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Introduction: To deal with temporally unavailable nodes in distributed storage system engineers apply special classes of era-
sure correction codes. These codes allow repairing temporally unavailable nodes by downloading a small amount of data from the
remaining ones. At the same time, there are safety threats in the presence of an eavesdropper. Purpose: To consider a new mathe-
matical model of eavesdropper that has limited access to all nodes in the system and develop codes resistant to it. Methods: In-
formation-theoretic arguments and mixing information symbols with random ones by systematic Reed — Solomon code. Results:
We introduced a new mathematical model of eavesdropper with limited access to all nodes in the distributed storage system. Note
that the proposed eavesdropper is passive or, in other words, cannot change accessed data. In this paper, we derived parameters
of optimal regenerating codes resistant to such adversary as well as give a technique to ensure the necessary resistance. As a
result, we obtained the construction of optimal minimum storage regenerating codes resistant against such adversary. Practical
relevance: Proposed constructions can provide resistance against a given adversary while ensuring effective data repair.
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Introduction

Distributed storage systems consisting of thou-
sands of individual nodes that stores a portion of
users information become de-facto the standard of
modern data storage. High expansion of such sys-
tems is leveraged by the constant growth of amount
of data stored by humanity. Leading technological
companies such as Facebook or Google heavily re-
ly on distributed storage systems [1, 2]. One of the
most important problem of current version of such
systems is drive failures that occur constantly. To
handle it system designers employ erasure-cor-
recting codes for efficient repair of temporally
unavailable nodes. Despite several node failures
are possible the most common scenario is one node
failure and the main goal of research community
is to develop codes that optimize the recovery of
one node failure in different terms. These terms
arose from the distributed nature of systems and
the necessity to communicate data between sever-
al nodes [3, 4]. One of them, called locality, meas-
ures the efficiency of recovery in number of nodes
accessed during this procedure [5]. Another one,
called repair bandwidth, takes into account the to-
tal amount of data transmitted to accomplish the
repair [6]. Codes optimized by the second measure
are called the regenerating codes and are the main
focus of this paper.

In our derivations, we consider a distributed
storage system that stores in n nodes B independ-
ent random symbols uniformly distributed over the
finite field GF(g). Each of these nodes has a storage
capacity of [ symbols (also termed as sub-packetiza-
tion level in corresponding literature). We encode B
symbols by regenerating code in such a way that in
case of one node failure the replacement node can
repair its content (or function of it in case of func-
tional repair) by connecting to any set of d helper
nodes (d > k£ — 1) and downloading 3 symbols from
each of them. The total amount of downloaded data
dp is termed as repair bandwidth. Also, regenerat-
ing code has such a property that any k2 nodes can
recover all B message symbols. Note that in such a
case we have to download all content from them.

In the initial paper on regenerating codes [6] au-
thors utilizing network-flow graph established that
parameters of these codes must satisfy the follow-
ing bound

k-1
B< Y min(l, (d-i)B). 1)

i=0
It can be deduced from the form of (1) that
achieving equality in it while fixed parameters B,
k, and d leads to the tradeoff between the repair

bandwidth dff and the sub-packetization level I. Two
extreme points of this tradeoff determine two classes
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of regenerating codes — minimum bandwidth re-
generating (MBR) codes and minimum storage re-
generating (MSR) codes. In the first case, we ini-
tially minimize bandwidth and after it minimize
storage on each node. There are a lot of construc-
tions of such codes in the literature, see [7—9] and
references therein. Unfortunately, known construc-
tions have code rate no more than 1/2 that restricts
their practical applications. Another drawback of
MBR codes is that there are no constructions with
optimal access property, namely we have to access a
large amount of data to accomplish the node repair
process while transmitting only the function from
them. In case of MSR codes that are the main fo-
cus of this paper we first minimize storage on each
node and after it the bandwidth. These codes have
many advantages over MBR codes, namely there
are explicit constructions of high-rate MSR array
codes as well as constructions of such codes with
optimal-access property. The latter means that in
case of node repair we only have to access helper
node symbols transmitted to the replacement node.
For more details, see papers [9—-11] and references
in them.

