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Introduction: The majority of the known decomposition methods for solving boundary value problems (Adomian decomposi-
tion method, natural transform decomposition method, modified Adomian decomposition method, combined Laplace transform —
Adomian decomposition method, and Domain decomposition method) use so-called Adomian polynomials or iterations to get
approximate solutions. To our knowledge, a direct method for obtaining an exact analytical solution is not yet proposed. Purpose:
Developing, in an arbitrary Banach space, a new universal decomposition method for the class of ordinary or partial integro-dif-
ferential equations with non-local and initial boundary conditions in terms of the abstract operator equation B;x = f. Results:
A class of integro-differential equations in a Banach space with non-local and initial boundary conditions in terms of an abstract
operator equation B;x = Ax — SyF(Ax) — Gy@(Ax) = f, x = D(B;)has been studied, where A, A are linear abstract operators, S, G
are vectors and @, F the functional vectors. Usually, A, A are linear ordinary or partial differential operators, and F(Ax), ®(Ax) are
Fredholm integrals. The existence and uniqueness are proved under the assumption that the operator B; has a decomposition of
the form B, = B,B with B and B, being different abstract linear operators of special forms. The proposed decomposition method
is universal anc#7 essentially different from other decomposition methods in the relevant literature. This method can be applied to
either ordinary integro-differential or partial integro-differential equations, providing a unique exact solution in closed analytical
form in a Banach space. The stages of the method are illustrated by numerical examples corresponding to specific problems.
Computer algebra system Mathematica is used to demonstrate the solution outcomes and to assess the effectiveness of the
analysis. Practical relevance: The main advantage of the proposed solution method is that it can be integrated in the interface of
any CAS software in an easy, programing-free way.
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Preliminaries and auxiliary results

Integro-differential equations are used in many
problems from science and engineering. The inte-
gro-differential operators describing these prob-
lems are complicated and the exact solution of the
corresponding boundary value problems is a diffi-
cult task. In some cases, the boundary value prob-
lem (BVP) can be transformed into a simpler one in-
volving simpler operators and thus the solution can
be found easier.

The decomposition (factorization) methods were
used in many applications in gas dynamics, trans-
port theory, electromagnetism, quantum physics,
mechanics, hydrodynamics and cosmology [1-14].
In pure mathematics, decomposition (factoriza-
tion) method continues to be a very successful tool
for solving wvariational inequalities, linear and
nonlinear ordinary and partial differential and
Volterra — Fredholm integro-differential equa-
tions as well as systems of partial differential equa-
tions. This method is very important for solving
fuzzy Volterra — Fredholm integral equations,
integro-differential equations of fractional order
and delay differential equations [15—32]. However,
almost all the approaches of the literature listed
above do not give exact solutions in their closed an-
alytical forms and the corresponding problems are

not formulated in terms of abstract operator equa-
tions. Thus, the decomposition methods proposed
and employed in these problems are not universal.
Exact solutions in their analytical form for ab-
stract operator equations in Hilbert and Banach
spaces were obtained by quadratic and biquad-
ratic decompositions of the integro-differential
equations in [33—37]. The universal decomposition
method for the abstract linear operator equation

B,x =A2x — SF(Ax) — GF(A%x) = f, x € D(B,)

was given in [38] on a Hilbert space. We note that
Banach spaces play a central role in functional anal-
ysis and it is important to study the exact solutions
of correct BVPs in the context of Banach spaces.
This work is a natural continuation of [38] to a Ba-
nach space and introduces the universal decompo-
sition method for the similar linear abstract oper-
ator equation

B x=Ax— SyF(Ax) — Gy®(Ax)={, x € D(B,), (1)

where A, A are linear abstract operators; S,, G,
are vectors and ®, F — functional vectors. The de-
composition method proposed here is different than
the well-known decomposition methods (namely the
Adomian decomposition method, the natural trans-
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form decomposition method, modified Adomian de-
composition method, the combined Laplace trans-
form — Adomian decomposition method and do-
main decomposition method). In the relevant liter-
ature, the so-called Adomian polynomials or itera-
tions were used to obtain numerical solutions (see
[1-32]). The class of integro-differential equations
with nonlocal boundary conditions described by an
abstract operator equation is studied in [39], where
all calculations are reproducible in any program of
symbolic calculations and the computer codes in
Mathematica are given.

In the sections that follow we use the following
notations, definitions and statements.

We denote by X a complex Banach space and by
X" the adjoint space of X, i. e. the set of all com-
plex-valued linear and bounded functionals f on X.
We denote by f(x) the value of f on x.

We write D(A) and R(A) for the domain and
the range of the operator A, respectively. An op-
erator A: X — X is called correct if R(A) =X and
the inverse A1 exists and is continuous on X. If
for an operator B, there are two operators B, B
such that B; can be written as a product B, = BB,
then we say that B,B is a decomposition (factori-
zation) of B; and write B; = B,B. An operator By:
X — X is called quadratic (biquadratic) if there
exists an operator B: X — X such that B; = B2,
(B; = B%) and the corresponding decomposition
B, = B?, (B; = B%) is called quadratic (biquadrat-
ic). Recall that the problem Ax = f is called cor-
rect, if the operator A is correct. If x, g; € X and
®, e X', i=1, .., m then we denote by g =(gy, ...,
g,), ®=col(@®;, .., ®, ) and P(x) = col(P,(x), ...,
®, (x)) and we write g € X™, ® € X™. We will de-
note by ®(g) the m x m matrix whose i, j-th entry
®,(g)) is the value of functional @; on element g;.
Note that ®(gC) = ®(g)C, where C is a m x k con-
stant matrix. We will also denote by 0,, and I, the
zero and identity m x m matrices.

Next, we state some useful outcomes. Speci-
fically, Theorem 1 from [40] and Corollary 3.11
from [33].

Theorem 1. Let X, Y and Z be Banach spaces and
Ay X > Y be a correct operator with D(4,) c Z c X.

