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Introduction

It is conjectured that the cyclic Legendre pairs
of odd lengths > 1 always exist. See the next sec-
tion for the definition of the Legendre pairs and
Legendre difference families (DF). It is known
that they exist for odd lengths v in the range
2 < v < 76. The smallest unresolved case is v =T7.
According to [1], there are four series of known cy-
clic Legendre pairs of odd length v > 1 (the first
three are infinite):

(i) v is a prime number;

(ii) 2v + 1 is a power of a prime number;

(iii) v + 1 is a power of 2;

(iv) v = pq, where p and ¢ are prime numbers and
g-p=2.

We refer to (i) as the classical series because
the construction is based on the sequence of the
classical Legendre symbols [1]. The case (ii) is the
Szekeres series provided by the well known series of
so called Szekeres difference sets (in fact they are
difference families) [2, 3]. The series (iii) is known
as the Galois series [4] and (iv) is the twin-prime se-
ries, see e. g. [5, Theorem 9.4].

The series (iii) and (iv) as well as (i) for
v=3 (mod 4) are obtained from the three well
known series of difference sets having the pa-
rameters (v; (v— 1)/2; (v— 3)/4). We refer to such
Legendre pairs as type 1 (see next sections).

If we start with the list of odd integers v in the
range 76 < v < 200 and remove those which satisfy
at least one of the conditions (i)—(iv) above we obtain
the list of 20 integers:

77, 85, 87, 91, 93, 115, 117, 123, 129, 133, 145,
147, 159, 161, 169, 175, 177, 185, 187, 195.

Thisisin fact thelist of all cases with v < 200 for
which the question of existence of cyclic Legendre
pairs is unresolved.

In the paper [1, p. 80] the authors list 22 odd
lengths < 200 for which they assert that the ex-
istence question of cyclic Legendre pairs is un-
resolved. However, the lengths 121 and 171
should not have been included in that list since
2.121+1=243=3> and 2 171 +1=343="T3
are prime powers. (On the other hand according to
[6, sec. 4] the number 57 should have been included.)

There are two other series of Legendre DFs in el-
ementary abelian groups which include some cyclic
cases. One of them appears in [7] and the other in
[8, Theorem 3.1]. However, while they provide new
cyclic Legendre DFs they do not give new lengths v
in the cyclic case.

Our main result is in section with new pairs,
where we give the first examples of cyclic Legendre
pairs of lengths 91, 93 and 123. Thereby we reduce
to 17 the number of the undecided cases listed above.
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According to [1], exhaustive computer search-
es for cyclic Legendre pairs where carried out for
all odd v < 48. We consider the odd integers v in
the range 48 < v < 76 and we list the new cyclic
Legendre DFs of type 2 that we constructed. Only
for v=69 and v="75 we failed to find any new
pairs.

Notation and definitions

Let G be a finite abelian group (written addi-
tively) and let v denote its order. For any function
f: G—> R its periodic auto-correlation function,
PAF;: G > R, is defined by the formula PAF(s) =
=2 ccf@)f(x + s). We refer to s as the shift variable.

Definition 1. We say that an ordered pair of
functions (f, g) mapping G — {+1, -1} is a Legendre
pair on G if PAF4(s) + PAF,(s) = -2 for all nonzero
shifts s. (For s = 0 we have PAFf(O) = PAFg(O) =0.)

Forany functionf: G — {+1, -1} wesetG;={x € G:
fx) =-1}.

Proposition. An ordered pair of functions (f,
g): G — {+1, -1} is a Legendre pair on G if and on-
ly if Gy Gy isa difference family in G with pa-
rameters (v, ky, ky, A) where k) =|G/, k,=|G,| and
h=Fk; + ky— (v + 1)/2. In particular the existence
of Legendre pairs on G implies that v must be odd.

Proof: This follows immediately from Theorems 3
and 4 of [9].

