УДК 621.391

РАСЧЕТ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК ДЛЯ ДИСКРЕТНЫХ КАНАЛОВ С ПАМЯТЬЮ

Е. А. Крук,

доктор техн. наук, профессор

В. Б. Прохорова,

зам. директора Института компьютерной безопасности вычислительных систем и сетей Санкт-Петербургский государственный университет аэрокосмического приборостроения

Получены формулы для расчета P(m, n)-характеристик (вероятности появления m ошибок среди n принятых канальных символов) дискретного канала с памятью. Указанных характеристик, как правило, достаточно для вычисления вероятности ошибочного декодирования в таких каналах.

Presented are the formulas to compute P(m, n) characteristics (the probability of m errors among n received channel symbols) of a discrete channel with memory. As a rule, these characteristics are sufficient to compute the probability of false decoding in such chanennels.

Рассмотрим канал с состояниями $C_1,...,C_L$ (каждое из состояний двоично-симметричного канала (ДСК), а весь канал — составной ДСК [1, 2]), заданный матрицей переходных вероятностей

$$\mathbf{P} = \left\| P(C_i / C_j) \right\|_{L \times L} \tag{1}$$

и вектором

$$\boldsymbol{\pi} = \left\| \boldsymbol{\pi}_i \right\|_{1 \times I}, \tag{2}$$

где $P(C_i/C_j)$ — вероятность перехода из состояния C_j в C_i за один шаг, а π_i — вероятность ошибки в состоянии C_i . В такой модели канала каждому канальному вектору длиной n из нулей и единиц соответствует n-вектор $\mathbf{C} = \left(C_{i_1}, \ldots, C_{i_n}\right)$ состояний канала. Назовем композицией вектора состояний \mathbf{C} век-

Назовем композицией вектора состояний С вектор $\alpha = (l_1, ..., l_L)$, в котором элемент l_i — число раз, которое состояние C_i встретилось в С. Далее, через $P_n(\alpha)$ обозначим вероятность появления вектора состояний с композицией α , а через $P_n(m/\alpha)$ — вероятность появления m ошибок на длине n при условии, что соответствующий вектор состояний имеет композицию α . Тогда выражение для P(m,n)-характеристик рассматриваемого канала может быть записано в виде

$$P(m,n) = \sum_{|\alpha|=n} P(m/\alpha) P_n(\alpha), \qquad (3)$$

где
$$|\alpha| = \sum_{i=1}^{L} l_{j}$$
.

Поскольку в любом из состояний C_j канал есть ДСК с вероятностью ошибки π_i на символ, то веро-

ятность возникновения m_j ошибок на l_j позициях вектора ${\bf C}$, соответствующих состоянию C_j , равна

$$egin{pmatrix} l_j \ m_j \end{pmatrix} \!\! \pi_j^{m_j} \left(1 \!-\! \pi_j \right)^{l_j - m_j}$$
 .

Тогда вероятность одновременного возникновения $m_1, ..., m_L$ ошибок на позициях соответственно состояний $C_1, ..., C_L$ в векторе ${\bf C}$ равна

$$\prod_{j=1}^{k} \binom{l_j}{m_j} \pi_j^{m_j} \left(1 - \pi_j\right)^{l_j - m_j}$$

И

$$P_{n}(m/\alpha) = P_{n}(m/l_{1},...,l_{L}) =$$

$$= \sum_{m=m_{1}+...+m_{L}} \prod_{j=1}^{L} {l_{j} \choose m_{j}} \pi_{j}^{m_{j}} (1-\pi_{j})^{l_{j}-m_{j}}.$$
(4)

Основную сложность при вычислении формулы (3) представляет вычисление величины $P_n(\alpha)$. Будем вычислять $P_n(\alpha)$ в виде

$$P_n(\alpha) = \sum_{i_1=1}^L \sum_{i_1=1}^L P_n(l_1, ..., l_L / C_{i_1}^{(1)}, C_{i_n}^{(n)}) P(C_{i_n} / C_{i_1}) P(C_i),$$

(5)

где $P_n(\alpha/C_{i_1}^{(1)},C_{i_n}^{(n)})$ — вероятность композиции α при условий, что первая и последняя компоненты вектора состояний ${\bf C}$ равны соответственно C_{i_1} и C_{i_n} . $P^{n-1}(C_{i_n}/C_{i_1})$ — вероятность перехода из состояния C_{i_1} в состояние C_{i_n} ровно за n-1 шаг, а $P(C_{i_1})$ — вероятность состояния C_{i_1} .

Каждому вектору состояний $\mathbf{C} = (C_{i_1}, ..., C_{i_n})$ по-

$$\mathbf{J} = ((i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n))$$

и обозначим через $a_{\alpha\beta}$ число пар (α,β) в векторе ${f J}.$ Числа $a_{lphaeta}$ будут соответствовать числу переходов из состояния C_{lpha} в состояние C_{eta} в векторе $\hat{f C}$. Тогда вероятность вектора состояний $\mathbf{C} = (C_{i_1}, ..., C_{i_n})$ бу-

$$\prod_{\alpha=1}^{\alpha} \prod_{\beta=1}^{\alpha} \left[P(C_{\alpha} / C_{\beta}) \right]^{a_{\alpha\beta}}.$$
 (6)

