKpaIlleHnii, KpoMe cambixX obmienpuaaTeix (PAH, P®, CAIIP u T. 11.).

TexcT pyKOIHCH LOJIKeH OBbITh OPUTMHAILHEIM, & IIUTUPOBAHYE U CAMOIIUTIPOBAHIE KOPPEKTHO 0(hOPMIIEHO.

O0bem craTbu (TEKCT, TaOIUIILI, UILIIOCTPAINY U Oubanorpadusi) He JOJIKeH IIPeBbIMIaTh 9KBuBajgeHTa B 20 cTpaHuIl, HalleyaTaHHBIX
Ha 6ymare popmara A4 Ha oxHOM cTopoHe yepes 1,5 narepsana Word mipudrom Times New Roman pasmepom 13, moJist He MeHee ABYX CaH-
THMETPOB.

O06s3aTeIbHBIMUY 9JIeMeHTaMu 0(DOPMJIEHU S CTaThU ABAAIOTCA: uHAeKe ¥ 1K, 3arsaBue, nHuuans! u pamMuand aBropa (aBTOpOB), yue-
Hasd CTelleHb, 3BaHUe (IIPX OTCYTCTBUU — JOJ’KHOCTEH), ITOJTHOE HadBaHUe OPTaHM3aIliN, AHHOTAIINA U KJII0UeBble CJI0Ba HA PYCCKOM U aH-
ryiniickoM A3bIKax, ORCID u a/1IeKTPOHHBIH aIpec 0JHOTO U3 aBTOPOB. IIpy HanmcaHNY aHHOTAI[UY He UCII0JIL3YiiTe a00peBUaTyp U He Jeaii-
Te CCHIJIOK Ha MCTOYHUKU B CIIUCKe JIuTepaTypsl. [IpenocTaBisiiTe HOgPUCYHOUHBIE IOAINCY U HA3BAHUS TAOINUI] HA PYCCKOM U aHIVINHCKOM
SABBIKAX.

CraTbu aBTOPOB, He UMEIOIIUX YUEHOH CTEeIIeHN, PEKOMEHYeTC s ITy0IMKOBATh B COABTOPCTBE C HAYYHBIM PYKOBOANUTEIEM, HAJIIUNE ITO/IINCH
HAYYHOTO PYKOBOAUTEJA Ha PYKOINUCH 00s3aTeJILHO; B CIyUae CAMOCTOATEILHON IyOINKAIIY 0013aTeIHbHO IIPEIOCTABIIANTe 3aBEPEHHYIO 110 Me-
CTy paboThl PEKOMEHJAIINIO HAYIHOT'O PYKOBOJUTENA C YKa3aHUEM ero (paMuaIny, UMeHH, OTUECTBa, MecTa PaboThl, TOJIKHOCTH, YUEHOTO 3BaHMU,
YUEHOI CTEIIeHN.

Dopmyasr HabupaiiTe B Word, He ncnosibays hopmyabHbIil pegakrop (Mathtype niu Equation), mpu Heo6xoquMoCTH MOYKHO HCIIOIB30-
BaTh GOPMYJILHBIN PelakToP; A1 Habopa 0JHOIT (DOPMYJIbI He UCIIONIb3YIiTe Ba PeJaKkTopa; npu Habope hopmyst B HOPMYIBEHOM peJaKkTope
3HAKH IpeNuHaHNsA, orpaHnYuBaoue GopMyry, Habupaiite BMecTe ¢ (pOpMyJIOi; AJIA YCTAHOBKU pasMepa IIpu@Ta HUKOTa He I0JIb3yii-
Tech BKJIaAKoM Other..., ncnonbayiiTe 3aBo/iCKIe YCTAHOBKY PeJaKTOPA, HE IIOATOHANTE pa3Mep CUMBOJIOB B GopMyJIax 1moJ pasmep mpudra
B TEKCTE CTaThbU, He PACTATUBATe U He CKUMANTe MBIIITBI0 (DOPMYJIbI, BCTABJIEHHBIE B TEKCT; B (DOPMYyJIaxX He OTAeJAiTe IpodeiaMy 3HAKNU:
+=-.

st mabopa popmys B Word Hurorga He ucnoabdyitre KoucrpykTop (#a BepxHeit nanenn: «Pabora ¢ popmynamu» — «KoucrpyrTop»),
TaK KaK 9TOT pecypc IpeJHasHAUeH TOJIbKO AJIA BHYTPEHHEro NCIIoIb3oBanusa B Word 1 He IOAAepIKUBaeTCs IIPOrpaMMaM, IIpeJHa3HAUYeH-
HBIMU [IJIs1 U3TOTOBJIEHU A OPUTHHAI-MaKeTa KypHaJa.

IIpu HaGope CMBOJIOB B TEKCTE IIOMHUTE, YTO CIMBOJIBI, 0003HAUAEMbIe JIATHHCKUMY OyKBaMu, HAOUPAIOTCA CBETIBIM KYPCUBOM, PyC-
CKUMU U TPEUECKUMU — CBETJIBIM IPAMBIM, BEKTOPBI ¥ MATPUIIBI — IIPAMBIM MOJIYKUPHBIM IIIPUQTOM.