Further let the vector Gg= g§0), vees ,(,? ) ley™
and the column vector ®@ = col(¢;, ..., ¢,,), where ¢;,

v Oy € Z* and their restrictions on D(A,) are line-
arly independent. Then:
(1) The operator B,: X — X defined by
Byx=Ayx — Gy®(x) = f, D(By) = D(A,), f € X, (2)

is correct if and only if

detLg = det[lm ~®(45"Go )} 0. 3)

(ii) If B, is correct, then for any f € Y, the unique
solution of (2) is given by

x=By'f=Ag'f+ Ag'GoLo'®(40'f). @)

Corollary 1. Let A be a correct operator on a
Banach space X and the components of the vectors
G=(gy, - &), F=col(Fy, ..., F,) are arbitrary ele-
ments of X and X*, respectively. Then the operator
B: X — X defined by

Bx=Ax—- GF(Ax)=f, D(B)=D(A),f€ X (5)
is correct if and only if
detL =det[I,, — F(G)] # 0. (6)

If Bis correct, then the unique solution of (5) for
every f € X is given by

X = Bl1f = AIf + A IGLIF()). (7

Decomposition of abstract linear operators
on a Banach space

In this section we investigate problem (1) where B,
is not quadratic but it can be written as a product of
two other correct operators B, Bi. e. B; = ByB. In this
case the solvability condition and the solution formu-
lation are essentially simpler than in the general case.

We will prove the following theorem using the
technique that was first applied for the case of
Hilbert space in Theorem 2.5 [38], where a given
operator B of the type Byx =Ayx — Gy®@Ayx) =1,
x € D(B,) and an operator A is densely defined. We
use a different operator B, without the assumption
of density of D(A) on X.

Theorem 2. Let X and Z be Banach spaces, ZcX,

the vectors G=(g;, ..., &), Goz(ggo),..., S,?)),
Soz(sgo),...,s,(,?)jeXm, the components of the

vectors F = col(Fy, ..., F,)) and ® = col(®y, ..., D,) be-
long to X* and Z*, respectively, and the operators
B, B, B{: X — X defined by

Byx =Ayx — Gy@(x) = f, D(By) = D(Ay) = Z; (8)

Bx = Ax — GF(Ax) = f, D(B) = D(A); )
Byx = AyAx — SyF(Ax) — G ®(Ax) = f,
D(B,) = D(AyA), (10)

where A, and A are linear correct operators on Xj;
G € D(Ay))™ and the restrictions of ®,, ..., @, on
D(A,) are linearly independent. Then the following
statements are satisfied:
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@) If
Sy € R(By)™ and S, = B,G =
=A,G - G,D(G), (11)
then the operator B, can be decomposed in B, = B(B.
(ii) If in addition the components of the vector
F = col(F, ..., F,) are linearly independent elements
of X and since the operator B; can be decomposed
in B, = BB, then (11) is fulfilled.
(iii) If the operator B; can be decomposed in

B, = B;B then B, is correct if and only if the opera-
tors B, and B are correct which means that

detLg = det[Im —(D(A(}lGO):' +0 and

detL =det[I,, — F(G)] = 0. 12)
(iv) If the operator B, has the decomposition in

B, = BB and is correct, then the unique solution of
(10) is

x=Blf=A" 451+ A’lGL’lF(A(]l f) +
+[A‘1A51G0 + 4761 F( 456Gy )}LI)I(D(AO‘If). 13)

Proof: (i) Taking into account that G € D(4,)™
and (8)—(10) we get

D(B,B) = {x € D(B): Bx € D(B)} =
={x € D(A): Ax - GF(Ax) € D(4,)} =
={x € D(A): Ax € D(A)} = D(A,A) = D(B,).
So D(B,)=D(B,B). Let y=Bx. Then for each

x € D(AyA) and taking into account (8) and (9) we
have

ByBx =Byy=Agy — Gy@(y) =
=Ay[Ax — GF(Ax)] — G, ®(Ax — GF(Ax)) =
=AjAx — A \GF(Ax) — G;®@(Ax) + Gy®(G)F(Ax) =
=AjAx — Gy®(Ax) — [A,G — Gy@(G)]F(Ax) =
=AjAx — B,GF(Ax) — G,®(Ax), (14)
where the relation B,G = A4,G — G,®(G) results nat-
urally from (8) by substituting x = G.

By comparing (14) with (10), it is easy to verify
that B;x = B,Bx for each x € D(A,4) if a vector S
satisfies (11).

(ii) Let the operator B; can be decomposed in

B, = B,B. Then by comparing (14) with (10) we ob-
tain

(ByG — Sy)F(Ax) = 0. (15)

Because of the correctness of operators A, Ajand
the linear independence of Fy, ..., F,, there exists a
system x, ..., x,, € D(A3A) such that F(4yxy) =1,
where x;=(x;, .., x,,). By substituting x =x, in-
to (15) we get S,=B,G. Hence S, e R(B,)" and
Sy =ByG=4,G — G,D(G).

(iii) Let the operator B, be defined by (10) where
S, =B,G. Then equation (10) can be equivalently
represented as a matrix equation:

F( 45" Ag Ax|
Byjx=AgAx—(ByG, Gy) =f, (16)
(4" g Ax)
or
B,=Ax— GF (Ax)=f, D(B))=D(A), (17)
where
A=AAy G =(ByG, Gy);
F=col(f“, (i)), f“(Ax)— I:‘(Ax) )
O (Ax)
then

Cf)( 711))
Notice that the operator A =AA, is correct, be-

cause of A and A, are correct operators, and the

functional vector F is bounded, since the vectors
F,® are bounded as a superposition of a bounded
functlonal F, ® respectively and a bounded operator
AO Then we apply Corollary 1. By this corollary
the operator Bj is correct if and only if

detL; = det[lgm —F(G)J =

~ I, 0,) [F(ByG) F(Gy)
_detl[Om Im]{é(BZG) Cf)(GZ)]

L, ~F(G-45'Go®(G)| —F(A{;IGO)
=det =
~0(G-45'Go®(G)) 1, -0(45 1G0)
I, -F(G ( IGO)(D(G —F(AOIGO)

=det #0.

~0(G)+ (D(A{]lGO )cp(G) I, - d)(A(}lGO)

According to properties of determinants of ma-
trices (Remark 1, [34]), taking L, in the last formu-
lation from above and adding ®(G) times the second
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column of L, to its first column, the determinant is
unchanged. We then get

I, -F(G) —F(45'Go)
detL; =det . =
0, I, —c1>(A5 GO)
= det[T,, —F(G)]det[lm ~®( 45" Gy )} _
=detLydetL=0.

