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Introduction: The practice of using Fourier-processing of finite two-dimensional signals (including images), having confirmed
its effectiveness, revealed a number of negative effects inherent in it. A well-known method of dealing with negative effects of
Fourier-processing is padding signals with zeros. However, the use of this operation leads to the need to provide information
control systems with additional memory and perform unproductive calculations. Purpose: To develop new discrete Fourier
transforms for efficient and effective processing of two-dimensional signals padded with zero samples. Method: We have
proposed a new method for splitting a rectangular discrete Fourier transform matrix into square matrices. The method is based
on the application of the modulus comparability relation to order the rows (columns) of the Fourier matrix. Results: New discrete
Fourier transforms with variable parameters were developed, being a generalization of the classical discrete Fourier transform.
The article investigates the properties of Fourier transform bases with variable parameters. In respect to these transforms, the
validity has been proved for the theorems of linearity, shift, correlation and Parseval's equality. In the digital spectral Fourier
analysis, the concepts of a parametric shift of a two-dimensional signal, and a parametric periodicity of a two-dimensional
signal have been introduced. We have estimated the reduction of the required memory size and the number of calculations when
applying the proposed transforms, and compared them with the discrete Fourier transform. Practical relevance: The developed
discrete Fourier transforms with variable parameters can significantly reduce the cost of Fourier processing of two-dimensional
signals (including images) padded with zeros.
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Introduction

Fourier-processing of finite discrete two-dimen-
sional (FDTD) signals (including images) in infor-
mational control (IC) systems is the most important
method for studying processes and analyzing in-
formation [1-8]. The theoretical basis of Fourier-
processing of FDTD signals is two-dimensional
direct and inverse discrete Fourier transforms (2D
DFT, 2D IDFT) [9-15] which can be represented in
form of:

— algebraic form 2D DFT

SNI,NZ (k17 k2) =

N{-1N,-1
— 1 \ < kg kany
NN Z z x(nq, nz)WN1 -WN2 ,
14v2 n,;=0 ny=0

where Sy, v, (R, kz) are coefficients (bins) 2D

DFT; k=0, (N7 —1), ky=0, (Ng—1) are spatial
frequencies; x(n;, ny) is 2D signal; n; =0, Ny -1,

ng =0, Ny -1; W]f?lnl =eXp{—jz2v—nk1nlj; Wﬁzznz =

1
27
=exp| —j—kono |;
p( ]N2 2 2j

— algebraic form 2D IDFT
N;-1 N,-1 \
—Rn —R9ol.
xm, )= Y, Y Sy, w, U B)WRM W
B=0 ky=0

The practice of using DFT and 2D DFT, on the
one hand, confirmed their efficiency, on the other
hand, revealed a number of effects: aliasing effect,
scalloping effect, picket fence effect, negatively af-
fecting on the results of analysis and information
processing [16—21].

To eliminate these negative effects of DFT and
2D DFT, the zero-padding operation (ZPO) the
FDTD signal has found wide application. ZPO can
significantly reduce the impact of negative ef-
fects on the results of Fourier-processing [22, 23].
However, effective use of ZPO requires solving the
problem of Fourier-processing of FDTD of this kind
of signals. The essence of the problem lies in the
fact that in Fourier-processing of signals subjected
to ZPO, on the one hand, it is necessary to provide
the corresponding IC systems with a significant
amount of additional memory, on the other hand,
the IC systems must perform unproductive compu-
tations with zero samples, which significantly in-
creases time of Fourier-processing. The paper pro-
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poses and investigates new discrete Fourier trans-
forms, which allow efficient and effective analysis
and processing of two-dimensional signals padded
with zero samples.

The role of the zero-padding operation
of FDTD signals in two-dimensional
Fourier-processing

The systems analysis of Fourier-processing the-
ory of FDTD signals made it possible to formulate
its axiomatic basic provisions:

— determination of FDTD signals on a finite
two-dimensional reference plane, which is inter-
preted as a two-dimensional fundamental period
SANlx N, (2D period). 2D period is set by horizontal
and vertical periods;

— determination of the shift of a two-dimen-
sional discrete signal in the form of a cyclic shift,
carried out by cyclic permutation of its samples on
the final reference area SAy .y,

— definition of a complete two-dimensional ba-
sis system

dele,Nz (kl, n, k27 nz)zwjf;llnl _chzznz,

where n; =0,N;-1; ng=0,Ny-1; k =0,(N; -1);

ky =0,(Ny —-1).

