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Introduction: To deal with temporally unavailable nodes in distributed storage system engineers apply special classes of era-
sure correction codes. These codes allow repairing temporally unavailable nodes by downloading a small amount of data from the 
remaining ones. At the same time, there are safety threats in the presence of an eavesdropper. Purpose: To consider a new mathe-
matical model of eavesdropper that has limited access to all nodes in the system and develop codes resistant to it. Methods: In-
formation-theoretic arguments and mixing information symbols with random ones by systematic Reed — Solomon code. Results: 
We introduced a new mathematical model of eavesdropper with limited access to all nodes in the distributed storage system. Note 
that the proposed eavesdropper is passive or, in other words, cannot change accessed data. In this paper, we derived parameters 
of optimal regenerating codes resistant to such adversary as well as give a technique to ensure the necessary resistance. As a 
result, we obtained the construction of optimal minimum storage regenerating codes resistant against such adversary. Practical 
relevance: Proposed constructions can provide resistance against a given adversary while ensuring effective data repair.
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Introduction

Distributed storage systems consisting of thou-
sands of individual nodes that stores a portion of 
users information become de-facto the standard of 
modern data storage. High expansion of such sys-
tems is leveraged by the constant growth of amount 
of data stored by humanity. Leading technological 
companies such as Facebook or Google heavily re-
ly on distributed storage systems [1, 2]. One of the 
most important problem of current version of such 
systems is drive failures that occur constantly. To 
handle it system designers employ erasure-cor-
recting codes for efficient repair of temporally 
unavailable nodes. Despite several node failures 
are possible the most common scenario is one node 
failure and the main goal of research community 
is to develop codes that optimize the recovery of 
one node failure in different terms. These terms 
arose from the distributed nature of systems and 
the necessity to communicate data between sever-
al nodes [3, 4]. One of them, called locality, meas-
ures the efficiency of recovery in number of nodes 
accessed during this procedure [5]. Another one, 
called repair bandwidth, takes into account the to-
tal amount of data transmitted to accomplish the 
repair [6]. Codes optimized by the second measure 
are called the regenerating codes and are the main 
focus of this paper.

In our derivations, we consider a distributed 
storage system that stores in n nodes B independ-
ent random symbols uniformly distributed over the 
finite field GF(q). Each of these nodes has a storage 
capacity of l symbols (also termed as sub-packetiza-
tion level in corresponding literature). We encode B 
symbols by regenerating code in such a way that in 
case of one node failure the replacement node can 
repair its content (or function of it in case of func-
tional repair) by connecting to any set of d helper 
nodes (d > k – 1) and downloading  symbols from 
each of them. The total amount of downloaded data 
d is termed as repair bandwidth. Also, regenerat-
ing code has such a property that any k nodes can 
recover all B message symbols. Note that in such a 
case we have to download all content from them.

In the initial paper on regenerating codes [6] au-
thors utilizing network-flow graph established that 
parameters of these codes must satisfy the follow-
ing bound
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It can be deduced from the form of (1) that 
achieving equality in it while fixed parameters B, 
k, and d leads to the tradeoff between the repair 
bandwidth d and the sub-packetization level l. Two 
extreme points of this tradeoff determine two classes 
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of regenerating codes — minimum bandwidth re-
generating (MBR) codes and minimum storage re-
generating (MSR) codes. In the first case, we ini-
tially minimize bandwidth and after it minimize 
storage on each node. There are a lot of construc-
tions of such codes in the literature, see [7–9] and 
references therein. Unfortunately, known construc-
tions have code rate no more than 1/2 that restricts 
their practical applications. Another drawback of 
MBR codes is that there are no constructions with 
optimal access property, namely we have to access a 
large amount of data to accomplish the node repair 
process while transmitting only the function from 
them. In case of MSR codes that are the main fo-
cus of this paper we first minimize storage on each 
node and after it the bandwidth. These codes have 
many advantages over MBR codes, namely there 
are explicit constructions of high-rate MSR array 
codes as well as constructions of such codes with 
optimal-access property. The latter means that in 
case of node repair we only have to access helper 
node symbols transmitted to the replacement node. 
For more details, see papers [9–11] and references 
in them.