WnnrocTpanuu IpefocTaBIsg0TCA OTAeIbHBIMY UCXOQHBIMHY (haiizaMu, TOANAI0IINMUCH PeAaKTUPOBAHUIO:

— PUCYHKU, rpauKu, [UarpaMMbl, OJI0K-CXeMbl IIPeOCTABIANTe B BUAE OTAEIbHBIX HCXOAHBIX (DaiiioB, MOAJAIOMNXCSA PeJaKTIPOBa-
HUI0, UCIOJIB3YysA BEKTOPHBIE MporpaMmbl: Visio (*.vsd, *.vsdx); Coreldraw (*.cdr); Excel (*.x1s); Word (*.docx); Adobe Illustrator (*.ai);
AutoCad (*.dxf); Matlab (*.ps, *.pdf wiu sxcropT B opmar *.ai);

— €ecJIM PeflaKTop, B KOTOPOM BBI M3roraBinBaeTe pUCYHOK, He ITO3BOJIAET COXPAHUTL B BEKTOPHOM (hopMare, UCIOJIb3YiiTe (DYHKIINIO
9KCIOpTa (TOJIBKO II0 OTHOIIIEHUIO K UCXOJHOMY PUCYHKY), HallpuMep, B hopmar *.ai, *.esp, *.wmf, *.emf, *.svg;

— ¢oto u pacTpoBble — B (popmate *.tif, *.png ¢ makcumanabHBIM pasperienuem (He meHee 300 pixels/inch).

Hanuure moApuCyHOUHBIX MOAIKCEN U Ha3BAHUH TAOJ/IUI] HA PYCCKOM U aHIVIMIICKOM A3bIKaX 00A3aTeJIbHO (JKeIaTeIbHO He IIOBTOPSIO-
WX JOCJIOBHO KOMMEHTAPUY K PUCYHKAM B TEKCTE CTATHH).

B pemakumio npeqocTaBIIHOTCA:

— cBezgeHuA 00 aBTope (paMuIns, ©Msi, OTIECTBO, MECTO PAOOTHI, JOIKHOCTD, YI€HOE 3BaHUE, YueOHOe 3aBeleHre U I'0Jl er0 OKOHYAHU,
yueHas CTeIeHb U TOJ 3aI[UTHI AUCCEPTANN, 00JIAaCTh HAYUIHBIX NHTEPECOB, KOJINYECTBO HAYUHBIX IIYOJINKALINN, JOMAITHUN U CIIy KeOHBIi
anpeca u TesieoHEI, e-mail), poTo aBTOPOB: aH(pAc, B TEMHOI ofiek ae Ha OesioM GhoHe, JOJKHBI ObITH BUAHBI ILJIEUN U TPYAb, BEICOKAA CTEIIeHb
YeTKOCTHU n300pakeHus: 6e3 TeHel u 0TOJECKOB Ha JIKIe, (DOTO MOYKHO IIPEJCTABUTE B 9JIEKTPOHHOM Buze B hopmare *.tif, *.png ¢ makcu-
MaJIbHBIM paspenieHuem — He MeHee 300 pixels/inch mpu MmuauManbHOM paszmepe dhoto 40x55 Mmm;

— BKCIIEPTHOE 3aKJIIOUEHIE.

Cricok IuTepaTypsl COCTABIIAETCS II0 IOPALKY CCHLIOK B TEKCTE U 0(DOPMIIAETCS CIEAYIOMINM 00pasoM:

— [JIs1 KHUT ¥ COOPHUKOB — (DaMMJINS U WHUIIHAIBI aBTOPOB, IIOJHOE HadBaHue KHUTH (COOPHUKA), TOPOJ, U3JaTeJILCTBO, IO/, 00IIee
KOJIMYECTBO cTpaHuil, doi;

— I JKYPHAJIBHBIX CTaTell — (paMUIusA U WHULUAILI aBTOPOB, IIOJHOE HAa3BaHUeE CTaTbU, Ha3BaHUeE JKypHAJIa, Tof U3JaHusd, HOMeD
JKypHAaJIa, HoMepa cTpaHut, doi;

— CCBLIKY Ha WHOCTPAHHYIO IUTEPATYPY CJIEAYeT JaBaTh Ha A3bIKe OPUTHHAIA 6e3 COKpaIeHnil;

— IIPU UCIIOJIL30BaHNN Web-MaTepuaoB yKasbIlBalTe apec caira u JaTy o0pariesuns.

Crucor surepaTypbl o(OpMIIsSiiTe IBYMs OTAEJIbHBIMU 60KamMu 1mo obpasmam lit.dot Ha caitre :xypuana (http://i-us.ru/paperrules):
JIuteparypa u References.

Boutee mogpo6HO IIpaBuIIa MOATOTOBKY TEKCTA ¢ 00pasiiaMy U3JI0KeHbl Ha HallleM caiTe B paszese « PYKOBOACTBO AJIs aBTOPOB» .

KouTaxTsl

Kyna: 190000, Caaxr-Ilerepbypr,
B. Mopckas ya., 1. 67, TVAII, PULL
Komy: Pegaxknus sxypuana « MTHGOpPMaIIMOHHO-YIIPABIAIOIINE CUCTEMBI »
Teun.: (812) 494-70-02
911. mouTa: ius.spb@gmail.com
CaiiT: www.i-us.ru

42 7/ VHOOPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI VAR 2,2021