So we proved that the operator B, is correct if
and only if (12) is fulfilled.

(iv) Let x € D(AyA) and ByBx = f. Then by Theorem
1 (ii) since B,;, B are correct operators, we obtain

Bx=By'f=Ay'f+ A51G0L51®(A51f),
x=B"1 (Aglf N AglGOL;)lq)(AO‘lf)).

In the last equation we denote by g=Ag'f+
+A51G0L51c1>(A51 f). Following strictly Corollary 1
(i), we get

x=Blg=Ag+ AT'GLF(g)=
_al (A(}lf + 45" Golg'®( 45 lf)) ;
; A‘lGL‘lF(Ao‘l f + 45" GoLg @ 45" f)) -
= A7l A + A7 A5 GoLg @ 4g"F )+
+AteL! [F(Aglf) + F(A51G0 )L;}cp(Aa lf)}

which implies (13). Thus, the theorem has been
proved.
The next theorem is useful for applications.
Theorem 3. Let X and Z be Banach spac-

es, ZcX the vectors Goz(ggo),..., {0)}
(0) (0)

So 2(31 yeees 8
vectors F = col(Fy, ..., F,) and ®=col(®;, ..., ®,)
belong to X* and Z*, respectively, the operators
A, A, B;: X — X and the operator B, defined by

€ X™, the components of the

B,x =Ax — SyF(Ax) — Gy®(Ax) =f, x € D(B,), (18)

where A is a correct m-order differential opera-
tor and A is a n-order differential operator, m < n.
Then the next statements are fulfilled:

(i) If there exist a bijective n — m order differen-
tial operator A,: X — X and the vector G such that

A=Ay, D(B) = D(AA), D(A) = Z;  (19)
detLg = det[lm -®( 456Gy )} £0;  (20)

G=A4g'So + 49" GoLg'@( 4980 ), (2D)

and the restrictions of @, ..., @, are linearly inde-
pendent on D(A,), then the operator B; is decom-
posed in B; = BB, where B, B are given by (8), (9),
respectively, the operator B, is constructed by the
triple of elements A, ®, G, from (18)—(20), and the
operator B by the operator A and vector F from (18)
and the vector G from (21).

(ii) If in addition to (i) 4, is correct, then B, is
correct if and only if

detL =det[I,, ~F(G)]=
= det[lm ~F(4g"So )~ F(45"Go )

< Lg'®( 49'S, )} 0, 22)

and the problem (18), (19) has the unique solution
given by (13).

Proof: (i) If a bijective n — m order differential
operator A, and a vector G exist satisfying (19)—
(21), then from (18) we get

Byx = AyAx — S F(Ax) — G,®(Ax) = f,

x € D(AyA). (23)

From (23) we take the operator A and vector

F, whereas from (21) we take a vector G and con-

struct the operator B according to the formula (9).

To determine the operator B, by the formula (8),

we take from (23) the operator A, and the vectors

®, G,. We proved in the previous theorem (i) that

D(B,B) = D(A,A) = D(B,). Substituting (21) into (8)
we obtain

ByG =B, [Ao—lso +451GoL'0( 4578y )} .
A, [Aglso + A5 1GoL'0( 43S, )] -

- GOcD(AO‘lsO + 451 GoLg'®( 49'S, )) -
=Sg + GOL;,lq)(AalsO ) —Gocp(Aalso ) -
- Go®( 45" Go | Lg'®( 45", | =
=Sy + Gy [Im ~®(45"6Gy )} v
* Lo'®( 45"So ) - Go®( 45"So ) = So.

Sy =BG and from (23) for S, = B,G and every
x € D(B,) we get

Byx = AjAx — ByGF(Ax) — G ®(Ax) =
— ByAx — B,GF(Ax) = Bj[Ax — GF(Ax)] = B,Bx.

Thus we obtained the decomposition B; = B,B.
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(iii) If the statement (i) holds, then B; can
be decomposed in B; = B;B. By Theorem 3 (iii),
B, is correct if and only if (12) holds or, tak-
ing into account (20) and (21), if and only if
detL = det[I, — F(G)] # 0, or if and only if (22) is
fulfilled. The last inequality immediately follows
by substitution (21) into detL =det[I, — F(G)].
Since B, is correct and decomposed in B; = BB, by
Theorem 2 (iv), we obtain the unique solution (13).
So, the theorem is proved.

Remark. Usually as a Banach space X we have
Cla, b] or L _(a, b) and as a Banach space Z we have
CHa, blor W) =(a,b), k=1, ..., n.

Numerical examples

Let us examine several examples where our find-
ings are applied and validated (the Mathematica
notebook solving each example is available upon
request).

Example 1. The operator B;: C[0, 1] - C[0, 1]
corresponding to the problem

x”(t)—tzj;t3x’(t)dt—tj;tx’(t)dt =2t +1,
x(0) + x(1) = 0, x'(0) — 2x'(1) = 0 (24)

is correct. The unique solution of problem (24) is
given by the formula

31990t* ~158464t3 — 4518602 +

2502304t - 961985
x(t)= * . (25)
903720

Proof: If we compare equation (24) with equa-
tions (18), (19), it is natural to denote ® = ®; = @,

F-F,=F, Go=2" =Gy, So=s"=5p, 1,-1,
and to take X = C[O0, 1],

Byx(t)= x”(t)—tzj;t x'(t)dt-

—tj;tx’(t)dt:2t+1; (26)

D(B,) = {x(t) € C2[0, 1] : x(0) + x(1) =0,
x'(0) — 2x'(1) = 0% @7
Ax =AjAx = x"(t); (28)

Ax(t) = x'(t), D(A) =
{x(#) € C'[0, 1] : x(0) = —x(D)}; (29)

®(Ax)=[ x'(1)dt, F(Ax)=[ x'(t)dt, (30)

Gy=t, Sy=1t2. Let us denote Ax(t) =x'(t) = y(t) = y.
Then from (28) and (27) we have y € D(4;), AyAx =

=@'@®) =y @) =A@, yO) -2y1)=0. So we
proved that

Agy =y'(t), D(Ag) = {y(#) « C'[0, 1]: y(0) — 2y(1) = 0}.