As a result of the discreteness and periodicity
of 2D signals in the spatial domain, the periodic-
ity and discreteness of 2D Fourier spectra in the
spatial-frequency domain, the mathematical oper-
ations of convolution and correlation are cyclical.
However, the analysis, design, and modeling of iso-
planatic systems requires the results of linear oper-
ations with 2D signals.

The method, which allows obtaining the results
of linear operations using cyclic operations, con-
sists in expanding the reference regions with zero
samplex of the convoluted signals by applying ZPO
to them.

If the reference area SAV1 <V, of signal x(n,, n,)
and the reference area SAQ <q, of signal y(n,, ny)
are specified, then the size of the reference area,
padded with zeros to obtain linear convolution
Ryinear(1> 1y), should be

SAW, +Q)x(Vy+@y)°

where n1 =0, (V1 +@ —1); ng =0, (V3 +@y —1).
And the size of the reference area for obtaining
linear correlation C, (n,, n,) should be

SAgy, «av, »

where ny =0, 2V —1); ny =0, (2V, —1).

V4

Therefore, the algorithm for obtaining 2D linear
convolution based on 2D cyclic convolution consists
of the following operations:

1. Pad 2D signals x(n,, n,) and y(ny, n,) with @,
Q, and V;, V, zero samples respectively, which sets
new 2D signals x,(n;, ny), yo(ny, ny) with horizontal
N, and vertical N, periods according to the ratios

N1z (1 +@Q-1); Na =2 (V3 +@2 -1).

2. Perform 2D DFT of 2D signals x((n;, n,) and
Yoy, ng):

F

xo(ny, ng) —> Xo NN, (B1, B2);
F

Yo(my, ng) — Yo N, N, (k1 B2),

where —Z 5 is the 2D DFT execution symbol.
3. Perform 2D IDFT product

Xo,n,,n, (ks B2) Yo v, v, (Bt Bo).

The algorithm for obtaining a linear 2D correla-
tion function based on a cyclic 2D correlation func-
tion is easy to obtain from the previous algorithm.
Fig. 1, a and b illustrates the differences between
cyclic Cq(ny, ny) and linear C;(ny, n,) correlation
functions of a finite unit 2D signal.

According to the two-dimensional version of the
Wiener — Khinchin theorem, Fourier transform
of the linear 2D correlation function allows one to
obtain the energy spectrum of a 2D signal. There
is a so-called direct method for obtaining the ener-
gy spectrum of a 2D signal x(n;, n,), bypassing the
stage of obtaining the correlation function:

2
Gy, N, (B, B2)=N1N2 Sy N, (B, Bo)| -

A significant drawback of this definition of the
energy spectrum of a 2D signal x(n,, n,) is insuf-
ficient detailing Gy, n, (R, k), for example, to
fulfill the conditions of Pugachev canonical signal
decomposition. The method of increasing the detail
Gn,, N, (Fy, kp) is carried out by padding the 2D sig-
nal x(n,, n,) with zeros at least twice. Fig. 2, a and b
illustrates the detailing of the energy spectrum of a
finite single 2D signal.

As noted in the introduction, the effective appli-
cation of the ZPO requires a solution to the problem
of Fourier-processing of FDTD signals padded with
zero samples. The essence of the problem lies in the
fact that in Fourier-processing of signals subjected
to the ZPO, on the one hand, it is necessary to pro-
vide the corresponding IC system with a significant
additional amount of RAM (storage), on the other
hand, IC system must perform a lot of non-produc-
tive calculations with zero samples, which signifi-
cantly increases the time of Fourier-processing.
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a) b)
Ce(ny, ny) Cy(ny, ny)

1

15

n
1 ng ny ny

B Fig. 1. Cyclic (a) and linear (b) correlation 2D functions of a finite single 2D signal

0 0

B Fig. 2. Energy spectrum of a finite single 2D signal with zero frequency in the center of the spectrum: a — a finite
single 2D signal N; =8, N, =8; b — a finite single 2D signal, padded with zero samples to N; =32, N, = 32

Let us consider a generalization of 2D DFT in the form of a 2D DFT with a variable parameter, which makes
it possible to efficiently analyze and process two-dimensional signals subjected to ZPO.