Despite importance of repairing the content of
unavailable node, this paper focus on another as-
pect of distributed storage systems namely safety
of stored data. Due to distributed nature of such
systems and as a consequence, increasing use of un-
trusted node providers or communication channels,
they are vulnerable to different type of attacks or
data leakage [12-14]. In this paper, we focus on
threats caused by eavesdropper that gains access to
some portion of stored information. The considered
eavesdropper also denoted below by E is passive, i. e.
E cannot change accessed data. There are two pop-
ular approaches to preserve resistance against E.
One of them is to use computational cryptogra-
phy based on difficulty in the computation of some
function. Deploying this approach needs to dis-
tribute keys as well as provide additional (typical-
ly hard) computations that make it irrelevant for
distributed storage systems [15]. Another one is an
information-theoretic approach in which we mix
stored data with random symbols taken uniformly
and independent from the same alphabet. In such a
case, we ensure that eavesdropper gaining access
to the limited number of symbols obtain no infor-
mation about stored content. In other words, we
ensure the zero-mutual information between stored
content and information available to E [12]. In this
paper we focus on information-theoretic approach
only. Note that this problem formulation is high-
ly connected with Wire-Tap Channel II in which
eavesdropper has an access to any fixed size subset
of symbols transmitted through a noiseless channel
[16]. Proposed solution based on coset coding pro-
vide resistance against such E while ensuring re-

construction of all information content without the
possibility of repair part of it. This fact makes it
hard to generalize the given solution to the case of
regenerating codes that support single node repair.

Recent papers within safety of regenerating
codes focused on resistance against eavesdropper
with full access to a limited number of nodes. Some
papers also consider a stronger adversary with addi-
tional access to data transmitted during the repair.
This eavesdropper model corresponds to the case
then the adversary can control some subset of nodes.
There exist corresponding bounds on the amount of
information that can be safely stored in such systems
as well as constructions attaining them. For more de-
tails, we refer to the papers[12, 13, 17].

In this paper, we continue our research initiated
in [18] and consider a new mathematical model of
eavesdropper that can access the limited number of
symbols from each node in the distributed system.
Asbefore we aim to ensure zero mutual information
between stored data and data available to E. We
consider the minimum storage regenerating codes
with optimal access property and derive the tech-
nique to make it resistant against given eavesdrop-
per. Note that such consideration is enough natural
as these codes ensure node recovery while accessing
a small portion of symbols from any node in a given
helper set.

The main contribution of this paper is as fol-
lows. We consider a new mathematical model of
eavesdropper with limited access to all nodes in the
distributed storage system, give a bound on param-
eters of regenerating codes resistant against such
adversary as well as propose an explicit construc-
tion of MSR-array codes with optimal access prop-
erty secure against it.

Preliminaries

Within this paper, we use the following nota-
tions. By GF(q) we define the finite field with ¢ el-
ements and by X =(X;, ..., X,)! the column vector
with n elements over it. We denote the set of n posi-
tions as [n] ={0, 1, ..., n — 1} and define the restric-
tion of column vector X to its subset T as X;. By
superscript t we mean the transpose operations and
by superscript s the parameters of safe version of
code construction.

By H(X) we define the entropy of discrete ran-
dom variable X and by I(X; Y) = H(X) — H(X]Y) the
mutual information between discrete random vari-
ables X and Y. H(X]|Y) denote the conditional entro-
py of random variable X given random variable Y.
The same is held for vectors consisting of discrete
random variables.

Within this paper, we consider MSR-array codes
with optimal access property proposed by Ye and
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Barg in paper [11]. Such codes attain the extreme
point in bound (1) and have the following param-
eters: [=B/k and dB:—B .
k(d-Ek+1)
struction is explained in Construction 1.