Now we check the condition D(B;) = D(4,4). By
definition

D(A,4) = {x(t) € D(A): Ax(t) € D(Ap)} =
— {x(t) e CYO0, 1]: x(0) = —x'(),
x'(t) € C[0, 1], x'(0) — 2x'(1) = 0} =
={x(t) € CZ[0, 1]: x(0) + x(1) =0,
x'(0) — 2x'(1) = 0} = D(B,).

So D(By) = D(A4A). It is easy to verify that the
operators A, A are correct on C[0, 1] and for every
f(®) € C[0, 1] the following equations hold true

Aalf(t):j;f(s)ds—ZI;f(s)ds; (31)

Aalf(t):I;f(s)ds—%jgf(s)ds. (32)
From (30) we have

(7)=[,s7(s)ds, F(F)=[ s*/(s)ds.  (33)

It is evident that ®, F € C'[0, 1]. Consequently,
we can take Z =CJ[0, 1] = X.
Using (33) and (21) we find

13241 (13 1
F(SO)—IOS s ds—g, F(GO)—,[OS sds—g,
2
-1 ot 1 _t
Ag Go—josds—Zjosds—E—l,
2
-1 _ 1 s __§
(49 GO)—IOS[Z 1}13_ -

3
-1 _ t 9 B 19 _t _E
Ag So—fos ds 2jos ds=—-2,

_ 1 (3 2 4
(D(AOISO):.[OS[%_gjds:_E’
LO:Im—®(A51G0):18—1, L()l:%,

-1 14 -1 1
G=A5'Sy + Ay Gy Ly CD(AO so):
3 2
20 ﬁ[—ijzi(55t3—16t2—78).
3 3 |2 J11l 15) 165

Taking into account (33) we obtain
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1
F(G):% o5 (555" - 1657 —78)ds:—%.
7531
6930

and by Theorem 3 (ii), problem (26),

Since  detL=det[1-F(G)] #0  then

16930

75317
(27) or (24) is correct. By (32) we calculate

-1 330t" ~128¢° 18721 +835
3960 ’

3
ot 5
ATAGIGy =——t+—
Ao Go="g=t+ 5

and for f(¢) = 2t + 1 by (31)—(33) we obtain

Agtf=-4+t+1 A_1A51f—£—4t+ﬁ+ﬁ
’ 12 2 3’

—1,)__19 1) __17

F(AO f)_ 30’ q)(AO f)_ 12°

Substituting these values into (13) we obtain the
unique solution of (26), (27) or (24), which is given
by (25).

Example 2. The operator B;: C[0, ] — C[O0, ]
corresponding to the problem

x"(t)-sint[ t%x"(¢)dt -
—costjg/z(t+1)x"(t)dt:sin2t, (34)

x(0) + x(n) =0, x'(0) + 3x'(m) =0, x"(0) + x"(m) =0,

is correct. The unique solution of the problem (34) is
given by the formula

x(t)=—=[8(-2+ 72— 6nt + 412 + 2c082t) -
48

n(2n2 —3)(8cost +m(n—2¢ —4sint))

- -2 ’
2
3(2+n)2 4(Tc —4)cost—(27'c—1)><
x(n—2t—4sint)
+ (35)

2(7:3 —2)

Proof: If we compare (34) with equations (18),
(19), it is natural to denote ® =0, =0, F=F, =F,

Gy =g{0) =Gy, Sop =s{0) =8y, I,,=1, and to take
X =CJO0, x],

Byx(t)=x"(t)-sint[ t*x"(t)dt -

~cost [ (¢ +1)x"(t)dt = sin2; (36)

D(B,) = {x(t) € C3[0, ni]: x(0) + x(r) =0,
x'(0) + 3x'() = 0, x"(0) + x"(m)=0};  (37)

Ax=AjAx = x"(t); (38)
Ax(t) = x"(t);
D(A) = {x(t) € C?[0, n]: x(0) = —x(m),
x'(0) + 3x'(w) = 0}; 39)

o(Ax)= [Tt +1)2" (1)1,
F(Ax)=[ #x'(t)dt, (40)

Sy =sint, G, = cost, f =sin 2t. Denote Ax(t) = x"(t) =
=y(t) =y. Then from (37) and (38) we have y € D(4,),
ApAx =(x"@)) =y'(?) =Agy(@), y(0) + y(m) =0. So we
proved that

Agy =y'(®), D(Ay) =
={y(#) e CYO, n]: y(0) + y(r) =0} 41
Now we check the condition D(B,) = D(A,A). By
definition
D(AyA) = {x(t) € D(A): Ax(t) € D(Ay)} =
={x(t) € C2[0, n]: x(0) + x(x) = 0, x'(0) + 3x'(n) =0,
x"(@t) € CYO0, 7], x"(0) + x"(n) =0} =
={x(t) € C3[0, n]: x(0) + x(x) =0,
x'(0) + 3x'(n) = 0, x"(0) + x"(n) = 0} = D(B,).
So D(B;) = D(AA,). It is easy to verify that the

operators A, A, are correct on C[0, n] and for every
f(@®) € C[0, «t] from (39) and (41) follows that

Ag"1(t)=[ (t-5)F(s)ds+

+i‘.‘g(23—3t—n/2)f(s)ds; 42)
_ 1¢n
Aolf(t)=f;f(s)ds—§j0 f(s)ds. 43)
From (40) we have
@(f)=j§/2(s+1)f(s)ds, F(f)=jgszf(s)ds. (44)

It is evident that F, ® € C*[0, n]. Consequently
we can take Z =C[0, n]=X. From (43), (44), (20),
(21) we get

1, _ [t 1n .
Ay Go—jocossds—EIO cossds=sint,

Ne2,2021 N\
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CD(AO_IGO): I(;r/z(s+ 1)sinsds=2,
A51.SO =—cost,
T

d)(A51SO): L’:/2(s+1)(—coss)ds =5

det L =det[1—d)(A51G0 )] =1-2=-120, Ly' =1,

G=45"8,+ A51G0L51®(A5130) :gsint —cost,

3
F(G):J‘nsz[ﬁsins—cossjds:n—,
0 2 2
then
2-72 4, 2
detL=det[1-F(G)]= I
-

Since detL # 0, by Theorem 3 (ii), problem (36)—
(39) or (34) is correct. Further by using (42) and tak-
ing into account that Ay GO =sint, we find

i 2t -
A71G=cost—nsmt—n( n),
2 8

A7taglG, = J.;(t —s)sinsds+

2t—7

+l.[n 23—37,‘—E sinsds=-sint—
470 2

For f(t) = sin 2¢ by (42), (43) we calculate

1-cos2t

A5'f ===, o 4g'f)=(r+2)" /16,

ATAGYf :%(41,‘2 —6nt+n -2+ 2cos2t).