Remark. It is customary to require that the
length v of a Legendre pair is > 1. However, ac-
cording to the above definition, if G is a trivial
group then any pair of functions G — {+1, —1} is a
Legendre pair. The condition in the definition holds
by default (there are no nonzero shifts).

If we introduce the additional parameter
n=~k; + ky— A then we have v=2n— 1. By using
the well known equation ky(k; — 1) + ky(ky — 1) =
=Mv — 1) one can easily show that

v-1 v+1
O

In view of the above proposition, we shall refer
to the difference families (X, Y) in G having the pa-
rameters (v; By, ky; A) with v=2n— 1 as Legendre
DFs.

We say that a Legendre pair on a group G is cy-
clic if the group G is cyclic. In this note we deal only
with the cyclic Legendre pairs and we may assume
that G = Z, the additive group of integers modulo v.

We give a simple example to introduce the nota-
tion that we will use in the rest of this note.

. Example: v = 39. In this example v =13 - 3 and so
Z,, (the group of units of the ring Z ) is isomorphic
to Z;, x Zz% Then H ={1, 16, 22} is the unique sub-
group of Z,, of order 3. There exists an H-invariant

Legendre DF with parameter set (39; 19, 19; 18),
namely

X=H{0,1, 2,3, 4,12, 14};
Y = H{0, 2, 3, 4, 8, 14, 19},

In general, if H is a subgroup of Z: and S a
subset of Z then the product HS is defined to be
HS = {hs(mod v): h € H, s € S}. Note that H{0} =
= {0}.

Cyclic Legendre pairs of new lengths
v=91,93,123

We have constructed four pairwise nonequiva-
lent Legendre DF's (X, Y)) of length 91. For the defi-
nition of equivalence see the latest section of the
paper. Only one DF is constructed for each of the
lengths 93 and 123. Instead of Legendre pairs, we
list the corresponding difference families. In each
case, each block is a union of orbits of a fixed sub-
group (H, H, or H,) of order 3 or 5 of Z;

v=91

Four pairwise nonequivalent Legendre DFs:

(91; 45, 45; 44) H, = {1, 16, 74}, H,={1, 9, 81}

X,=H,{1, 2,7, 14, 15, 17, 19, 22, 25, 28, 38, 43,
44, 50, 55}

Y, =H,{2, 3, 10, 11, 14, 17, 20, 22, 28, 43, 44, 45,
49, 50, 55}

X,=H{1, 4, 5, 8, 9, 11, 15, 22, 27, 28, 34, 38,
43, 49, 50}

Y, =H,{8,9, 10, 11, 14, 17, 22, 25, 28, 33, 34, 38,
44, 50, 55}

X;=H,{2, 3, 5, 9, 10, 14, 15, 20, 27, 28, 33, 34,
38, 50, 55}

Y, =H,{3, 4,11, 14, 19, 25, 27, 28, 33, 34, 43, 44,
45, 50, 55}

X, = Hy{2, 5, 14, 16, 19, 20, 23, 24, 29, 30, 37, 40,
46, 48, 49}

Y, =H,{2, 4, 6, 8, 13, 14, 16, 23, 30, 37, 38, 39,
40, 46, 49}

v=93
Only one Legendre DF:
(93; 46, 46; 45) H = {1, 25, 67}
X=H{0, 1, 2, 3, 5, 8, 10, 12, 13, 16, 22, 24, 43,
44, 47, 48}
Y =H{0, 1, 3, 4, 5, 9, 11, 12, 18, 20, 22, 37, 40,
43, 44, 51}

v=123
Only one Legendre DF:
(123; 61, 61; 60) H ={1, 10, 16, 37, 100}
X =H{0,1, 3, 6,11, 13, 28, 29, 33, 35, 43, 45, 59}
Y = H{4, 5, 6, 11, 14, 15, 18, 19, 22, 28, 33, 41,
45}
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Type 1 and type 2

Let (X, Y)be a Legendre DF in Z . It is easy to see
that if X is a difference set then Y must be a differ-
ence set too. In that case we say that (X, Y) (and its
corresponding Legendre pair) is of type 1, and oth-
erwise that it is of type 2. The Legendre pairs in the
Galois and the twin-prime series as well as those in
the classical series with v a prime number = 3 (mod 4)
are of type 1. Note that two equivalent Legendre
DFs must have the same type. Hence the study of
type 1 Legendre DFs essentially reduces to the
study of difference sets. For that reason we shall
consider only the Legendre DFs of type 2.