Construction 1. Let us construct array code of
length n, sub-packetization level [ = "1 = (n — )1
land number of nodes necessary to recover informa-
tion content k. The code is constructed over GF(q)
with size more than n and primitive element y. We
consider the case of d =n — 1 that corresponds to
the most common scenario of one node failure. The
code is formed from [ x n matrices over GF(q) each
encoding kl information symbols. Encoding proce-
dures are defined using parity-check equations in
the following form:

The code con-

n
(Cis .., Cp):D A,C =0, t=1, ..., 7, )
i=1

where C; = (¢; g - ci,l—l)t is a column vector that
corresponds to [ code symbols over GF(q) stored
on node i. Ay; :Af_l, where t =1, .., r and
i=1, .., narelx!l matrices over GF(q). Note that
by forming the first £ column vectors C, from
B = Ekl information symbols we can determine the
remaining r = n — k column vectors. The specific
code families can be obtained by choosing different
forms of matrices Ay, ..., A, such that and A, - Aj
is invertible and multiplication of two matrices has
commutative property. In our case to obtain MSR
codes with optimal access property we choose A,
.., A,_; to be permutation matrices and A to be an
identity matrix. In such a case replacement node

has to access symbols from each of d helper

d-k+1
nodes to accomplish the node repair.

In such a case we can determine the matrices A,
.., A, _; as follows:

-1

t .
A; = Z;t);\’i,aieaea(i,ai+1modr)’ i=1,...,n-1, (3)
a=

where a; denotes the i-th element from the right in
r-ary representation (a,_;, ..., a;) of a. By a(i, u) we
define a decimal element that coincides with a in
all positions of r-ary representation except position
i that is equal to u. ey, ..., e,_; is standard basis
of GF(¢") over GF(q). As elements Liq let us take
hio=vand), =1foru={1,2,..,r- 1.

To define node repair procedure let us determine
B;.u.¢ as follows:

Bi,u,O =0;

u+(t-1)modr

Bius = Nips t={1, ..., r=1}, @
v=u

where u = {0, ..., r— 1} and ki,v are defined above.
The repair of node i = {1, 2, ..., n — 1} can be done
by accessing I/r symbols {cj’a: j#i, a; = 0} from the
remaining n — 1 nodes and solving the following
equations

Bi,ai tCia(i,a;+tmodr) =

=—Cna~ Z Bj,aj,tcj,a(j,aj+tm0dr)° ®)
j#i,n

The repair of node n can be done by accessing I/r
symbols {c; ,: j#n, a; + .. +a,_; =0 mod r} and solv-
ing the folfowing equations

n-1

Cna =" z ﬁi,ai,tci,a(i,ai+t modr)- (6)
i=1

The reconstruction of information content can
be accomplished by connecting to the set of any &
nodes and downloading all information from them.
In such a case from equations (5) we can form the
system to define the symbols from the remaining
n — k nodes and recover users information as sym-
bols from the first £ nodes.

Eavesdropper model

In this paper, we consider a mathematical model
of eavesdropper that can download up to ¢ elements
from each node in the set-up of the previous section.
In other words, it means that E can accessed ele-
ments C; g where E;c[n], (E| < t+1) from each
column vector C, that represents the content stored
on node i. We are focused on resistance against
eavesdropper from an information-theoretic point
of view that means that E does not gain any infor-
mation about stored content S or, in other words,
the mutual information between stored content and
elements obtained from all servers by E is equal to
zero. This can be written as

I(S; Cy, ..., C,)=0. ()

In information-theoretic approach we typically
mix stored data with random symbols taken uni-
formly and independent from the same alphabet.
There are two common ways to do it within dis-
tributed storage set up. The first of them is di-
rectly mixing information and random symbols
utilizing storage codes. Note that typically it re-
quires additional properties from code but allows
to work within the same field. Another one is pre-
coding information and random symbols by maxi-
mum rank distance codes, for example, Gabidulin
code. In this paper we modify the last approach for
our eavesdropper model, namely we encode infor-
mation content of each node by Reed — Solomon
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based scheme that allows recovering part of infor-
mation content by accessing a limited number of
symbols.