Substituting these values into (13) we obtain the
unique solution of (34), which is given by (35).

Example 3. Let Q={(t, s) € R: 0<t, s<1. The
operator B;: C(Q) - C(Q) corresponding to the
problem

xtsts t3J-J.sxttsdtds—

_tszj‘o.[otx; t,s)dtds=5t%+s,
x}, xfs €C(), x(0,3) 2[ jo x(t,s)dtds,

0)=t‘[;'|‘osx£(t, s)dtds, 45)

is correct. The unique solution of problem (45) is
given by the formula

85148684¢% +31416680s%¢% +

+x(ts)- 2877624005t N
’ 172657440
32(123613741+86328720t+15746840t4)
+ . (46)
172657440

Proof: If we compare (45) with (18), (19), it is nat-
ural to denote (0) 0)

®=0;=0,F=F=F, Gog=g; ' =Gp, So=58, ' =
=Sy, I, =1, and to take X = C(Q),

Byx(t)=xfg(t, s) J. I s°x;(t, s)dtds—

—ts2j0j0tx; t,s)dtds=5t%+s; A7)
D( )—{x(t s)eC(Q), xt,
xfy C(Q 2] j (t,5)dtds;
x;(t,0)= tjo jO sx; (, s)deds); 48)
AgAx =x[(t,5); (49)
Ax(t,s)=x;(t,5); (50)

D(A)=<x<t, s)eC(9): 5 (1. 5)C(2),
2] J' x(t,s)deds,
jjsxttsdtds,

®(Ax)= jojo tay (t, s)dtds, (51)

f=5t2+s. We denote

Sy=13s, Gy=ts?,
s):y. Then from (48), (49)

Ax(t, s) =x; (t, s) = y(t,

we have
y € D(Ay),
AgAx =(x,§ (t s))s =ys(t,8)=Agy(t, 5),

y(t,0) =tj;j;sy(t, s)dtds.
So we proved that

Aoy =ys(t:s),
D(A4g)={y(t,s)eC(Q):y; €C(Q),y(t,0)=
:tJ;j;sy(t,s)dtds}.

Now we check the condition D(B;) = D(AA). By
definition

8 7 VHOOPMAUVIOHHO-YMPABASIOLLVIE CUCTEMEI
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{x(t,s)eD(A): Ax(t,s)e D(Ag )} =
—{x(t,s)ec(gz xteC( ), %(0, 8)=
L

xt t O tI J sxt t s)dtds}—
={x(t s)eC( ): %}, xf; €C(Q),
2.[ _[ t s dtds},

x t,s dtds, x{s(t,s)eC(Q),

x;(t,0)= t_[;j;sx,g (t,s)dtds}=D(By).

So D(B;) = D(A,A). It is easy to verify that the
operators A, A, are correct on C(Q2) and for every
f(t, s) € C(Q) the following hold true

-1 s
Ay f(t, s) = jof(t, sl)dsl +

g [oJos[f(ts1)ds deds; (52)

A1, s)zj';f(tl, s)dty +

%I;I;I;f(tl, s)dt dtds. (53)
From (51) for every f(t, s) € C(Q) we get

= [} [, 2 (1, s)deds,

:I;j;tf(t, s)dtds. (54)

It is evident that F, ® € C*(Q0). Consequently we
can take Z=C(Q2) = X.

Further by using (52), (54), (20), (21) for S, = 3s,
G, = ts? we get

A61S0 :J‘;t381 dSl +
2,3

4t (11 s g s
+EIO.[OSJOt Sldsldtds—ﬂ-i- > ,

A61G0 =J.;t812d81 +

At (11 s g 2t s3
+§J.OJ‘OSJ.Ot81 dsl dtds—g-l-?,

_ 101 o 2t 3% 19
F(AolGO):J‘OJ.Os2 [4—5+%]dtds:m,

o460 )= (1] [ Jdtd -2
det Iy :det[1—q>(A51G0)]=%, gt :%,

-1 -1 -1 -1
G =4Sy + Ay Gy Ly CD(AO so)z

t(907+34os3 +1034032t2)

- 2

20680
( )=ﬁ, detL:det[1—F(G)]=39967,
41360 41360
-1 _ 41360
39967

Since detL # 0 then, by Theorem 3 (ii), problem
(47), (48) or (45) is correct.
By (53) we calculate

. 9072 + 3405312 + 52 (1013+5170t4)
Alg= ,
41360

120s3#% + 2352 +16¢2
720

Al45lG -

and for f(¢, s) = 5t2 + s by (52)—(54) we obtain

2
Ay f=s—+%+5st

_ t 287\ b5st3 49¢2
Al =57 = + + ,
Ao'f = (2 432) 3 108
541 655
(AO f) 810 (AO f) 648"

Substituting these terms into (13) we obtain the
unique solution of (45), which is given by (46).

Conclusion

The main research result of this paper is the
existence and uniqueness of the operator equation
Bju =f in the space setting of Banach spaces, giv-
en that B, = ByB. The necessary and sufficient con-
ditions for the correctness of the operator B; are
intermediate, secondary results. The solution pro-
cedure follows the universal decomposition method
and provides a unique exact solution in closed form.
This method can be also applied in more complex
problems as of the type Byu = f, where B, = BOB or
B, = BOB and for B, B given by (8), (9), respectively.

The entire approach is given in an algorithmic
procedure that is reproducible in any program of
symbolic calculations.