Despite importance of repairing the content of 
unavailable node, this paper focus on another as-
pect of distributed storage systems namely safety 
of stored data. Due to distributed nature of such 
systems and as a consequence, increasing use of un-
trusted node providers or communication channels, 
they are vulnerable to different type of attacks or 
data leakage [12–14]. In this paper, we focus on 
threats caused by eavesdropper that gains access to 
some portion of stored information. The considered 
eavesdropper also denoted below by E is passive, i. e. 
E cannot change accessed data. There are two pop-
ular approaches to preserve resistance against E. 
One of them is to use computational cryptogra-
phy based on difficulty in the computation of some 
function. Deploying this approach needs to dis-
tribute keys as well as provide additional (typical-
ly hard) computations that make it irrelevant for 
distributed storage systems [15]. Another one is an 
information-theoretic approach in which we mix 
stored data with random symbols taken uniformly 
and independent from the same alphabet. In such a 
case, we ensure that eavesdropper gaining access 
to the limited number of symbols obtain no infor-
mation about stored content. In other words, we 
ensure the zero-mutual information between stored 
content and information available to E [12]. In this 
paper we focus on information-theoretic approach 
only. Note that this problem formulation is high-
ly connected with Wire-Tap Channel II in which 
eavesdropper has an access to any fixed size subset 
of symbols transmitted through a noiseless channel 
[16]. Proposed solution based on coset coding pro-
vide resistance against such E while ensuring re-

construction of all information content without the 
possibility of repair part of it. This fact makes it 
hard to generalize the given solution to the case of 
regenerating codes that support single node repair.

Recent papers within safety of regenerating 
codes focused on resistance against eavesdropper 
with full access to a limited number of nodes. Some 
papers also consider a stronger adversary with addi-
tional access to data transmitted during the repair. 
This eavesdropper model corresponds to the case 
then the adversary can control some subset of nodes. 
There exist corresponding bounds on the amount of 
information that can be safely stored in such systems 
as well as constructions attaining them. For more de-
tails, we refer to the papers [12, 13, 17].

In this paper, we continue our research initiated 
in [18] and consider a new mathematical model of 
eavesdropper that can access the limited number of 
symbols from each node in the distributed system. 
As before we aim to ensure zero mutual information 
between stored data and data available to E. We 
consider the minimum storage regenerating codes 
with optimal access property and derive the tech-
nique to make it resistant against given eavesdrop-
per. Note that such consideration is enough natural 
as these codes ensure node recovery while accessing 
a small portion of symbols from any node in a given 
helper set. 

The main contribution of this paper is as fol-
lows. We consider a new mathematical model of 
eavesdropper with limited access to all nodes in the 
distributed storage system, give a bound on param-
eters of regenerating codes resistant against such 
adversary as well as propose an explicit construc-
tion of MSR-array codes with optimal access prop-
erty secure against it. 

Preliminaries

Within this paper, we use the following nota-
tions. By GF(q) we define the finite field with q el-
ements and by X(X1, …, Xn)t the column vector 
with n elements over it. We denote the set of n posi-
tions as [n]{0, 1, …, n – 1} and define the restric-
tion of column vector X to its subset T as XT. By 
superscript t we mean the transpose operations and 
by superscript s the parameters of safe version of 
code construction.

By H(X) we define the entropy of discrete ran-
dom variable X and by I(X; Y)H(X) – H(X|Y) the 
mutual information between discrete random vari-
ables X and Y. H(X|Y) denote the conditional entro-
py of random variable X given random variable Y. 
The same is held for vectors consisting of discrete 
random variables.

Within this paper, we consider MSR-array codes 
with optimal access property proposed by Ye and 
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Barg in paper [11]. Such codes attain the extreme 
point in bound (1) and have the following param-

eters: lB/k and 
1

.
( )

B
d

k d k
 

 
 The code con-

struction is explained in Construction 1.
Construction 1. Let us construct array code of 

length n, sub-packetization level lrn–1(n – k)n–1 
land number of nodes necessary to recover informa-
tion content k. The code is constructed over GF(q) 
with size more than n and primitive element . We 
consider the case of dn – 1 that corresponds to 
the most common scenario of one node failure. The 
code is formed from l n matrices over GF(q) each 
encoding kl information symbols. Encoding proce-
dures are defined using parity-check equations in 
the following form:
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where Ci = (ci,0, …, ci,l–1)t is a column vector that 
corresponds to l code symbols over GF(q) stored 