As mentioned earlier, it is conjectured that cy-
clic Legendre DFs exist for all odd lengths v > 2.
We propose a bit stronger version.

Conjecture. Legendre DF's of type 2 exist for all
odd lengths v > 8.

One of the objectives of this note is to verify
this conjecture for v < 76. It follows from [1] that
the conjecture is true for v < 48. If v is a prime
number =1 (mod 4) then the classical Legendre
pair of length v is of type 2. One can verify that
the Legendre pairs in the Szekeres series having
length v in the interval 4 < v < 76 are of type 2.
Thus, in order to verify the above conjecture for
v < 76 it suffices to verify it in the cases v =49,
55, 57, 59, 67, 71. This will be done in the next sec-
tion.

We do not know whether all Legendre pairs of
length v > 4 in the Szekeres series are of type 2.

New Legendre DFs of type 2

We list the cyclic Legendre DFs of type 2 and
length v > 48 that we have constructed here. We
imposed the restriction v > 48 because for v < 48
exhaustive searches have been carried out [1].

v=49
The Legendre DF below is not equivalent to the
onein[1, p. 85]:
(49; 24, 24; 23) H ={1, 18, 30}
X =H{1,2,8,9, 13, 24, 26, 29}
Y=H{2,3,4,6,7,8, 12, 37}

v=>51

The two Legendre DFs below together with the
one in [1, p. 85] and another one from the Szekeres
series are pairwise nonequivalent:

(51; 25, 25; 24) H ={1, 16}

X,=H{0,1,2,4,6,8, 19, 24, 25, 28, 35, 38, 41}

Y, =H{0,2,4,5,9, 14, 15, 18, 21, 22, 25, 31, 35}

X,=H{1, 2,9, 11, 17, 18, 19, 21, 24, 25, 28, 38,
41}

Y,=H{1,3,4,5,8,9, 15,17, 18, 19, 21, 22, 31}

v=>53

All ten Legendre DFs listed below are pairwise
nonequivalent. The first five are known: the first
belongs to the classical series, the second is from
[7], the third from [8], the fourth from the Szekeres
series, and the fifth from [1, p. 85]. We have con-
structed many Legendre DFs for v =53 but we re-
corded only five of them (the last five in the list be-
low):