Two-dimensional DFT with variable parameter

Let two 2D signals be given: a signal Xy .y, and asignal Oy ,y, With zero samples.

To perform the linear transformations considered in the previous section, it is necessary to pad (supple-
ment) the horizontal period of the 2D signal X NyxN, with (r, — 1) zero matrices ON1X N,» which leads to a
block matrix:

0 1 N (X))
€Y

XN, x(Nyry) = [XleN2 On,xn, - - OleNz]

Taking into account the separability property of the 2D DFT, Fourier transform of a signal X Nyx(Nyry) in
matrix form can be represented as

ky ke __1 2o )
Sle%Nzrz) h NN, FN1><N1 [XNIX(NZrZ)F(Nzrz)X(Nzrz)]’ @
where
0 1 .. (Ng-D)
00 01 0(N;-1) Th
- Wy wyl oo oyt
1.0 11 1-(N;-1)
1 Wi Wyl wy
Fo :
NyxN; ;
(N1 -D)| w10 W;{Nl—l)-l o W]gNl—l)(Nl—l) ]
1 1
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0 .o (Nz—].) Nz..(NzY‘z—].) ny
x(0,0) .. x(0,(Ng-1)) 0.. 0 ]
1 x1,0 .. x1 {Ny-1)) 0.. 0
XNIX(N2r2) - . . .. . . .. . ;
(N1 -2)| (N1 -2), 0)..x(N;-2), Nz -1) 0 .. 0
(N1 -D| x((Ny-1), 0)..x(N;-1), Na-1)) 0 .. 0 |
m
0 1 oo (Norz 1) ,
0-0 01 0-(Ngry-1) 2
S Wy, L Wy .
1.0 11 1.(Ngry-1)
1 Wy Wy, L W
FQ) _
(Nara)(Nor) = : : - : ' 3)
(Narz —D w0 gy (e D1 gy (Vb D

ny

Let us interrogate the structure of matrix equation (2). It is easy to see that the multiplication of matrices
1 . . .
XN x(N,ry) and F((Z\7)2 ry X (Nor) leads to a rectangular matrix Yy ,(w,r,)- A matrix Yy ,(w,r,) can be interpreted
as the product of a matrix Xy .y, by a matrix F](\}z)x( Nory)*

- (1)
YN x(Nyry) = XNy, 'FNzx(N2r2)’

where
0 1 PP (N2 —1) n2
x(0, 0) x(0,1) ... x(0, (Ny-1)) 1
1 x(1, 0) 21,1 ... x(@1, (Ny-1)
XNlXNz - . . . . o o . ; (4)
(N1 -2)| x((Ny -2), 0) (N7 -2), 1). .. x((Ny -2), (Np~1))
(N1 -1 x((N1-1), 0) x((N1-1),D...x((N;-1), (N3-1)) |
n
0 1 . . (N2r2 - ].)
0.0 01 0-(Nyry—1) ko
- W Wy, L Wy _
1.0 11 1.(Nyry-1)
1 WN2 WN2 .. WN2
F - ®)
Nyx(Nyry) : . . .o . .
(N2 - 1) (N. 1 — . —
L 5-1)-0 (Ny-1)1 (Ny-1)(Ngry-1) |
g WN2 WN2 .. WN2
Comparing matrices F((le)z ry)<(Nyry) (3) and F](\};X( Nyry) (5), we may see that the matrix Fl(\}z)x( Nyry) is the result

. _ i T
of truncating Ny(r, — 1) the rows of the matrix F( Nory(Nors)"

column numbers by A...:

According to [22], “we denote the set of matrix

A:A={0,1,2, ..., (Ngry -1)}.
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We apply to the set A the relation of comparability modulo r,.

It is known that the relation of comparability in modulus m is an equivalence relation and has the proper-
ties of reflexivity, symmetry and transitivity.”