on node i. 1
, ,t
t i i

A A  where t = 1, …, r and 

i = 1, ..., n are l l matrices over GF(q). Note that 
by forming the first k column vectors Ci from 
B = kl information symbols we can determine the 
remaining r = n – k column vectors. The specific 
code families can be obtained by choosing different 
forms of matrices A1, …, An such that and Ai – Aj 
is invertible and multiplication of two matrices has 
commutative property. In our case to obtain MSR 
codes with optimal access property we choose A1, 
…, An–1 to be permutation matrices and An to be an 
identity matrix. In such a case replacement node 

has to access 
1

l
d k 

 symbols from each of d helper 

nodes to accomplish the node repair.
In such a case we can determine the matrices A1, 

…, An–1 as follows:
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where ai denotes the i-th element from the right in 
r-ary representation (an–1, …, a1) of a. By a(i, u) we 
define a decimal element that coincides with a in 
all positions of r-ary representation except position 
i that is equal to u. e0, …, el–1 is standard basis 
of GF(ql) over GF(q). As elements , ii a  let us take 
i,0 = i and i,u = 1 for u = {1, 2, …, r – 1}.

To define node repair procedure let us determine 
i,u,t as follows: 
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where u = {0, …, r – 1} and i,v are defined above. 
The repair of node i = {1, 2, …, n – 1} can be done 
by accessing l/r symbols {cj,a: j  i, ai = 0} from the 
remaining n – 1 nodes and solving the following 
equations
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The repair of node n can be done by accessing l/r 
symbols {cj,a: jn, a1…an–10 mod r} and solv-
ing the following equations

 

1

1
, , , , ( , mod ).i i

n

n a i a t i a i a t r
i

c c





     (6)

The reconstruction of information content can 
be accomplished by connecting to the set of any k 
nodes and downloading all information from them. 
In such a case from equations (5) we can form the 
system to define the symbols from the remaining 
n – k nodes and recover users information as sym-
bols from the first k nodes.

Eavesdropper model

In this paper, we consider a mathematical model 
of eavesdropper that can download up to t elements 
from each node in the set-up of the previous section. 
In other words, it means that E can accessed ele-
ments , ii EC  where Ei[n], (|Ei| < t1) from each 
column vector Сi that represents the content stored 
on node i. We are focused on resistance against 
eavesdropper from an information-theoretic point 
of view that means that E does not gain any infor-
mation about stored content S or, in other words, 
the mutual information between stored content and 
elements obtained from all servers by E is equal to 
zero. This can be written as

 1   0( ; , ..., ) .nI S C C   (7)

In information-theoretic approach we typically 
mix stored data with random symbols taken uni-
formly and independent from the same alphabet. 
There are two common ways to do it within dis-
tributed storage set up. The first of them is di-
rectly mixing information and random symbols 
utilizing storage codes. Note that typically it re-
quires additional properties from code but allows 
to work within the same field. Another one is pre-
coding information and random symbols by maxi-
mum rank distance codes, for example, Gabidulin 
code. In this paper we modify the last approach for 
our eavesdropper model, namely we encode infor-
mation content of each node by Reed — Solomon 
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based scheme that allows recovering part of infor-
mation content by accessing a limited number of 
symbols. 

It’s important to understand the bound on a 
message size that can be stored in such a system 
in presence of a given eavesdropper. In paper [17] 
by information-theoretic argument, it was proven 
that the number of information symbols Bs stored 
by regenerating code can be upper bounded as fol-
lows

 1
 1min( , ( ) ).

k
s

i
B l t d i


       (8)

Achieving equality in the bound (8) for a given 
Bs, k, d and t leads to the tradeoff between the re-
pair bandwidth d and the sub-packetization level l. 
Let us explicitly find the values of MSR point that 
correspond to the case of minimizing l first and  
after it. The corresponding relaxed optimization 
problem can be stated as
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It can be easily seen that    
1
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k

i
i

C l b l t


 
is a piecewise-linear function of l and has the fol-
lowing form:

 

 

 
   

 
 

1

1 1 1

1

0 0  
 

1

 
 

                                ;  
                      ;

.
    ; 

                    ,  
k k k

k k

l t

k l t l t b t
c

b b l t l b t b t

b b l b t
 


    
      

   

   (11)

This function is strictly monotone increasing on 
the segment l[0, bkt]. To find the extreme point 
of l such that C(l)Bs we simply take lC–1(Bs) for 
the first non-zero value of C(l), where C–1(*) is the 
inverse function of C. As a result, we receive
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In this case Bskb1 that leads to
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By the similar argument for MBR case we have
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Note that this optimization is the main fo-
cus of this paper. We shall say that code resistant 
against eavesdropper is MSR if its parameters co-
incide with (12) and (13). To construct it we modify 
Construction 1 of MSR codes without eavesdropper 
resistance. 