(563; 26, 26; 25) H ={1, 10, 13, 15, 16, 24, 28, 36,
42, 44, 46, 47, 49}

X, =H{1, 4},Y, = H{2, 5}

X,=H{1, 2},Y,=H{l1, 5}

X, =H{1, 2}, Y; = H{2, 5}

X,=1{1, 4, 5, 6, 8, 14, 16, 17, 19, 21, 22, 23, 26,
28, 29, 33, 35, 38, 40, 41, 42, 43, 44, 46, 50, 51}

Y,=1{4,8,9,10, 12, 14, 15, 18, 19, 21, 22, 23, 24,
29, 30, 31, 32, 34, 35, 38, 39, 41, 43, 44, 45, 49}

X,=15, 17,12, 13, 15, 18, 19, 24, 26, 28, 30, 33,
35, 36, 37, 38, 39, 42, 43, 44, 46, 47, 48, 50, 51, 52}

Y,=1{4,7,8,10, 11, 14, 15, 20, 21, 23, 24, 25, 26,
29, 30, 32, 37, 40, 42, 44, 47, 48, 49, 50, 51, 52}

X6=10,1,2,3,5,9,10, 11, 12, 14, 17, 24, 25, 26,
28, 29, 34, 35, 40, 44, 45, 46, 47, 48, 50, 51}

Y;=10,2,4,6,7,8, 12, 14, 17, 19, 20, 21, 22, 24,
27, 28, 30, 31, 34, 35, 40, 44, 46, 48, 49, 52}

X,=10, 2, 3, 4, 7, 10, 11, 12, 13, 16, 17, 18, 21,
23, 32, 33, 37, 38, 39, 40, 41, 42, 45, 49, 50, 52}

Y,={0, 1, 3, 6, 7, 12, 13, 15, 20, 21, 23, 24, 25,
31, 33, 35, 37, 38, 40, 42, 44, 46, 47, 48, 50, 51}

Xg=1{0,1,2,6,7,9,12, 13, 14, 15, 18, 19, 20, 24,
34, 36, 37, 38, 39, 41, 43, 45, 46, 49, 51, 52}

Y;=1{0, 1, 5, 8, 9, 11, 12, 15, 16, 20, 21, 23, 24,
25, 31, 33, 35, 38, 40, 41, 43, 44, 47, 49, 51, 52}

X,=10,6,8,9, 10, 12, 14, 15, 23, 26, 28, 30, 31,
32, 33, 36, 37, 38, 40, 41, 42, 43, 48, 49, 50, 52}

Y,=1{0,1,2,3,6,8, 10, 11, 14, 15, 16, 18, 20, 23,
29, 31, 34, 35, 38, 39, 41, 42, 45, 47, 48, 52}

X0=10,1,6,7,8, 13, 14, 15, 17, 18, 19, 21, 22,
23, 24, 26, 28, 32, 37, 38, 40, 46, 48, 49, 50, 51}

Y,0=10, 2, 6, 7, 10, 13, 14, 15, 16, 18, 19, 21, 22,
25, 26, 30, 31, 32, 33, 34, 36, 40, 43, 46, 48, 50}

V=255

The Legendre DF below is not equivalent to the
one listed in [1, p. 85]:

(55; 27, 27; 26) H ={1, 34}

X=H{1,?2,6,1,8,9, 10, 11, 15, 16, 21, 24, 27,
37, 50}

Y =H{1, 2, 3, 8, 16, 17, 19, 20, 21, 25, 27, 29, 37,
40, 42}

v=>57
In this case only two nonequivalent Legendre
DFs are known. The first one was constructed in
2007 [6] and the second one constructed very re-
cently in [10, Section 2.4]. We have constructed
the six Legendre DFs below. The first five of them,
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together with the two known DFs, are pairwise
nonequivalent. The sixth is equivalent to the one
constructed in [10]:

(57; 28, 28; 27) H = {1, 7, 49}

X, =H{0, 2, 3, 4, 8, 16, 23, 24, 30, 31}

Y, =H{0, 2, 3, 4, 6, 8, 16, 23, 24, 29}

X, =H{0, 2, 8, 10, 12, 23, 24, 29, 30, 31}

Y, =H{0, 3, 4, 5, 6, 22, 23, 24, 29, 31}

X,=H{0, 1, 3,5, 6, 10, 16, 23, 29, 30}

Y, =H{0, 1, 2, 3, 15, 16, 22, 24, 29, 31}

X, = H{o, 4, 6, 11, 15, 29, 30, 31}
, 12, 22, 23, 24, 29, 30, 31}
, 6 10, 15, 16, 29, 31}
10, 15, 16, 23, 24, 29}

1,2,
Y, = H{0, 8, 1
X, = H{0, 2, 3,
Y, = H{0, 1, 3,

X, = H{0, 2, 3, 4, 5, 11, 15, 16, 22, 30}
Ys = H{0, 1, 2, 4, 15, 16, 22, 23, 24, 30}

4
8,

v=2959

First examples of Legendre DF's of length 59 and
type 2:

(59; 29, 29; 28)