Also we know that “the relation of comparability modulo r, divides the set A into r, classes of residues
modulo ry:

Agr,-1) = {02 =), ...y (Nary ~1)};

rn-1
A=D A A =2 | 4 =A. (6)
i#j i=0

; (1)
The matrix FN2><( Nory)

resented in the form of r, matrices of size N, x N,” [22]:

, applying the partition (6) of the set A into r, residue classes modulo r,, can be rep-

0 1 .. (Ng-1)
0-(0+0,) 0-(1+0,) 0-(Ny—1+0,)
o T WN2 WN2 .. WN2
1-(0+6,) 1.(1+6,) 1-(N,-1+6,)
1 WN2 2 WN2 2 .. WN2 2 2
O 9
NyxNy,0, . . . .. . ’
(N2 -1)| W N2 D(0+02) 3 (Np=1)(1+05) V2DV -1+03)
1y N, N,y - "Nh,
where 0, =0; 1/ry, ..., (ry — 1)/1,.
Discrete two-dimensional exponential functions of the form
def 1y 1y By iy, Bp) = WM t02ms | gyl 32 p o Lo ol 527 L ovny ||
HP,N{,Ny \"v1> %15 142> 182> Y2 N, N, N N,
2n 2n 21 2n
=| cos| —kyny |—jsin| —Fkynq | |-| cos| —(ky +09)n9 |—jsin| —(ky +05) (1o |=
{ £N1 11] J (N1 11}” (N2(2 2) 2] J (Nz(z 2)} 2}
2n 2n 2n 2n
=cos| —kny +—(ky +09)ny |—jsin| —kyny +—(ky +65)n5 |, 8
(Nlll N2(2 2) 2) J (Nl 17 Nz(z 2) 2J 8)

where £ =0, Ny -1; k=0, Ny —1; 0 < 0, < 1, will be called two-dimensional discrete exponential functions
with a variable parameter — 2D DEF-VP (Figs. 3-5).

a) b)
Re[defyp n n,] Re[defyp v, n,]

20

ny ny

B Fig. 3. Two-dimensional exponential function with variable parameter at N; =32, N, =64; k; =1, ky=1; 6,=1/2:
a — areal part; b — an imaginary part
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a)

Re[def yp v, n,]

Re{def VP;N],Ng]

20

ny g

B Fig. 4. Two-dimensional exponential function with variable parameter at N; =32, N,=64; k; =1, ky=2; 0,=1/3:

a — areal part; b — an imaginary part

a)

Re[def yp n,,n,]

60

20
Rl n2

b)

Re[def yp n,, a1

60

20
n %
1 g

B Fig. 5. Two-dimensional exponential function with variable parameter at N; =32, N,=64; k; =2, ky=3; 0,=1/3:

a — areal part; b — an imaginary part

The introduction of discrete exponential functions
with a variable parameter makes it possible to gener-
alize the concept of periodicity of the DEF-VP system.
Recall that the periodicity of the DEF system in the
classical DFT is understood as a periodic continuation
of the DEF system outside the interval of N samples.
Moreover, the system of discrete basis functions in
the classical DFT does not contain discontinuities. In
the case of discrete Fourier transform with a variable
parameter (DFT-VP) (9), for the DEF-VP system to be
inseparable, the periodicity should be understood as
parametric periodicity. The parametric periodicity of
discrete exponential functions with a variable param-
eter is understood as their periodic continuation with
rotation in complex space by an angle of 216. Note that
the introduced concept of parametric periodicity is
valid for 1D and 2D real and complex functions.

Consider the main properties of two-dimension-
al discrete exponential functions of 2D DEF-VP.

Main properties of 2D DEF-VP

Each of the two-dimensional discrete exponen-
tial functions with a variable parameter has its own

spatial frequencies k,, k5, which determine its place
in a particular basic system. The set of 2D DEF-VP
makes its basic system of two-dimensional discrete
Fourier transform with a variable parameter (2D
DFT-VP) in space Iév .

For each value of the parameter 6, we can say that:

1. 2D DEF-VP are complex functions by defini-
tion.

