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Introduction: Development of practical post-quantum signature schemes is a current challenge in the applied cryptography.
Recently, several different forms of the hidden discrete logarithm problem were proposed as primitive of signature schemes
resistant to quantum attacks. Purpose: Development of a new form of the hidden discrete logarithm problem set in finite
commutative groups possessing multi-dimensional cyclicity, and a method for designing post-quantum signature schemes.
Results: A new form of the hidden discrete logarithm problem is introduced as the base primitive of practical post-quantum
digital signature algorithms. Two new four-dimensional finite commutative associative algebras have been proposed as algebraic
support for the introduced computationally complex problem. A method for designing signature schemes on the base of the latter
problem is developed. The method consists in using a doubled public key and two similar equations for the verification of the
same signature. To generate a pair of public keys, two secret minimum generator systems <G, Q> and <H, V> of two different finite
groups I g o, and Iy, . possessing two-dimensional cyclicity are selected at random. The first public key (Y, Z, U) is computed
as follows: Y = 6"1Q"20, Z = G*1Q72B, U = G"1Q"2y, where the set of integers (y;, ¥, @, Z;, Z,, B, Uy, Uy, ¥) is a private key. The second
public key (Y', Z', U’) is computed as follows: Y' = H'1W2q, Z' = H*1V?2B, U’ = H'1V“2y, Using the same parameters to calculate
the corresponding elements belonging to different public keys makes it possible to calculate a single signature which satisfies
two similar verification equations specified in different finite commutative associative algebras. Practical relevance: Due to a
smaller size of the public key, private key and signature, as well as approximately equal performance as compared to the known
analogues, the proposed digital signature scheme can be used in the development of post-quantum signature algorithms.
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Introduction

Currently the most widely used public-key cryp-
toschemes exploit the computational complexity of
the factoring problem (FP)[1, 2] and the discrete log-
arithm problem (DLP) [3, 4]. However, the expected
breakthrough in quantum computing technology in
the near future makes it extremely urgent to devel-
op cryptosystems that are resistant to attacks using
quantum computers. Post-quantum public-key cryp-
tosystems should be based on computationally diffi-
cult problems other than FP and DLP, since efficient
polynomial algorithms for solving FP and DLP on a
quantum computer are known [5—7].

In the current field of development of public-key
post-quantum cryptoschemes, considerable atten-
tion of the cryptographers is paid to the development
of cryptoschemes on algebras [8, 9], on boolean func-
tions [10, 11], and on linear codes [12, 13].

One of attractive post-quantum primitives is the
hidden discrete logarithm problem (HDLP) defined
usually in non-commutative finite associative al-
gebras (FAAs). Different forms of the HDLP were
proposed to develop signature schemes on non-com-

mutative FAAs [9, 14, 15]. For the first time, a
signature scheme on a commutative FAA was pro-
posed in [16]. The interest in the HDLP problem is
related to the fact that the HDLP-based signature
schemes have relatively small sizes of the public key
and signature. This area of research is quite new,
and for a deeper and more complete understanding
of the possibilities for the development of practical
post-quantum HDLP-based, it is of significant in-
terest to search for new forms, especially for the
case of using commutative FAAs as a carrier of the
HDLP.

In this paper, we propose a new form of setting
the HDLP in commutative FAAs characterized in
that the multiplicative group of the algebras pos-
sesses four-dimentional cyclicity in terms of the
paper [17]: a finite commutative group whose min-
imum generator system includes p (u > 2) elements
that have the same order is called group with p-di-
mensional cyclicity. The method of setting the pro-
posed form of the HDLP is fundamentally different
from the method introduced earlier in the paper
[16] for development of the HDLP-based signature
on a commutative algebra.
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Two commutative FAAs used
as algebraic support

A finite m-dimensional vector space over the fi-
nite ground field GF(p), in which a vector multipli-
cation operation is defined additionally to the sca-
lar multiplication and addition operations, is called
m-dimensional algebra, if the vector multiplication
is distributive at the left and at the right relatively
the addition. A vector A is presented as an ordered
set of its coordinates: A =(a, a, ..., a,,_;) orasasum
of its components: A = age, + a,e; + ... + a,,_je, 4,
wheree,; (=0, 1, ..., m — 1) are formal basis vectors.
Defining additionally the operation of vector multi-
plication (o) possessing the property of the two-sid-
ed distributivity relatively the addition operation,
one gets the finite m-dimensional algebra.