MSR-array codes resistant 
against eavesdropper

Let us construct MSR-array code resistant 
against eavesdropper with optimal access proper-
ty utilizing previously introduced framework. For 
content Сi of each node i obtained by Construction 1 
let us apply the modified safety scheme based on 
Reed — Solomon code which was introduced by the 
first time in paper [19]. Also, we mention paper 
[20] in which the similar schemes were investigated 
from another point of view. In that follows to en-
sure existence of Reed — Solomon codes we assume 
that we are working in GF(q) with q > max(lt, n). 
This scheme is depicted Figure.

In it, we first encode t uniformly and independent-
ly distributed random symbols 0 1  , ,( , ..., )t

i i i tz z Z  
by systematic Reed — Solomon code of length lt. 
After it, we add to the last l positions elements 

0 1  , ,( , ..., )t
i i i lc c C  of the corresponding node. 

Defining the obtained row as 0 1  , ,( , ..., )t
i i i t ly y  Y  

by the same argument as in [19] we can formally 
prove that 

 
 0,( ; )

ii E iI Y C   (15)

for any set of Ei[lt] such that (|Ei| < t1).

0

Zi
tZi

t

Ci
t

Redundancy

  Safety scheme based on Reed — Solomon code



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202142

КОДИРОВАНИЕ И ПЕРЕДАЧА ИНФОРМАЦИИ

Remark 1. This fact can be understood form the 
point of view that in Reed — Solomon code any t – 1 
or less code symbols does not give any information 
about stored content. 

To recover any 0 < r < l1 symbols of Сi we 
need to access the first t elements of Yi that cor-
responds to Zi, encode them by the same Reed — 
Solomon code and substract necessary redundancy 
bits from corresponding elements of Yi. Based on 
these facts we can formulate the following theo-
rem.

Theorem 1. Let GF(q) be a finite field with 
q > max(lt, n). Then MSR-array code of length 
n, sub-packetization level lt, number of helper 
nodes dn – 1 and number of nodes necessary to 
recover information content k resistant against 
eavesdropper with access to up to t symbols from 
any node can be defined by column vectors Yi. Each 
Yi is formed from vectors Сi of array-codes from 
Construction 1 by the modified safety scheme 
based on Reed — Solomon code with independent 
and uniformly distributed random symbols Zi for 
each node i.

Proof. From properties of used securing scheme 
we can write that  0,( ; )

ii E iI Y C
 
for any given Сi 

where Ei[lt], (|Ei| < t1) defines the set of el-
ements from node i available for the eavesdropper. 
As it holds for any given Сi and random symbols 

Zi are independent, the elements , ii EY  are distrib-

uted uniformly and independent over all vectors 
of length |Ei| over given field GF(q). The last fact 
leads to  0,( ; ) .

ij i EI C Y  The resistance against 

eavesdropper means that 
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As there is a bijection mapping between С1, …, 
Сn and S this condition can be reformulated as 

11 1     0, ,( , ..., ; , ..., ) .
nn E n EI C C Y Y

 
Applying the 

facts above and the chain rule we can easily receive 
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As node repair in Construction 1 is accom-
plished by downloading l/r symbols from each of Сi 
in our construction the replacement node can con-
nect to first t symbols from each Yi. After it com-
pute the redundancy of Reed — Solomon code, sub-
stract it from symbols of Yi corresponding to sym-
bols of Сi necessary for recovery and download only 
them. In such a case the repair bandwidth as well 
as sub-packetization level meets the corresponding 
extreme values (12) and (13). Note that after obtain-
ing the content of failed node the replacement node 
has to apply to it safety scheme based on Reed — 
Solomon code. 

Reconstruction of information content can be 
performed in the same way as in Construction 1. The 
only difference is that after connecting to k serv-
ers and downloading all information from them we 
have to compute the redundancy of Reed — Solomon 
code that encodes first t symbols and substract it 
from the last l symbols to obtain corresponding Сi. 
This ends proof.