2. The basis system 2D DEF-VP is a generaliza-
tion of the basis system 2D DEF and is equal to it
at 0,=0.

3. 2D DEF-VP are two-dimensional functions of
four equivalent variables k, k5, 1y, 15, and one var-
iable parameter 0,:

0
defHP,Nl,N2 (kl’ ni, kz, ng, 92)=W1\}‘;’_11n1 W]sf];2+ 2)n2-

4. 2D DEF-VP are periodic in variables k; and n,
with a period N; and a variable with a period Ny:

defHP,Nth ((kl ilNl), (nl +qN1), (kz imNz),

ng, 0g) =defyp n n,(k1, 11, kg, ng, 03),

where [, m, q are integers.
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5. 2D DEF-VP are parametrically periodic in a variable n, with a period N,:

0,N.
defpp NN, (B1> 11, ko, g + PNy, 05) = defyp ny v, (R, 11, Ka, g, 03) Wy 2P,

where p is integer.
A parametric shift of a two-dimensional signal Xy ., in the horizontal direction is understood as a
two-dimensional cyclic parametric shift of the form of

0 [XN1><N2] HH Sh,NyxNy

1
1 [XleNz] Hy Sh,NyxNy

Cr.sh= 2 [XleNz] HH Sh,NyxNy

T ¢ (Np-D)
(N2 =D [Xnyxn, I - H fon vy, |

0 . . . o . . m e
where HH_Sh’ NyxN, 18 two-dimensional identity matrix, expression HH.Sh, NyxNy? m=0, (Ng —1) means

raising to the power m of the matrix of two-dimensional parametric shift:

0 12 ... (N2—2) (N2—1) ng
o [ 0 o1. .. 0 1
1 0 00 ... 0
2 0 00 ... 0
Hy sh,NyxNy,0, =

(No -2) 0 00... O 1

(Ng-1)| exp(-2m03) 0 0 . . . 0 |
y

6. The basis system 2D DEF-VP in the variables &;, k,is not multiplicative:

defyp N, N, (B1, N1, kg, N2, 03) -defyp n n, (B3, 11, By, ng, B2) #

#defyp N, N, (B +E3)mod Ny » 1> (B +Eg)mod N,» 25 02)-
7. The basis system 2D DEF-VP in the variables n,, n, is multiplicative:

defgp n,.N, (B1, N1, B2, ng, 0) -defy n N, (By, ng, k2, ny, 02) =

=defyp Ny, N, (F1> (11 +713)mod N, » Bas (M2 + 7y )mod N,» O2)-

8. Average value of 2D DEF-IP with spatial frequencies k20, k5,20 is equal to zero:

N;-1 Ny-1

ST def B E 0 WNzklnl Z N2(k2+61)n2
Y. Y defgp n, N, (1, 1y, ko, g, 0) = 2 NyxN, NyxN,
n,=0 ny=0 ny=0 n=0

1-whh 1 _W(kz+92)N2
- N}a P
1_WN1 l—WN2
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9. The basic system 2D DEF-VP is an orthogonal
basis system with respect to variables &4, k,:

1 Nt Ni (Ngkyny +Ny (k3 +6, )nz)
Nl xNy
N1N2 n;= =0 ng=

Ve + Ny Gy +0)mp)* _ |11 foy =g, ey = ey
Ny %Ny 0,if by # kg, by # Ry

and with respect to variables n;, n,:

N;-1N,-1
z Z (N2k1n1+N1(k2+92)n2)
N+ N NixNy
14Y2 k=0 ky=0
(Naking+Ny(ky+0)n,)* | 1,if ny =ng, ng=ny
NyxNy 0,if ny #ng,ng #ny’

where the symbol * means complex conjugation.
10. 2D DEF-VP can be represented by two unit

0
vectors, which represent W]]\?lnl and Wy k2+ )n2

The unit vectors rotate discontinuously (dlscretely)
in perpendicular complex planes. On the interval

Ny, the unit vector which displays W:}llnl, passes

the angle of 2nk; radians, making k; revolutions,

and on the interval Ny, the unit vector, represent-

ky+6
ing WJ§,22+ 2)’12’ passes the angle 2n(kg +09) radi-

ans, making (kg +05) revolutions. The unit vectors
representing the complex conjugate DEF-VP:

—kiny _ 7 (N1—k)my
WN1 —WN1 and

—(ky+02)ny _ 1x, (Na—(Ra+02))ny
WN2 2772 —WN2

P
T A
N
%//
ko + 0. —

0.5 ng: 2 X Wﬁ;nl
1
>

o >§

-0.5 |

(Nl k1)n,
N1

_1>

1

-1 1

B Fig. 6. Representation of a two-dimensional discrete
exponential function with a variable parameter in the
spatial domain

V4

and make (N7 —k) and (Ng —(kg +05)) revolutions
respectively.