Xx,={0,1,2,3,4,5,6, 10, 12, 13, 15, 16, 19, 20,
21, 25, 27, 30, 31, 33, 37, 38, 39, 41, 43, 44, 45, 52,
56}

Y, ={0, 1, 3,4, 5,6, 7,10, 12, 13, 14, 15, 17, 18,
20, 23, 26, 27, 28, 30, 34, 35, 36, 39, 43, 45, 48, 50,
55}

X,={0,1,2,3,4,5,7,8,9,10, 12, 15, 16, 17, 22,
24, 25, 26, 28, 29, 33, 34, 38, 39, 42, 44, 48, 50, 53}

Y,={0,2,3,4,6, 7,9, 10, 12, 14, 15, 18, 19, 21,
23, 25, 29, 30, 31, 32, 33, 36, 38, 39, 43, 46, 49, 50,
51}

X;=10,1,2,38,4,5,7,8,9, 10, 14, 16, 19, 20, 21,
24, 27, 28, 30, 32, 36, 37, 38, 41, 45, 47, 48, 51, 54}

Y;=1{0, 2, 3,4,5,6,8,9, 10, 12, 14, 16, 17, 19,
24, 25, 26, 28, 29, 31, 32, 34, 39, 42, 43, 44, 50, 54,
55}

X,={0,1,2,3,4,6,9, 11, 12, 13, 15, 16, 18, 19,
20, 23, 24, 29, 30, 32, 36, 37, 38, 40, 41, 46, 47, 49,
56}

Y,={0,1,2,4,6,709, 10, 11, 13, 14, 15, 17, 21,
22, 25, 26, 28, 30, 31, 33, 35, 36, 41, 43, 45, 46, 47,
53}

X.=1{0, 1, 2, 8, 4, 6, 10, 12, 13, 14, 16, 18, 19,
21, 23, 26, 27, 28, 29, 31, 32, 36, 37, 40, 42, 43, 44,
49, 51}

Y;=1{0,1, 2,4,5,7,8, 10, 11, 13, 14, 17, 18, 20,
21, 22, 25, 26, 31, 32, 36, 37, 38, 40, 42, 44, 45, 47,
52}

={0,1,2,3,5
24, 27 28, 29, 31 3

Ys=10, 1, 2, 3, 6,
21, 24, 25, 27, 31, 3
51}

,6,7,8,9,11, 13, 15, 17, 18, 20,
38, 40, 41, 44, 45, 46, 54, 55}
7,9, 10, 12, 13, 15, 17, 19, 20,
33, 36, 40, 41, 43, 44, 46, 49,
v=61
In this case apart from the classical Legendre
DF there is another one provided by a lemma of

J. Seberry Wallis [7], see also [11, Lemma 2]. The
Legendre DF below is not equivalent to any of
them:

(61; 30, 30; 29) H ={1, 9, 20, 34, 58}

X=H{2,3,4,5,12, 26}

Y =H{3,4,5,10,12, 13}

v =063

The six new Legendre DFs below and the one
from the Szekeres series are all pairwise nonequiv-
alent:

(63, 31, 31, 30) H; =11, 4, 16}, H,={1, 25, 58},
H;=11,8,11, 23, 25, 58} X; = H,{2, 3, 6, 10, 11, 22,
23, 30, 31, 42, 47}

Y, =H{1,2,7,9,10, 11, 14, 15, 21, 31, 47}

X,=H{1, 3,9, 13, 14, 15, 21, 22, 23, 30, 47}

Y,=H,{3,5,7,9, 10, 11, 15, 21, 22, 23, 30}
X,=H1,2,3,6,9, 11, 14, 21, 22, 30, 31}
Y;=H{1,2,3,6,7,9, 11, 15, 22, 42, 47}
X,=H,{2,3,7,9, 10, 14, 15, 21, 26, 30, 43}
Y,=H,{3,6, 7,10, 11, 14, 21, 27, 30, 43, 47}
X, =H,1,3,6,7,15, 17, 20, 27, 29, 40, 42}
Y, =H,{3,5,7,8, 10, 15, 17, 21, 27, 30, 40}
X =Hs{0, 2,9, 10, 15, 19, 27}
Y, =H;{0,2,5,7,9, 15, 27}

v=65

The Legendre DF below is not equivalent to the
one in the Szekeres series:

(65; 32, 32; 31) H ={1, 16, 61}

X =H{1, 5, 6,9, 18, 20, 22, 23, 24, 26, 35, 52}

Y =H{0, 1,3, 7,11, 13, 19, 22, 23, 24, 36, 50}

V=067
The following Legendre DF gives the first exam-
ple of Legendre pairs of length 67 and type 2:
(67; 33, 33; 32) H ={1, 29, 37}
X=H{1, 3, 5, 6, 10, 16, 17, 30, 34, 41, 53}
Y=H{2,4,6,9, 12, 15, 16, 18, 25, 32, 41}

v="T1
We give the first example of a Legendre DF of
length 71 and of type 2:
(71; 35, 35; 34) H =11, 5, 25, 54, 57}
X =H{1, 2,3, 6,11, 14, 27}
Y=H{1,2,3,9, 14, 18, 42}

v="73
The Legendre DF below is not equivalent to the
one in the classical series:
(73; 36, 36; 35) H ={1, 8, 64}
X=H{2,5,6,7,9,11,12, 17, 18, 26, 35, 42}
Y=H{,2,3,7,9, 13, 18, 21, 26, 33, 35, 42}

v=111
The Legendre DF below is not equivalent to the
one belonging to the Szekeres series:
(111; 55, 55; 54) H = {1, 10, 100}
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X=H{0,1,2,3,4,7,8,9, 13, 16, 21, 22, 27, 41,
42, 44, 54, 62, 63}

Y=H{0,1,3,4,5,6,7,8, 11, 16, 17, 21, 26, 27,
52, 53, 55, 63, 64}

v=121

Note that 2v + 1 =243 =3% is a prime power
=3 (mod 4). We list below two Legendre DFs (X, Y)),
i=1, 2. The first one is equivalent to the DF in the
Szekeres series. The block X is skew and Y; is sym-
metric. We have constructed the second Legendre
DF (X,, Y,) with X, = X and verified that the two
DFs are nonequivalent. Although Y, is not symmet-
ric, the second pair still qualifies as a Szekeres dif-
ference set according to [3, Definition 5.6]:

(121; 60, 60; 59) H ={1, 3, 9, 27, 81}

X, = H{4, 10, 11, 20, 25, 26, 34, 35, 38, 40, 67, 76}

Y, =H{1,7,8, 10, 16, 20, 26, 31, 35, 38, 61, 94}

X,=X;

Y,=H{1,4,5,8, 11, 13, 17, 20, 22, 26, 34, 76}

Equivalence of Legendre pairs

To define the equivalence, we need first to de-
fine the elementary transformations on the set of
Legendre pairs on a given finite abelian group G
of odd order v. (We assume that G is written ad-
ditively.) If f is a function G —» {+1, -1} and s € G
then we say that the function G — {+1, -1} sending
x — f(s + x) is the translate of f by s.

The elementary transformations of a Legendre
pair (f, g) are the following:

(i) interchange f and g;

(ii) replace f by —f;

(iii) replace f by its translate by s € G;

(iv) replace f by f o 1, where tis the automorphism
of G sending each x € G to its inverse —x;

(v) replace (f; g) by (f © o, g © ), where o is an
automorphism of G.

Definition 2. We say that two Legendre pairs on
G are equivalent if one can be transformed to the
other by performing a finite sequence of elementary
transformations.

The effect on (G, G,) of the above elementary
transformations is as follows:

(i)’ interchange G; and Gy

(ii) replace G; by G\G;

(iii)’ replace Gy by the translate Gi—s;

(iv)’ replace Gy by —Gp;

(v) replace (G, Gp) by (a7U(G)), a1 (Gy)).