Usually, the multiplication of two vectors

AZZZ a;e; and B= Z 0 bje; is defined by the

following formula: AoB= z z

where the coordinates a; and b; are multlphed as
elements of the field GF(p) and every the product
of two formal basis vectors is to be replaced by an
one-component vector indicated in a cell at the in-
tersection of the i-th row and j-th column of so called
basis vector multiplication table, for example, see
Table 1 [16]. Each of these tables defines a four-di-
mensional commutative FAA, multiplicative group
of which has order Q that can be computed as num-
ber of invertible vectors. Consider, for example, the
algebra defined by Table 1.

The unit element of this commutative FAA is the
vector E=(0, 0, 1, 0). If for some vector A the vector
equation

abe oe;

AX=E 1)
has a unique solution, then the vector A is called
invertible. For a fixed invertible vector A the
vector equation AX = E has a unique solution
denoted as Al (called inverses of A). Evidently,
AA1l = A1A = E. An invertibility condition can
be derived from equation (1) that can be reduced

7

B Table 1. Setting the multiplication operation in the
first used FAA multiplicative group of which possesses
multi-dimensional cyclicity (A # 0)

€ € €3 €3
e Ae, eg e rey
€ €3 €y € €9
€y €9 € €y €3
es heq e, es Aegy

to the following system of four linear equations,
where the unknowns are coordinates of the vector
X =(xg, X1, Xg, X3):

agXp +agxy +agxg +ayjxg =1
hagxg +agxy +a1x9 +hagxg =0
Aagxg +ayx; +agxs +hagxz =0
a1xg +agx; +agxg +agxg =0

The main determinant of the system (2) is

as az ay o
rag a9 ap hag ay a1 Mg
A= =agla; a9 Aag|-—
rag a1 as Aag
4G a az a Yo G @
Aag  a; Aag rag a9 Aag
—aglhag ag Aag|+aglhay a; Aag|-
ap ag as ay ag as
hag as o
—a1lhag a; agy :ag(ag(a§ —kagz,)—
ap ag ag

~ a1 (ayas ~hagag) +hag (a1a3 —agaz )) -
—asg (7\.(13 (ag - ?xd% ) -1 (?»aoaz - kalag ) +
+ }\.0/0 (7\.(10@3 — a0y )) + Qg (}\.(13 (alaz — 7\.00&3 ) —
—ag(Lagag —rajag)+rag (kag —a? )) —
-—aq (7\.(13 (a1a3 —apay ) —ay (Ka0a3 —ayay ) +
2
+ al(ka(z) —alz))z ..=k2(a(2) +a§) —4ka§a§ +
2
+ (a12 +a§) —4ka§a§ —27»((13 + a§)(a12 +a§)+
2
+ 8lagajasag =...= (Xag —a12 —a% + ka%) -

- 4(7\.(10(13 —a109 )2 .

The case A # 0 defines the following invertibility
condition:

2
(}»ag p— +ka§) —4(1agag —aqas )2 #0. (3)

The case A = 0 defines the following non-inverti-
bility condition:

@

2
(kag ~a? a3 +ka§) =4(Lagag —ayaz )2 .

Proposition 1. Suppose the structural constant
A is a quadratic non-residue in GF(p). Then the
number of different non-invertible vectors in the
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four-dimensional FAA set by Table 1 is equal to
n=2p2-1.

Proof: The non-invertibility condition (4) sets
the following two cases:

i) kag —a12 —a% + ka% =2\agag —2a1a9 =
2 2
=Mag—-a3)” =(ag —as)";
ii) kag —a12 —a% +ka§ =-2hagag +2a1a9 =

:>?»(a0 +a3)2 =((11 +a2)2.