Figure 6 illustrates such a 2D DEF-VP representa-
tion, where the angles 2nk,/N; and 2n(k, + 0,) /N,
are marked with the corresponding points.

11. The basis system 2D DEF-VP is complete in
space Iév .

Expansion in basis systems of the form (8) is de-
fined as a 2D DFT-VP. Algebraic form of 2D DFT-VP

SN,,N, (B1> kg, 03) =

_ 1 N A Fyny (k2+92)n2
= > x(my, nWy ' Wy 9)
N1N2 120 np=0

where k,, k,are spatial frequencies, & =0, (N1 —1),
kg =0, (N3 —1); 0, is a parameter, 0 < 0, < 1; x(n,,

n,) — two-dimensional signal, m =0, Ny -1,

ng =0, Ng—1; Sy, N, (R, kg, 02) are bins of 2D

DFT-VP (two-dimensional vector spatial-frequency
spectrum of the signal x(n,, n,) in the basic 2D DEF-
VP system).

The algebraic form of direct 2D DFT-VP, taking
into account the property of separability of the ker-
nel (core) of 2D DFT-VP, can be represented as

SN, N, (ks kg, 63) =

1 Nt whm 1 Nt W (k2 +02)ny (10)
N]_ Nl N2 Z x(nl, nz) N2 :
n = ny=0

It can be seen that formula (10) makes it pos-
sible to step-by-step calculation of the direct 2D
DFT-VP by the method of sequential calculation
of two DFT-P (parametric DFT). Note that the cal-
culation of the DFT-P can be carried out by meth-
ods of parametric fast Fourier transform (FFT-P)
[1].

There is an inverse 2D DFT-VP (2D IDFT-VP):

x(ny, ng) =
-1N,-1
NN By (k2+62)n2
= > 2 Sn, Ny (ks gy O)W A" W
k=0 ky=0

where n =0, N]_ —].; ng =0, N2 -1.

Using the separability property of the 2D DFT-
VP kernel, we can introduce the matrix form of the
direct 2D DFT-VP:

F@ 1 @)
SleNzyez Nl NIXNl N [XNIXNZ FNZXN2762:|’

where 0 < 6, < 1;
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0 1 .o (N1 -1
0-0 01 0-(N;-1) m
0 r W]\]1 WNI . . W]\]1 1 -
10 01 1.(N;-1)
o 1 WN1 WN1 WN1
FN1><N1 = : . . . . ;
Ny —1) L pr(N:-1)-0 (N -1)-1 (N{-1)(N;-1) |
( 1k ) E Wy Wy,' Co Wyt
1
XN, xN, 1s given by relation (4);
0 1 .o (N2 -1)
k
0-(0+0,) 0-(1+6,) 0-(N,-1+0,) )
0 - WN2 2 WN2 2 .o WN2 2 2 -
1-(0+6,) 1-(1+6,) 1-(Ny-1+0,)
" 1 WN2 WN2 .o WN2
FNpxNy,0, = - . . o ) . (11)
N,-1)(0+6 N,-1)(1+6 Ny—1)(Ny—1+6
(Nz—l) L WZSZZZ )(0+65) W](sz )(1+65) L. Wlflzz )(Np-1+65) |
ny

We note the difference between matrices (11) and (7), which lies in the nature of the parameter 0, change.
The inverse 2D DFT-VP in matrix form is determined by the matrix equation

1 (2 1 1)
X N, = (2% - (1)

N, NN, [SleNz,ez'FNsz2,92]’
where 0 < 6, < 1.

It can be shown that the theorems of linearity, shift, correlation and Parseval’s equality are valid for 2D
DFT-VP. For 2D DFT-VP, similar to 2D DFT, the concepts of power spectrum PNl, N, (k1> k9, B9) and energy
spectrum Gy, n, (B, kg, 02) can be introduced

2
Py, N, (k1> kg, 02) = Sy, N, (Fys EBas 02)| 5 Gy N, (Brs B2y 02) = Py, N, (By, B2y 02) /Af; Af =1/(N1N3).

Let us estimate the efficiency of increasing the detailing of the two-dimensional energy spectrum
GNI, N, (B, ky) using 2D DFT-VP in comparison with the classical 2D DF'T.