It’s important to understand the bound on a
message size that can be stored in such a system
in presence of a given eavesdropper. In paper [17]
by information-theoretic argument, it was proven
that the number of information symbols B$ stored
by regenerating code can be upper bounded as fol-
lows

k
B® <> min(l-t, (d-i+1)). 8)

i=1
Achieving equality in the bound (8) for a given
Bs, k, d and t leads to the tradeoff between the re-
pair bandwidth dp and the sub-packetization level I.
Let us explicitly find the values of MSR point that
correspond to the case of minimizing [ first and 3
after it. The corresponding relaxed optimization

problem can be stated as

I’ (d, B)=minl,

k .
subject to:Zmin(l—t, (1—%}dﬁj238. 9)

i=1

Let usintroduce b; = (1 —?j dp and rewrite (9)

as

I’ (d, B)=min,
k
subject to:) min(l-t, b;)> B°®. (10)
i=1

k
It can be easily seen that C(I)= Zmin(bi, I-t)
i=1
is a piecewise-linear function of / and has the fol-
lowing form:

0 Le[0; ¢]
E(1-t) le[t; b +t]
c(1)={ . (11)
by +...+bp g +1—t Le[byy+1t; by +1]
b +...b le(by +t, )

This function is strictly monotone increasing on
the segment [ € [0, b, + t]. To find the extreme point
of I such that C(l) > B® we simply take [ = C"1(B°) for
the first non-zero value of C(l), where C71(¥) is the
inverse function of C. As a result, we receive

S

B
l=—-+t. 12
P (12)

In this case B® = kb, that leads to

BS

P a—re1y

(13)

By the similar argument for MBR case we have

l=dp+t,
2B°

___2B (14)
k(2d-Ek+1)

B

Note that this optimization is the main fo-
cus of this paper. We shall say that code resistant
against eavesdropper is MSR if its parameters co-
incide with (12) and (13). To construct it we modify
Construction 1 of MSR codes without eavesdropper
resistance.

MSR-array codes resistant
against eavesdropper

Let us construct MSR-array code resistant
against eavesdropper with optimal access proper-
ty utilizing previously introduced framework. For
content C; of each node i obtained by Construction 1
let us apply the modified safety scheme based on
Reed — Solomon code which was introduced by the
first time in paper [19]. Also, we mention paper
[20] in which the similar schemes were investigated
from another point of view. In that follows to en-
sure existence of Reed — Solomon codes we assume
that we are working in GF(q) with ¢ > max(l + ¢, n).
This scheme is depicted Figure.

In it, we first encode ¢ uniformly and independent-
ly distributed random symbols Z! =(24,05 +++» Zit-1)
by systematic Reed — Solomon code of length [ + .
After it, we add to the last [ positions elements
(o =(¢j,0s -++» ¢;;-1) Of the corresponding node.
Defining the obtained row as Y} = Yi,05 -++> Yi,t+1-1)
by the same argument as in [19] we can formally
prove that

I(Y; g3 C)=0 (15)

for any set of E; c [l + ] such that (E,| < ¢ + 1).

Redundancy

==

B Safety scheme based on Reed — Solomon code
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Remark 1. This fact can be understood form the
point of view that in Reed — Solomon code any ¢t — 1
or less code symbols does not give any information
about stored content.

To recover any 0 < r <[+ 1 symbols of C;, we
need to access the first ¢ elements of Y, that cor-
responds to Z;, encode them by the same Reed —
Solomon code and substract necessary redundancy
bits from corresponding elements of Y;. Based on
these facts we can formulate the following theo-
rem.

Theorem 1. Let GF(q) be a finite field with
q > max(l + t, n). Then MSR-array code of length
n, sub-packetization level [+ ¢, number of helper
nodes d =n — 1 and number of nodes necessary to
recover information content k resistant against
eavesdropper with access to up to # symbols from
any node can be defined by column vectors Y;. Each
Y; is formed from vectors C; of array-codes from
Construction 1 by the modified safety scheme
based on Reed — Solomon code with independent
and uniformly distributed random symbols Z; for
each node i.