If the structural constant A is a quadratic
non-residue modulo p, then for the first case the

equality holds true only if (ag —ag )2 =(a; —ay )2 =0.
This gives p different sets of coordinates a, and a;
and p different sets of coordinates a, and aj, in-
cluding the zero vector (0, 0, 0, 0). Totally, in the

first case we have p2 — 1 non-inverible vectors.
In the second case the equality holds true only if
(ag +asg )2 =(ay +ay )2 =0. This defines other p2
sets of coordinates ay, ay, a5, and ag, including
(0,0, 0,0). Therefore we have n=2p2— 1. Proposition 1
is proven.

Proposition 2. Suppose the structural constant
A is a quadratic non-residue in GF(p). Then the or-
der of the multiplicative group of the FAA set by the
Table 1 is equal to Q = (p2 — 1)2.

Proof: Among p* different vectors of the algebra
you have 1 = 2p2 — 1 non-invertible ones, therefore
Q= p*-n=(p?-1)2. Proposition 2 is proven.

Proposition 3. Suppose the structural constant A
is a quadratic residue in GF(p). Then the number of
non-invertible vectors in the four-dimensional FFA
set by Table 1 is equal to n = 4p3 — 6p2 + 4p2 - 1.

Proof: Since the structural constant A is a quad-
ratic residue, formula (4) defines the following two
cases:

i) (ao*/x_“?)*/x)z =(a1 ~a3)’ = ap/k —agh =
=+(a; —ag);

ii) (aO\/X+a3\/X)2 =( +a2)2 = ag\ +ag/h =
=+(ay +ay).

Sets of coordinates (a,, a,, ay, a3) satisfying one
of four conditions defined by the said two cases rep-
resent non-invertible vectors. The following Table 2
shows the number of vectors coordinates of which
satisfy a condition indicated in the left column.

Totally, we have

n:pz+p2+2p(p—1)2+2p(p—1)2 =
=4p3-6p®+4p-1.

Proposition 3 is proven.
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B Table 2. Number of non-invertible vectors relating to
different subsets for the case when A is a quadratic
residue

# of different combinations
of coordinates (ay, a;, ay, as)
satisfying the condition
at the left

Condition

agh —agA =a; —a3 =0 | p?including (0, 0, 0, 0)

agh +ag\h =a; +ay =0 p?including (0, 0, 0, 0)

ag 2 —agVh =+(ay —ay)#0 2p(p - 1)?

ag\n +agh =+(a; +az)#0 2p(p — 1)?

Proposition 4. Suppose the structural constant A
is a quadratic residue in GF(p). Then the order of the
multiplicative group of the FAA set by the Table 1 is
equal to Q=(p — 1)%.

Proof: Among p* different vectors of the algebra
you have 1 = 4p3 — 6p2 + 4p2 — 1 non-invertible ones,
therefore Q = p* — n = p* — 4p3 — 6p2 + 4p2 — 1) =
= (p - D% Proposition 4 is proven.

Thus, if the structural constant A is equal to a
quadratic residue modulo p, then the multiplicative
group of the considered algebra has order (p — 1)*
and possesses four-dimensional cyclicity [16]. If
the structural constant A is equal to a quadratic
non-residue modulo p, then the multiplicative group
of the considered algebra has order (p2 — 1)2 and
possesses two-dimensional cyclicity [16].

In the developed signature scheme, it is assumed
that the first commutative FAA is set by Table 1,
where A is equal to a quadratic residue, and the char-
acteristic of the field GF(p) is a prime having the
following structure p = 2¢g + 1 with 256-bit prime q.
In this case the integer ¢ divides p — 1 and one can
generate a minimum generator system <G, Q>,
where G and Q are vectors of the order ¢, which sets
a two-dimensional cyclicity subgroup of order ¢2.