Evaluation of the efficiency of Fourier-processing of signals padded with zero samples
in 2D DFT-VP basis

The increase in the detailing of the two-dimensional energy spectrum Gn,,N, (k1> ko) by ry times is carried
out by padding the horizontal period of the 2D signal X NyxN, with (ry — 1) zero matrices O NyxN, (1). Padding
the horizontal period of a 2D signal X NyxN, with (ry — 1) zero matrices O NyxN, makes it possible to obtain a
new 2D signal Xy (w,r,) from a 2D signal Xy .,

Applying the 2D DFT in algebraic form to the 2D signal X Nyx(Nyry)> W€ obtain the number of coefficients
(bins) of 2D DFT SN, ,Nyr, (B1> B2), which is r, times greater than with 2D DFT of the signal X N,xN,+ However,
obtaining a r, times more detailed energy spectrum GNl, Nory (B, ky) by a method based on the separability
of the 2D DFT kernel, will require additional (r, — 1)N;N, cells for storing zero samples and implementing
N{Nyry(N; + Nyry) additional complex operations.

Obtaining an r, times detailed energy spectrum GNI, Nyry (k1> By) by a method based on the separability
property of the 2D DFT-VP kernel does not require additional RAM (storage) for storing zero samples and re-
quires NyNyry(IN; + N,) complex operations. Thus, the use of 2D DFT-VP instead of the classic 2D DFT allows:
Ny

+Nory .
1722 times;

— decrease number of complex operations by y=
Nl + N2
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— decrease storage size by r, times;

— parallelize the process of detailing the
two-dimensional energy spectrum Gy, n, (k1, k),
thus reducing the execution time of the 2D DFT by
ry times.

Conclusions

Discrete Fourier transforms with a variable pa-
rameter have been developed. These transforms
make it possible to efficiently process two-dimen-
sional signals, the horizontal periods of which are
padded with zero samples. The generalization of clas-
sical two-dimensional discrete Fourier transform is
based on a new method of splitting the rectangular
matrix of discrete Fourier transform into square
matrices. The splitting of rectangular matrices into
square matrices is carried out by using the ordering
of the columns of rectangular matrices using the
equivalence relation — the relation of comparability
in modulus. The properties of the bases of the pro-
posed transformations are investigated. The valid-

V4

ity for Fourier transforms with variable parameters
of the following theorems is proved: linearity, shift,
correlation, and Parseval’s equality.

New concepts of digital spectral Fourier analysis
are introduced: the concept of parametric shift of
two-dimensional signal and parametric periodicity
of two-dimensional signal. The estimation of the re-
ducing the amount of RAM (random access memory)
needed and the number of calculations when applying
the proposed transforms is carried out in compari-
son with the application of classical two-dimensional
discrete Fourier transform to 2D signals padded with
zero samples. Developed two-dimensional discrete
Fourier transform with variable parameters can sig-
nificantly reduce the cost of Fourier-processing of
two-dimensional signals (including images), padded
with zero samples. In addition, the developed trans-
forms also allow parallelizing the process, thus sig-
nificantly reducing Fourier-processing time. Note
one more application of developed two-dimensional
discrete Fourier transform with variable parame-
ters: determination of the parameters of 2D hidden
periodicities by varying the parameter 0,.
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Teopernueckue 0CHOBHI IU(PPOBOTO BEKTOPHOTO (Pyphe-aHAIH3a IByMEPHBIX CHTHAJIOB, TOMOJHEHHBIX HYJIeBbIMU
oTcueTaMu

0. B. IToromapeBa?, JOKTOp TeXH. HayK, mpodeccop, orcid. org/0000-0002-7311-3108, ponva@mail.ru

A. B. Ilonomapes?, KaHJ. 9KOH. HAYK, MOIeHT, orcid.org/0000-0002-3746-9289

aM;xeBCKUI rocyJapCTBeHHBIN TexHuuecKui yHuBepcuretr uM. M. T. Kanamuaukoa, Ctygenueckasd yJi., 7, V:KeBcK,
426069, PO