Далее, число векторов С, имеющих в качестве первой компоненты C_{i_1} , а в качестве последней — C_{i_n} и обладающих одним и тем же набором величин $a_{\alpha\beta}$, α , $\beta = 1$, L, равно

$$\binom{n-2}{a_{11}, a_{12}, \dots, a_{LL}} = \frac{(n-2)!}{a_{11}! a_{12}! \dots a_{LL}!}.$$
 (7)

С учетом (6) и (7) вероятность $P_n(\alpha/C_{i_*}^{(1)}, C_{i_*}^{(n)})$ может быть получена в виде

$$P_{n}(\alpha / C_{i_{1}}^{(1)}, C_{i_{n}}^{(n)}) = \sum_{\left\{a_{\alpha\beta}\right\} \in D_{L}} {n-2 \choose a_{11}, ..., a_{LL}} \times \left(\prod_{\alpha=1}^{L} \prod_{\beta=1}^{L} \left[P(C_{\beta} / C_{\alpha}) \right]^{a_{\alpha\beta}} \right).$$
(8)

Суммирование в (8) ведется по всевозможным наборам величин $\left\{a_{lphaeta}
ight\}_{lpha=\overline{1,L},eta=\overline{1,L}}$ из области наборов D_L , допустимых для композиции $\alpha = (l_1, ..., l_L)$. Область D_L описывается множеством целочислен-

ных решений системы уравнений

$$\left| \sum_{\alpha=1}^{L} a_{\alpha\beta} = l_{\beta}, \ \beta = \overline{1, L} \ , \ \beta \neq i_{1}, i_{n}; \right|$$
 (9)

$$\left| \sum_{\alpha=1}^{L} a_{\beta\alpha} = l_{\beta}, \ \beta = \overline{1, L} \ , \ \beta \neq i_{1}, i_{n}; \right|$$
 (10)

$$\sum_{\alpha=1}^{L} a_{i_{1}\alpha} = l_{i_{1}} - 1, \ \sum_{\alpha=1}^{L} a_{\alpha i_{1}} = l_{i_{1}};$$
 (11)

$$\sum_{\alpha=1}^{L} a_{\alpha i_n} = l_{i_n} - 1, \ \sum_{\alpha=1}^{L} a_{i_n \alpha} = l_{i_n}.$$
 (12)

Уравнения (9) и (10) представляют собой условия того, что для любого состояния C_{β} , $\beta \neq i_1$, i_n число входов в состояние C_{eta} равно числу выходов из этого состояния и равно компоненте l_{eta} вектора композиций α (переход из состояния C_{β} в себя рассматривается одновременно как вход и как выход из состояния C_{β}).

Уравнения (11) и (12) представляют собой аналогичные условия на число входов и выходов со-

стояний C_{i_1} и C_{i_2} , встречающихся в векторе ${\bf C}$ соответственно первым и последним. Вероятности $P^{n-1}(C_{i_n}/C_{i_1})$ перехода из состояния C_{i_1} в C_{i_n} ровно за n-1 шаг есть элементы (n-1)-й степени матрицы марковской цепи ${\bf P}$:

$$P^{n-1}(C_{i_n}/C_{i_1}) = \sum_{\alpha=1}^{L} P(C_{\alpha}/C_{i_1}) P^{n-2}(C_{i_n}/C_{\alpha}), (13)$$

а вероятность

$$P(C_{j}) = \frac{\sum_{i=1, i \neq j}^{L} P(C_{j} / C_{i})}{\sum_{j=1, i \neq j}^{L} \sum_{i=1, i \neq j}^{L} P(C_{j} / C_{i})}.$$
 (14)

Подставляя формулы (8), (13) в (5), а затем (4)и (5) в (3), мы получим выражение для искомых P(m, n)-характеристик составного ДСК, содержащее в качестве параметров лишь значения исходных данных — элементы матрицы ${\bf P}$ и вектора ${f \pi}$.

Вычисления по формулам (3)-(14) являются весьма трудоемкими. Они могут быть значительно упрощены, если заметить, что вероятность перехода из состояния с номером а в состояние с номером β для рассматриваемых нами каналов быстро уменьшается с ростом разности $|\alpha - \beta|$, и при $|\alpha - \beta| < \tau_0$ заменена на нули (τ_0 — некоторое число). Суммирование в области D может вестись по $a_{lphaeta}$, не превышающим некоторой величины au_1 при $\alpha \neq \beta$. Наконец, при больших n в формулах (9)— (12) можно отказаться от учета условий, связанных с числом входов (выходов) для состояний C_{i_1} , C_{i_n} , и считать, что для всех состояний выполняются условия (9), (10).

 Π о P(m,n)-характеристикам вероятность ошибочного декодирования может быть оценена стандартным образом

$$P_{\text{om}} \le \sum_{m \ge \frac{d+1}{2}}^{n} P(m, n). \tag{15}$$

Отметим, что в работе [3] предложены формулы, позволяющие учесть одинаковые члены в выражении (10).

Предложенная методика проведения вероятностных расчетов позволяет вычислять вероятность ошибочного декодирования в каналах с памятью.

Литература

- 1. Кеннеди Р. Каналы связи с замираниями и рассеянием. М.: Сов. радио, 1973.
- 2. Коржик В. И., Финк Л. М. Помехоустойчивое кодирование дискретных сообщений в каналах со случайной структурой. М.: Связь, 1975.
- 3. Крук Е. А. Комбинированное декодирование линейных блоковых кодов / ГУАП. СПб., 2007.