We also use another commutative FAA possess-
ing the properties similar to that of the algebra set
by Table 1. The second used commutative FAA is
set by basis vector multiplication table represent-
ed as Table 3, where A is equal to a quadratic res-
idue, and includes the unit vector E = (0, 0, 0, 1).
Consideration of the number of invertible vectors
in the second commutative FAA shows that for the
latter the Propositions 1 to 4 are also true. Thus, we
have two different commutative FAAs multiplica-
tive group each of which possesses four-dimension-
al cyclicity. The latter group contains a large num-
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B Table 3. Setting the second used FAA (A = 0)

€0 € €2 €3
e heg e, hey e
€ €2 €3 €o €
e, rey e, Aeg e,
eg e e e, e;

7

ber of two-dimensional cyclicity subgroups of the
order ¢2.

Example 1. In the case of the first FAA with
p=2q+1=307771779467 (prime g =153885889733)
and A = 3 (quadratic residue) one can select the fol-
lowing minimum generator system <G, Q, H, V>
setting a prlmary group I' g quy- Of the order
Q. =qt= = 5607834646621019342722268060
80639851841841521

G=(0,0,3,0;Q=(0,2,5,0;H=(2, 7, 3, 0);
V=(183, 12, 10, 17).

For A = 2 (quadratic non-residue) one can se-
lect the following minimum generator system
<G, Q> setting a primary group I'_g o. of the order
Q go-=9 q? 94723468236283682804089
G=(0,0,3,0)and Q=(0, 1, 2, 0).

Example 2. In the case of the second FAA
with p =2¢ + 1 = 273413518347119 (prime ¢ =
= 136706759173559) and A =2 (quadratic residue) one
can select the following minimum generator system
<G, Q, H, V> setting a prlmary group I'_g q g of
the order Q_g =qt= = 34926892817234073926
007473842204106 8655028853953782643361

G=(0,0,0,2);Q=(0,0,1,2; H=(0, 1,4, 7);
vV=(,3,7, 10).

For L = 13 (quadratic non-residue) one can se-
lect the following minimum generator system
<G, Q> settlng a primary group I'_g . of the order
Qgo-= g2= 18688738003737457800684726481
G =(0, 189, 0, 222) and Q = (0, 0, 0, 2).

Consider a method for generating a minimun
generator system of a two-dimensional cyclicity
subgroup of order g2. The following procedure out-
puts a random vector of the order ¢:

1. Generate a random vector R and compute the
vector Q = R2.

2. If Q # E, then output Q. Else go to step 1.

The next probabilistic procedure outputs the
minimum generator system:

1. Generate a uniformly random vector G of
prime order q.

2. Generate a uniformly random vector Q of or-
der q.

The multiplicative group of the algebra con-
tains ¢4 — 1 vectors of order g. The cyclic group
generated by the vector G includes ¢ — 1 vectors
of order ¢, therefore, probability that the vector
Q is an element of the cyclic group generated by
the vector G is equal approximately to ¢~3. In an-
other case the pair of vectors <G, Q> represents a
minimum generator system of a primary subgroup
of order ¢2 that is contained in the multiplicative
group of the algebra. For the case of 256-bit prime
g the probability ¢~3 that the latter procedure fails
is negligible.

A new HDLP-based signature scheme

In the developed signature scheme a 256-bit col-
lision-resistant hash function f;; is assumed to be
used. Computation of the public key is proposed as
the following procedure.

Public-key generation algorithm.

1. Generate at random a minimum generator
system <G, Q> of the group of order ¢2, which is
contained in the first commutative FAA.

2. Generate at random integers y; <gq, y, <gq, and
o < p, where a is a primitive element in GF(p). Then
calculate the vector Y = GY1Q"2q..

3. Generate at random integers z; <g, z, < g, and
B < p, where B is a primitive element in GF(p). Then
calculate the vector Z = G*1Q*2.

4. Generate at random integersy <p, u; <g, and
uy < g, such that non-equality z;u, # 2,1, holds true
and yis a primitive element in GF(p). Then calculate
the vector U = G*1Q%2y.

5. Generate at random a minimum generator
system <H, V> of the group of order ¢2, which is
contained in the second commutative FAA.