References

1. Adomian G. A review of the decomposition method
in applied mathematics. Journal of Mathematical
Analysis and Applications, 1988, vol. 135(2), pp. 501-

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 9



// TEOPETUVHECKAS N NPUKAAAHASI MATEMATVIKA

10.

11.

12.

13.

14.

10

544.
90170-9

doi:https://doi.org/10.1016/0022-247X(88)

. Geiser J. Decomposition methods for differential

equations: theory and applications. CRC Press, Tay-
lor and Francis Group, Boca Raton, 2009. 304 p.
Dong S.-H. Factorization method in quantum me-
chanics. Part of the Fundamental Theories of Physics
book series (FTPH, vol. 150). Springer, Dordrecht,
2007. 297 p.

. Van der Mee C. V. M. Semigroup and factorization

methods in transport theory. Mathematisch Centrum,
Amsterdam, 1981. 167 p.

Nyashin Y., Lokhov V., Ziegler F. Decomposition
method in linear elastic problems with eigenstrain.
Journal of Applied Mathematics and Mechanics
(ZAMM ), 2005, vol. 85, pp. 557-570. doi: https://doi.
org/10.1002/zamm.200510202

Kelesoglu O. The solution of fourth order boundary
value problem arising out of the beam-column theory
using Adomian Decomposition Method. Mathemati-
cal Problems in Engineering, vol. 2014, Article ID
649471, 6 p. doi:https://doi.org/10.1155/2014,/649471
Fahmy E. S. Travelling wave solutions for some
time-delayed equations through factorizations. Cha-
os Solitons & Fractals, 2008, vol. 38(4), pp. 1209—
1216. doi:10.1016/j.chaos.2007.02.007

Ferapontov E. V., Veselov A. P. Integrable Schroding-
er operators with magnetic fields: factorization meth-
od on curved surfaces. Journal of Mathematical
Physics, 2001, vol. 42 (2), pp. 590-607. doi:10.1063/
1.1334903

Amirkhanov I. V., Konnova S. V., Zhidkov E. P.
The factorization method and particular solutions of
the relativistic Schrodinger equation of nth order
(n=4,6). Computer Physics Communications,
2000, vol. 126(1-2), pp. 12-15. doi:10.1016/S0010-
4655(99)00421-X

Caruntu D. I. Factorization of self-adjoint ordinary
differential equations. Applied Mathematics and
Computation, 2013, vol. 219, pp. 7622-7631. doi:
10.1016/j.amc.2013.01.049

Soh C. W. Isospectral Euler — Bernoulli beams via
factorization and the Lie method. International Jour-
nal of Non-Linear Mechanics, 2009, vol. 44(4),
pp- 396-403. doi:10.1016/j.ijnonlinmec.2009.01.004
Caruntu D. I. Relied studies on factorization of the
differential operator in the case of bending vibration
of a class of beams with variable cross-section. Revue
Roumaine des Sciences Techniques — Série de Mécan-
ique Appliqu e, 1996, no. 41(5-6), pp. 389—397.
Lokshin A. A. Interaction of non-linear waves and the
factorization method. Journal of Applied Mathemat-
ics and Mechanics, 1995, vol. 59(2), pp. 325—331. doi:
10.1016/0021-8928(95)00038-Q

Barkovsky L. M., Furs A. N. Factorization of inte-
gro-differential equations of the acoustics of disper-
sive viscoelastic anisotropic media and the tensor in-
tegral operators of wake packet velocities. Acoustical

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

7

Physics, 2002, vol. 48(2), pp. 128-132. doi:10.1134/
1.1460945

Araghi M., Behzadi S. Solving nonlinear Volterra —
Fredholm integro-differential equations using the
modified Adomian decomposition method. Computa-
tional Methods in Applied Mathematics, 2009,
vol. 9(4), pp. 321-331. doi:https://doi.org/10.2478/
cmam-2009-0020

Adomian G. A review of the decomposition method
and some recent results for nonlinear equations.
Mathematical and Computer Modelling, 1990,
vol. 13(7), pp. 17-43. doi:https://doi.org/10.1016/
0895-7177(90)90125-7

Babolian E., Biazar J., Vahidi A. R. The decomposi-
tion method applied to systems of Fredholm integral
equations of the second kind. Applied Mathematics
and Computation, 2004, vol. 148(2), pp. 443-452.
d0i:10.1016/S0096-3003(02)00859-7

Badriev I. B., Zadvornov O. A. A decomposition meth-
od for variational inequalities of the second kind with
strongly inverse-monotone operators. Differential
Equations, 2003, vol. 39, pp. 936—944. doi:https://
doi.org/10.1023/B:DIEQ.0000009189.91279.93
Baskonus H. M., Bulut H., Pandir Y. The natural
transform decomposition method for linear and non-
linear partial differential equations. Mathematics in
Engineering, Science and Aerospace, 2014, vol. 5(1),
pp. 111-126.

Berkovich L. M. Factorization and transformations
of linear and nonlinear ordinary differential equa-
tions. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment, 2003, vol. 502(2-
3), pp. 646—648. doi:10.1016/S0168-9002(03)00531-X
Davari A., Khanian M. Solution of system of Fred-
holm integro-differential equations by Adomian de-
composition method. Australian Journal of Basic and
Applied Sciences, 2011, vol. 5(12), pp. 2356—2361.
Evans D. J., Raslan K. R. The Adomain decomposi-
tion method for solving delay differential equation.
International Journal of Computer Mathematics,
2005, vol. 82(1), pp. 49—-54. doi:10.1080/00207160412
331286815

El-Sayed S., Kaya D., Zarea S. The decomposition
method applied to solve high-order linear Volterra —
Fredholm integro-differential equations. Interna-
tional Journal of Nonlinear Sciences and Numerical
Simulation, 2004, vol. 5(2), pp. 105-112. doi:https://
doi.org/10.1515/IJNSNS.2004.5.2.105

Hamoud A. A., Ghadle K. P. The reliable modified of
Laplace Adomian decomposition method to solve non-
linear interval Volterra — Fredholm integral equa-
tions. The Korean Journal of Mathematics, 2017,
vol. 25(3), pp. 323—334. doi:https://doi.org/10.11568/
kjm.2017.25.3.323