Proof. From properties of used securing scheme
we can write that I(Y; 5 C;)=0 for any given C,
where E, c [l + t], (E| 2 t + 1) defines the set of el
ements from node i available for the eavesdropper.
As it holds for any given C; and random symbols
Z, are independent, the elements Y; g are distrib-
uted uniformly and independent over all vectors
of length |E,| over given field GF(q). The last fact

leads to I(Cj;Yi,Ei)zo. The resistance against

eavesdropper means that I(S; Yy g , ..., Y, g )=0.
As there is a bijection mapping between C,, ...,
C, and S this condition can be reformulated as
I(Cy, ..., Cps Yo, Y,z )=0. Applying the
facts above and the chain rule we can easily receive
that

I(Cl, ceey Cn; Y17E1’ Yn,En):H(Yl,El’

n n
Y5 )- 2 H(Y, g |C)< Y I(Y,g; C;)=0. (16)
i-1

i=1

As node repair in Construction 1 is accom-
plished by downloading I/r symbols from each of C;
in our construction the replacement node can con-
nect to first ¢ symbols from each Y;. After it com-
pute the redundancy of Reed — Solomon code, sub-
stract it from symbols of Y, corresponding to sym-
bols of C; necessary for recovery and download only
them. In such a case the repair bandwidth as well
as sub-packetization level meets the corresponding
extreme values (12) and (13). Note that after obtain-
ing the content of failed node the replacement node
has to apply to it safety scheme based on Reed —
Solomon code.

Reconstruction of information content can be
performed in the same way as in Construction 1. The
only difference is that after connecting to & serv-
ers and downloading all information from them we
have to compute the redundancy of Reed — Solomon
code that encodes first ¢ symbols and substract it
from the last I symbols to obtain corresponding C,.
This ends proof.

Example

To illustrate the proposed framework let us
consider the following example. Let us consid-
er GF(8) constructed over primitive polynomial
¢(x) = x3+ x + 1 with root a. As array-code from
Construction 1 let us take code with n=3, E=1,
r=2, I =4. The first node stores information sym-
bols while the last two nodes store parity-check
symbols. Matrices that form parity-check equations
(2) can be written as

0 o 00 00 o2 0
1000 2
4y = ;4,=0 0 0 ey
0 0 0 a 10 0 0
0 01O 11 0
1000
A_0100 an
3710 01 of
0 001

If we take as C; =(1, 1, 1, 1)* when C, = (a3, O,
0, 0) and C53=(a, 1, 1, 1). Let us make obtained
code resistant to eavesdropper by the scheme de-
scribed in the previous section. In such a case, we
receive Y; = (ab, o5, o2, 0, ab), Y, =(a?, 1, o, af,
), Yg = (oc3 o, a, a, a?)!. If we have to recover the
content of the first node from the remaining one we
have to access Y, ( ; 5yand Y (o ; 5. After it, we can
find the redundancy of (5, 1) systematic Reed —
Solomon code for information symbols Y, ; and Y3 .
Receiving (o, o8, o, o) and (a8, a3, at, ab) as well
as correspondlng positions from Y, 4 5 and Y3 4 5
we obtain C, ( o and Cg 5 that form the following
parity-check equations

€1,0 +€2,0 +¢3,0 =0;

acyy + a2c2’2 +eg0=0;
2 +Cg2 +¢39=0;
acp3+eggtezo=0 (18)

and determine C; =(1, 1, 1, 1)*. After it we have

to apply to it 1ntroduced safety scheme and obtain

Yl—(oc a4 0c6 a, o )
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Conclusion

In this paper, we considered the new mathemat-
ical model of passive eavesdropper that has limited
access to symbols from each node. We obtained the
parameters of regenerating codes reaching extreme
points of corresponding bound on the size of the
stored message. Also, we proposed the construction
of MSR-array codes resistant against the eaves-
dropper and illustrated the obtained construction
by the corresponding example. In further research,
we will consider the hybrid eavesdropper model
that has a limited access to all nodes together with
full access to a small subset of them.
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ROHI)I C MUHUMAJBbHBIM XPaHEHHUEeM, ycTOﬁ'—IMBLIe K aTaKaM CIienfiaJbHOI'oO THUIIA

C. A. Kpyrauk®6, muagmuii HayuHbBIH COTPYAHUK, orcid.org/0000-0001-9557-5197, stanislav.kruglik@skoltech.ru
ACKOJIKOBCKUM MHCTUTYT HAYKU U TeXHOJorui, BoabIoit 6-p, 30, cTp. 1, MockBa, 121205, P
SMockoBCKUit (GUBUKO-TeXHUUECKUH HHCTUTYT, MHCTUTYTCKUII ep., 9, Hoaronpyausiii, MockoBckas 00.., 141701, P®