Example 

To illustrate the proposed framework let us 
consider the following example. Let us consid-
er GF(8) constructed over primitive polynomial 
(x)x3x1 with root . As array-code from 
Construction 1 let us take code with n3, k1, 
r2, l4. The first node stores information sym-
bols while the last two nodes store parity-check 
symbols. Matrices that form parity-check equations 
(2) can be written as 
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 (17)

If we take as C1(1, 1, 1, 1)t when C2(3, 0, 
0, 0)t and C3(, 1, 1, 1)t. Let us make obtained 
code resistant to eavesdropper by the scheme de-
scribed in the previous section. In such a case, we 
receive Y1(6, 6, 2, 0, 6)t, Y2(5, 1, 5, 6, 
)t, Y3(3, 4, , 5, 2)t. If we have to recover the 
content of the first node from the remaining one we 
have to access Y2,{0,1,3} and Y3,{0,1,3}. After it, we can 
find the redundancy of (5, 1) systematic Reed — 
Solomon code for information symbols Y2,0 and Y3,0. 
Receiving (, 5, 6, ) and (6, 3, 4, 6) as well 
as corresponding positions from Y2,{1,3} and Y3,{1,3} 
we obtain C2,{0,2} and C3,{0,2} that form the following 
parity-check equations 

 

1 0 2 0 3 0
2

1 1 2 2 3 0

1 2 2 2 3 2

1 3 2 0 3 2

0

0

0

0

, , ,

, , ,

, , ,

, , ,

;

;
;

c c c

c c c

c c c

c c c

  

   

  

     (18) 

and determine C1(1, 1, 1, 1)t. After it we have 
to apply to it introduced safety scheme and obtain 

2 4 6 4
1 ( , , , , ) .t     Y
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Conclusi  on

In this paper, we considered the new mathemat-
ical model of passive eavesdropper that has limited 
access to symbols from each node. We obtained the 
parameters of regenerating codes reaching extreme 
points of corresponding bound on the size of the 
stored message. Also, we proposed the construction 
of MSR-array codes resistant against the eaves-
dropper and illustrated the obtained construction 
by the corresponding example. In further research, 
we will consider the hybrid eavesdropper model 
that has a limited access to all nodes together with 
full access to a small subset of them.
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Коды с минимальным хранением, устойчивые к атакам специального типа

С. А. Круглика,б, младший научный сотрудник, orcid.org/0000-0001-9557-5197, stanislav.kruglik@skoltech.ru
аСколковский институт науки и технологий, Большой б-р, 30, стр. 1, Москва, 121205, РФ 
бМосковский физико-технический институт, Институтский пер., 9, Долгопрудный, Московская обл., 141701, РФ

Введение: для борьбы с временным или постоянным выходом из строя серверов распределенной системы хранения инфор-
мации применяются специальные классы кодов, исправляющих стирания. Данные коды позволяют восстановить информацию 
с временно недоступного узла путем скачивания малого объема информации с других узлов. При этом возникают угрозы защи-
щенности хранимых данных. Цель: введение новой математической модели, в которой злоумышленник имеет доступ к неболь-
шому числу символов с каждого узла, и разработка соответствующих кодов, устойчивых к атакам злоумышленника. Методы: 
теоретико-информационный анализ и перемешивание информационных символов со случайными с помощью систематического 
кода Рида — Соломона. Результаты: введена новая математическая модель злоумышленника в распределенной системе хране-
ния информации, имеющего доступ к малому числу символов с каждого узла. Отметим, что рассматривается модель пассивного 
злоумышленника — «подслушивателя», не способного каким-либо образом видоизменять полученные им данные. Найдены ха-
рактеристики оптимальных кодов, устойчивых к выходу из строя серверов в распределенной системе хранения информации при 
наличии злоумышленника, а также построены оптимальные коды-массивы с минимальным хранением, устойчивые к атакам та-
кого рода. Практическая значимость: представленная конструкция позволяет сохранить защищенность данных при обеспечении 
эффективного восстановления пользовательской информации. 

Ключевые слова — распределенная система, коды-массивы с минимальным хранением, восстановление недоступного узла, 
математическая модель системы, устойчивость к действиям злоумышленника.
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