We define the equivalence of Legendre DFs on G
by using the (i)—(v)’ as elementary transformations
of pairs (G Gy. Then two Legendre pairs are equiv-
alent if and only if their Legendre DF's are equiva-
lent. We remark that because of (ii)’, two equivalent
Legendre DFs may have different parameter sets.
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6Yuusepcuter BaTepsioo, Kadeapa TeopeTuueckoi MaTeMaTHKY U MHCTUTYT KBAaHTOBLIX BEIUMCIeHui, BaTepaoo, OuTa-
puo, N2L 3G1, Kanazna

Beemenmne: corsiacHo rumorese, MUKJIUNYECKNE Maphl JIesKaH pa HEUeTHOH AJUHBI > 1 Bcerga cyimecTByrOT. Taxkas mapa COCTOUT U3
nByX GYHKIUH a, b: G — Z, npuHuManInux sHadenus +1 win —1, ¢ mnepruoguiyecKuMy aBTOKOPPEIAINOHHBIMU (DYHKIIUAMY, IPUHUMA0-
UMY B CyMMe IIOCTOSSHHOe 3HaueHne —2 (MCKJII0Uasa Ha4aJIbHYI0 TOUKY). 3ech G — KOHeUHAdA [UKJINYeCcKasa IPynna, Z — KOJbI[O IeJTbIX
Yucesi. OTU YCIAOBUSA ABIAIOTCA QYHIAMEHTAJILHBIMU U TECHO CBSA3AHBI CO CTPYKTYPOU OMIIUKJINUYECKUX MaTpull AgaMmapa ¢ JBOMHON Kail-
MO, HEJOCTATOUHO IIOJIHO ONMCAHHON B JIUTEPAType, UTO [JeJIaeT ee UCCaeJoBaHue 0CO0eHHO aKTyaabHbIM. Ilesb: JOMOJHUTE onucanue
OUIMKJINYECKON KOHCTPYKIIMHU C JBOMHOI KaiMO#l TpeMs HOBBIMU pelleHuAME nap Jlesxkanapa. Pe3yasraTel: IJid XapaKTePUCTUKU IIap
Jlesxanapa ucmorb3oBaubl nogMHOKecTBA X = {x € G: a(x)=-1} u Y ={x € G: b(x) =—1} us G. Ectb 20 HEUETHBIX I[EJIBIX UKCEJ U, MEHb-
mux 200, 11 KOTOPBIX cylecTBOBaHue map Jleskauapa AJTUHEI U He foKa3aHo. HaumeHnsbitee us Hux — v = 77. ITocTpoens! mapsl JlexkaH-
npa gausoit 91, 93 u 123, B pe3yabTaTe KOJINUECTBO HEPEIIIEHHBIX CJIyuaeB COKpaTuioch 1o 17. IIpuBoaATCAa DIpuMephl MUKJIUNIECKUX TIap
Jleskauapa nnd quuH v < 123. IIpakTuyeckas 3HAYMMOCTH: MaTPUIBI AlaMapa NIMPOKO UCIOJIb3YIOTCA B 3aJjaU4ax IIOMEX0YCTONUNBOTO
KOIUPOBAHUSA, C2KATUS U MAaCKUPOBaHUs BugeonHdopmanuu. IIporpaMmMsel morcka MaTpuil AzamMmapa 1 6n0110TeKa IOCTPOEHHBIX MaTPUIL
HCITOJIb3YIOTCS B MaTeMaTUUeCKo ceT mathscinet.ru BMmecre ¢ MCIIOMHAEMBIMY OHJIAWH aJITOPUTMAMUA.

KaroueBsie croBa — MaTpuiibl Azamapa, IepruoJguiecKre aBTOKOPPEeIAMOHHbIe (QYHKIMY, mapsl JIeskaHApa, IUKJINYEeCKYe MaTPu-
IbI, OUIUKJINYECKUE KOHCTPYKITUU.
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