BBenenue: n1y1a 60pbOBI ¢ BPEMEHHBIM MJIM IIOCTOSHHBIM BBIXOJOM U3 CTPOS CEPBEPOB PaCIPelieIeHHON CUCTeMbl XpaHeHu:A nH(Op-
Maluy IPUMEHSAIOTCA CIelualbHble KJIACCH KOJOB, UCIPABIAONINX CTUPaHUA. [[aHHBIE KOJbI II03BOJIAIOT BOCCTAHOBUTH NH()OPMAIINIO
C BpPeMeHHO HeJOCTYIIHOTO y3Jia IIyTeM CKaUMBAHUA MaIoro o6bemMa nHGOPMALUY ¢ PYTUX y310B. IIpu 9ToM BOBHUKAIOT yIPOSHI 3aIIu-
IeHHOCTU XPaHUMBIX JaHHBIX. I[eqb: BBeleHe HOBOII MaTeMaTUUeCKON MOJEIN, B KOTOPOU 3JI0YMBIIIIJIEHHUK UMEeT AOCTYII K HeG0JIb-
IIOMY YHCJY CHMBOJIOB C Ka’KJOT0 y3Ja, ¥ pa3paboTKa COOTBETCTBYIOIINX KOJOB, YCTOMYMBBIX K aTakaM 3JIOYMBIINIIeHHUKA. MeToasI:
TeopeTUKO-UH()POPMAIIMOHHBIN aHAIN3 U IepeMellInBaHue HH(OOPMAIIMOHHBIX CUMBOJIOB CO CIYYalHBIMU C IIOMOIIbIO0 CUCTEMATHYECKOTO
koga Puna — Cosnomona. Pe3yasraThl: BBeleHa HOBasd MaTeMaTH4YeCKasd MOEJb 3JIOYMBIIIJIEHHUKA B PACIPEJIeJIECHHO CuCTeMe XpaHe-
HUA NHGPOPMAIIUH, IMEIOIIEeT0 JOCTYI K MaJIOMy YHCIY CHMBOJIOB C KasKA0ro yaiaa. OTMETHM, UTO pacCMaTPUBAeTCA MOZEIhb IACCUBHOTO
3JIOYMBIIIIEHHIKA — «IIOACIYIINBATEIA», HE CIIOCOGHOTO KaKNM-In60 06pa3oM BUIOM3MEHATH ITOJIyUeHHbIe UM AaHHbIe. HalineHb! xa-
PaKTEePUCTUKY OITUMATIbHBIX KOJOB, YCTONYMBBIX K BBIXO/Y U3 CTPOSA CEPBEPOB B PACIIPE/IeJIEHHOI CUCTEMe XPaHeHUA UH(pOopMaIuy Ipu
HaJIMYUY 3JI0YMBIIIJIEHHNKA, a TAKKe IIOCTPOEHBI OIITUMAaJIbHbIE KOJbI-MaCCUBBI C MUHUMAJIbHBIM XPAaHEHNEM, YCTONYNBbBIE K aTaKaM Ta-
Koro poza. IIpakTudeckass SEHAUMMOCTD: IPECTABICHHAA KOHCTPYKIIUA II03BOJISET COXPAHUTE 3AIUIITEHHOCTD JaHHBIX IIPU 00eCIIeueHN N
9 (HEeKTUBHOTO BOCCTAHOBJIEHU A II0JIb30BATEIbCKON HH(MOPMAIIUH.

KuroueBsie ciioBa — pacupejesieHHAA CUCTeMa, KOAbI-MaCCUBLI ¢ MUHUMAaJIbHBIM XPaHEHHEeM, BOCCTAHOBJIEHNE HEJTOCTYIIHOTO y3JIa,
MaTeMaTH4ecKas MOJesIb CUCTeMbI, YCTOMYNBOCTD K AeHCTBUAM 3JI0YMBIIIJIeHHUKA.
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