BBeneHue: mpakTUKa OIpUMeHeHUA (Pypbe-00paboTKU (DMHUTHBIX JBYMEDHBIX CUTHAJIOB (B TOM Yucje U300paKeHUii), MOATBEPAUB
ee IeliCTBEHHOCTH, BBIABUJIA U PAJ IPUCYINUX el oTpuaTelbHBIX 93¢ deKrToB. VI3BecTHEIN MeTOn 60PHOBI ¢ HeraTUBHBIMU dddeKTamMu
Gbypbe-06paboTKM — omepanusa JOIOJHEeHUA CUTHAIOB HyaamMu. OgHaKO IPUMeHEHUe dTOi Olepanuu IPUBOAUT K HEOOXOAMMOCTH 00e-
crneyeHNs NHGOPMAIMOHHO-YIIPABIAIOIUX CUCTEM JOIOJHUTEIbHOMN MaMATHIO U IPOBEIEHUA UMY HEIIPOU3BOAUTEIbHBIX BBIUMCICHUI.
Ilenb: paspaboTKa HOBBIX AUCKPETHHIX IpeobpasoBanuii Pypre Aaa 9hGeKTHBHON U Pe3yIbTaTUBHON 06PA0OTKH JBYMEPHBIX CUTHAJIOB,
JOTOJHEHHBIX HyJIAMU. MeToabl: IPeJIosKeH HOBBIM MeTOJA pPas3OMBKU MPSAMOYIOJbHONI MATPUIILI AUCKPETHOTO IIpeobpasoBanusa Pypbe
Ha KBaJpaTHble MaTpUIbl. MeToZ OCHOBAH HA IPUMEHEHUY JIA YIIOPAJOUEHUA CTPOK (CTOI01I0B) MaTpuIlhl @ypbe OTHOIIIEHUA CPABHIMO-
cTH 110 MoAyio. Pe3yapraTh: paspaboTaHb HOBBIE JUCKPETHEIE IIpeodpasoBaHusd Pyphe ¢ BapbUPYyEeMbIMH IapaMeTpPaMu, ABJIAIOIIIECs
000011IeHIEeM KJIaCCUYECKOTO0 JUCKPETHOro npeobpasoBauus @ypoe. MccienqoBansl cBoiicTBa 6a3ucoB npeobpasoBanuii Pypwe ¢ Bapbupy-
eMBIMU Iapamerpamu. J[ja faHHBIX IPeo0pPasoBaHUIl JOKa3aHBI TeOPEMBbI JIMHEHHOCTH, CABUTrA, KOPPeIAnuu 1 paBeHCTBO Ilapcesaiid.
B niudpoBoii crieKTpaabHBIN (Pypbe-aHaIn3 BBeJeHbI IOHATHA IapaMeTPUUECKOr0 CIBUTa ABYMEPHOTO CUTHAJIA U IapaMeTPUYIeCcKOil mepu-
OJMYHOCTY ABYMEPHOTO CUTHAJA. BEIIoIHEeHA OIleHKa COKPAI[eHus TpeOyeMoro o6'beMa IaMsATH U YUCJIA BEIUUCICHUN B CIydYae IPUMeHe-
HUA IPeAJIOKeHHBIX IpeobpasoBanuii. IIpoBeneHo X cpaBHEHHe ¢ ZUCKPETHBHIM IpeoOpasoBanueM Pypoe. IlpakTHuecKkas 3HAUMMOCTD:
paspaboTaHHbIe JUCKPeTHLIE IpeobpasdoBanusa Mypbe ¢ BapbUPyeMbIMH ITapaMeTPaMU II03BOJISAIOT CYIIeCTBEHHO COKPATUTD 3aTPaThHI Ha
Gbypbe-06paboTKy JBYyMEPHBIX CUTHAJIOB (B TOM YKCJIe U300paKe ), JOIOJHEHHBIX HYJIAMU.

KuroueBsie ciioBa — AUCKpeTHOe IpeobpasoBanue Pypbe, IBYMEePHBII CUTHAI, (Dypbe-00paboTKa, 9(hPeKTh JUCKPETHOTO Ipeodpaso-
BaHuA Pyphe, 6asuc, BapbUPyeMbIil mapaMeTp.
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