Hamoud A. A., Ghadle K. P. Modified Adomian de-
composition method for solving fuzzy Volterra —
Fredholm integral equations. The Journal of the Indi-

7 VHOOPMAUVIOHHO-YMPABASIOLLVIE CUCTEMEI

/7  N°2,2021



\ TEOPETUYECKASI V NIPUKAAAHASI MATEMATUKA \

an Mathematical Society, 2018, vol. 85(1-2), pp. 52—
69. doi:https://doi.org/10.18311/jims/2018/16260
26.Hamoud A., Ghadle K. The combined modified Lap-
lace with Adomian decomposition method for solving
the nonlinear Volterra — Fredholm integrodifferen-
tial equations. Journal of the Korean Society for In-
dustrial and Applied Mathematics, 2017, vol. 21(1),

pp. 17-28. d0i:10.12941/jksiam.2017.21.017

27. Kamachkin A. M., Shamberov V. N. The decomposi-
tion method of research into the nonlinear dynamical
systems’ space of parameters. Applied Mathematical
Sciences, 2015, vol. 9(81), pp. 4009-4018. doi:10.
12988/ams.2015.54355

28.Mittal R., Nigam R. Solution of fractional inte-
gro-differential equations by Adomian decomposi-
tion method. International Journal of Applied Mathe-
matics and Mechanics, 2008, vol. 4(2), pp. 87-94.

29. Rawashdeh M. S., Maitama S. Solving coupled system
of nonlinear PDEs using the natural decomposition
method. International Journal of Pure and Applied
Mathematics, 2014, vol. 92(5), pp. 757-776. doi:10.
12732/ijpam.v92i5.10

30.Tsarev S. P. Factoring linear partial differential op-
erators and the Darboux method for integrating non-
linear partial differential equations. Theoretical and
Mathematical Physics, 2000, vol. 122(1), pp. 144-160.
doi:https://doi.org/10.4213/tmf561

31. Wazwaz A. M. The combined Laplace transform-
Adomian decomposition method for handling nonlin-
ear Volterra integro-differential equations. Applied
Mathematics and Computation, 2010, vol. 216(4),
pp. 1304-1309. doi:https://doi.org/10.1016/j.amc.
2010.02.023

32.Yang C., Hou J. Numerical solution of integro-differ-
ential equations of fractional order by Laplace decom-
position method. WSEAS Transactions on Mathe-
matics, 2013, vol. 12(12), pp. 1173-1183.

33.Parasidis I. N., Tsekrekos P. C. Some quadratic cor-
rect extensions of minimal operators in Banach
space. Operators and Matrices, 2010, vol. 4(2),
pp- 225—243. doi:dx.doi.org/10.7153/oam-04-11

34.Parasidis I. N. Extension and decomposition method
for differential and integro-differential equations.
Eurasian Mathematical Journal, 2019, vol. 10(3),
pp. 48-67. doi:https://doi.org/10.32523/2077-9879-
2019-10-3-48-67

35.Parasidis I. N., Providas E., Zaoutsos S. On the solu-
tion of boundary value problems for ordinary differen-
tial equations of order n and 2n with general bounda-
ry conditions. In: Daras N., Rassias T. (eds). Computa-
tional mathematics and variational analysis. Spring-
er optimization and its applications, Springer, Cham,
2020. Vol. 159. Pp. 299-314. doi:https://doi.org/10.
1007/978-3-030-44625-3 17

36.Providas E., Parasidis I. N. On the solution of some
higher-order integro-differential equations of special
form. Vestnik of Samara University, Natural Science
Series, 2020, vol. 26(1), pp. 14—22. doi:10.18287/2541-
7525-2020-26-1-14-22

37. Vassiliev N. N., Parasidis I. N., Providas E. Exact
solution method for Fredholm integro-differential
equations with multipoint and integral boundary con-
ditions. Part 2. Decomposition-extension method for
squared operators. Informatsionno-upravliaiushchie
sistemy [Information and Control Systems], 2019,
no. 2, pp. 2-9. doi:https://doi.org/10.31799/1684-
8853-2019-2-2-9

38.Parasidis I. N., Providas E., Tsekrekos P. C. Factori-
zation of linear operators and some eigenvalue prob-
lems of special operators. Vestnik of Bashkir Universi-
ty, 2012, vol. 17(2), pp. 830—839 (In Russian).

39. Tsilika K. D. A n exact solution method for Fredholm
integro-differential equations. Informatsionno-up-
ravliaiushchie sistemy [Information and Control Sys-
tems], 2019, no. 4, pp. 2—8. d0i:10.31799/1684-8853-
2019-4-2-8

40.Parasidis I. N., Providas E. Extension operator meth-
od for the exact solution of integro-differential equa-
tions. In: Pardalos P., Rassias T. (eds). Contributions
in Mathematics and Engineering. Springer, 2016.
Pp. 473-496. d0i:10.1007/978-3-319-31317-7_23

YK 338.984
doi:10.31799/1684-8853-2021-2-2-12

PaszioskeHnune aGCTPAKTHHIX JJUHEIHBIX ONEPATOPOB Ha 0aHAXOBBIX IPOCTPAHCTBAX

K. II. Tcunuka?, PhD, gonesT, orcid.org/0000-0002-9213-3120, ktsilika@uth.gr

ayuusepcuret Peccanuu, 38221, Bosoc, I'perusa

BBeneHue: GOJIBIIMHCTBO U3BECTHHIX METO/0B JEKOMIIO3UIIUY [IJI PEIIeHUA KPAaeBhIX 3a7au (MeTox AeKoMrIo3unuu AIoMsaHa, ecre-
CTBEHHOE IIpeo0pas3oBaHMe MEeTOAa AeKOMIIO3UIINU, MOAUMDUIIMPOBAHHBIA METOJA JeKOMIO3UIUYN ANOMsAHA, KOMOMHUPOBAHHBIN METOM
npeobpasoBanusa Jlamaca — AeKOMIIO3UIUY ATOMSHA U METO/ AeKOMIIOBUIINY 00JIACTH) UCIIOJIb3YIOT TaK Ha3blBaeMble ITIOJTMHOMBI A0~
MAHA WX UTePaIuy JJIsd TOJTyYeHUs IPUOINKeHHBIX perleHnii. HacCKOJIbKO HaM M3BECTHO, IPAMOU METOJ IOJyUYeHU TOYHOTO aHAJIH-
TUYECKOTO PellleHus IoKa He npeaiokeH. Ilexs: paspaboraTh B IPOU3BOJIBHOM 0aHAXOBOM IIPOCTPAHCTBE HOBBINA YHUBEPCATIBHBINA METO
pasIoKeHus AJs KJjacca OObIKHOBEHHBIX MHTErpo-Au(depeHInaIbHbIX YPABHEHUN WU WHTEerpo-auddepeHnaIbHbIX YPaBHEHUN B
YACTHBIX TPOUBBOAHBIX C HEJIOKAJIHHBIMU M HAYAJIHHBIMUA TPAHUYHBIMY YCJIOBUAMU B TEDMUHAX a0CTPAKTHOTO OIIEPATOPHOTO YPAaBHEHUA
B,x ={f. PesyabTaThl: HCCIE0BAH KJIacc WHTETrpo-AuddepeHuaTbHbIX YPaBHeHNH B 6aHAX0BOM IIPOCTPAHCTBE C HEJOKAJbHBIMU U Ha-
YaTbHBIMU TPAHUYHBIME YCIOBUAME B TEPMUHAX a0CTPAKTHOTO OIIepaTOPHOro ypaBHeHNA B x = Ax — S F(Ax) — G,®(Ax) = f, x € D(B,),
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rae A, A — nuHelHble abCTPaKTHBIE OTIEPATOPHI; SO, Go — BeKTOpHl, a ®, F — pyHKIUOHaIbHBIE BEKTOPHI. OOBIUHO A, A — 3TO JINHENHbIE
00BIKHOBEHHBIE quddepeHInaibabIe olepaTopsl min AuddepeHualbHble OIePATOPHI B YACTHHIX IPOU3BOAHEBIX, a F(Ax), ®(Ax) — uHTe-
rpansl @penrossma. OCHOBHBIM Pe3yJIBTATOM HAIIIETO MCCAENOBAHUA SABJISAETCA TEOPEMa CYIIeCTBOBAHUA U eIMNHCTBEHHOCTUA YPABHEHUA
B,x = f npu ycnosuu, uto onepaTop B, umeer pasnoxenue suna B, = ByB, rine B u By — pasnuuHble aGCTPAKTHbIE JIMHEIHbIe OIlepaTopEI
crenuaIbHOTO Bra. IIpeasaraeMblil MeTO/ pasjioKeHUsl YHUBEPCAJIEH U CYIeCTBEHHO OTJIUYAETCS OT APYIUX METOLOB PA3JIOXKEHUS B
COOTBETCTBYIOIIEH JiuTepaType. OTOT METOJ MOYKET OBITh IPUMEHEH KaK K OOBIKHOBEHHBIM MHTETPO-AU(DGEPEeHIINATBHBIM YPAaBHEHUAM,
TaK U K NHTerpo-guddepeHnalbHbIM YPaBHEHUAM B YACTHBIX IIPOU3BOIHEIX, 1 Ia€T eUHCTBEHHOE TOYHOE PellleHNe B 3aMKHYTOI aHaIN-
THYECKO# (popme B 6aHAXOBOM IPOCTPAHCTBE. DTAIBI METOJA PEIIeHUs UILIIOCTPUPYIOTCA YNCIEHHBIMY IPUMePaMi, COOTBETCTBYIOIIUMU
KOHKDPeTHBIM 3aauaM. CrucremMa KoMIb0TepHONU anre6psl Mathematica ncmosbayercst [iist feMOHCTpPAIIUY PE3YJIHTATOB PEIIeHU U OI[eH-
kU 9(pdexTuBHOCTY aHaNu3a. IIpakTHYecKas 3HAYNMOCTh: OCHOBHBIM IIPEUMYIIIECTBOM HACTOAIIETO METOA PEIIIeHUA ABIAETCA JIETKOCTD
ero UHTerpanuu B nuHTepdeiic g06oro mporpaMmmuoro oobecrneuernus CAS.

KiroueBspie ciioBa — KOPPEKTHBIN OIlepaTop, pasiokeHnue (pakropusanus, JeKOMIIO3UIIU) OIlepaTopoB (YypaBHEHMUIT), HMHTEerpo-aud-
(epeHIIMATBbHBIE YPABHEHNA, KpaeBble 3aaUl, TOYHOE pPellleHue.

IOusa purupoBanus: Tsilika K. D. Decomposition of abstract linear operators on Banach spaces. Hrgopmayuonno-ynpagnsiowue cucme-
mot, 2021, Ne 2, ¢. 2-12. doi:10.31799/1684-8853-2021-2-2-12

For citation: Tsilika K. D. Decomposition of abstract linear operators on Banach spaces. Informatsionno-upravliaiushchie sistemy
[Information and Control Systems], 2021, no. 2, pp. 2—12. doi:10.31799/1684-8853-2021-2-2-12

YBAXXAEMbIE ABTOPbI!

Hayunrnie 6asnl ganubix, Braodas SCOPUS u Web of Science, o0pabaTsiBaloT JaHHBIE aBTO-
matudecku. C OQHOIM CTOPOHBI, 9TO YCKOPSET IPoIiecc 00paboTKM JAHHBIX, C APYTOH — PasIndumns
B TpaHcauTtepanuu @PHO, HeTOuHbIE JaHHBIE O MeCTe PaboThl, 00JIaCTH HAYYHOIO 3HAHUS U T. 1.
IIPUBOJAT K TOMY, UTO B 0a3aX OKA3bIBAETCSA HECKOJbKO aBTOPCKUX CTPAHMUII IJIS OJHOI'O X TOTO
JKe UeJIOBeKa. B pesyJsbraTe A BCeX IO OTAEIbHOCTU CUMTAIOTCS MHAEKCHI [[UTUPOBAHUS, UTO
CHUKAeT PEUTUHT YUEHOTO.

st upenTuduranum aBTopoB B ceTssx Thomson Reuters mposoguT perucrpamuio ¢ mpucBoe-
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