6. Calculate the vectors Y' = HY1V¥2q, Z' =
and U’ = H“1V“2y,

7. Output the public key in the form of two tri-
ples of vectors: (Y, Z, U) and (Y, Z', U").

In the developed signature scheme, we use the
idea of doubling the signature verification equation
connected with doubling the public key. Therefore,
the triple (Y, Z, U) will be called in this paper the
first public key. Respectively, the triple (Y’, Z', U’)
will be called the second public key. Each of the
public keys has been calculated with using the same
private key representing nine 256-bit integers (y;,
Yar O, 215 29, P, Uy, Uy, V) and the same formulas.
The first (second) public key is computed in the
first (second) commutative FAAs. The size of each

HA V2B,
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of public keys is equal to 384 bytes, and the size of
doubled public key equals to 768 bytes.

The vectors G, Q, H, and V are secret, but the
developed signature scheme offers the possibility
to choose one of two signature generation proce-
dures. In the first one, only four exponentiation
operations are executed in FAAs, however, the
vectors G, Q, H, and V must be stored by the own-
er of the public key (the person who generated the
public key) as additional elements of his private
key. In this case the size of private key is equal to
704 bytes.

In the second version of the signature generation
procedures, six exponentiation operations are to be
performed in FA As, but the vectors G, Q, H, and V
are not needed and the set of nine integers (y;, y,,
o, 21, 29, B, Uy, Uy, ¥) represent the full private key
having the size equal to 192 bytes.

Usually, finding the integer x satisfying the
exponential equation Y’ = G'¥*, where Y' and G’ are
known group elements, which is set in a finite cyclic
group is called discrete logarithm problem. If one
of the elements Y’ and G’ or both of them is not di-
rectly given, then we have a number of problems we
call HDLPs. Different forms of the HDLP are con-
sidered in [9, 15]. The HDLP form exploited in the
present paper is defined as follows:

Given a triple of vectors (Y, Z, U) contained in
the first FAA and a triple of vectors (Y', Z', U’) con-
tained in the second FAA. Find the set of integer
powers (Y;, Y, 21> 29> Uy, Ug) and the set of scalars
(o, B, y) such that equations Y = GY1Q%2a., Z = G*1Q°2f,
U = G"“1Q"2?y (in the first FAA), Y = HYIVW2q,
Z' = H*'V?2B, and U’ = H“'V“2y (in the second FAA)
hold true for i) some secret vectors G and Q generat-
ing two different cyclic groups of prime order ¢ in
the first FAA; ii) some secret vectors H and V gen-
erating two different cyclic groups of prime order ¢
in the second FAA.

One can easily show that, due to using random
vectors G and Q (H and V) and scalar multiplica-
tions, the vectors Y, Z, and U (Y, Z' and U’) com-
pose a basis of a three-dimensional cyclicity group
in the first (second) FAA. Therefore the vector Y
(Y’) cannot be represented as a product of some pow-
ers of the vectors Z and U (Z' and U’) and a periodic
function set on the base of the known parameters
has periods defined by the order of the public key
elements, i. e., by the prime ¢. The latter means that
the Shor quantum algorithm [5] is not applicable to
find one of the values y, y5, 21, 29, Uy, and u,,.

The said computationally complex problem un-
derlying the developed signature scheme is a new
one and currently the authors have no proposal for
solving it (except exhaustive search). However,
the importance of finding effective solutions al-
lows us to hope that this article will stimulate
independent researchers to address this issue.

\ SALLNTA MHDOPMALLAN N\

At the moment, the authors expect that choosing
a 256-bit prime number g will provide a 128-bit
level of security for the proposed signature algo-
rithm.

The first signature generation algorithm.

1. Generate three uniformly random integers
k<gq,t<gq,andp <p.

2. Calculate the vector R = G*¥Q?p.

3. Calculate the vector R’ = H*V?p.

4. Compute the first signature element e that is a
hash-function value calculated from the document
M to be signed, to which the vectors R and R’ are
concatenated: e = f;(M, R, R').

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the
following system of two linear equations:

{zls+u1d=k—ey1 mod ¢q )

298 +Usd =t —eys mod g

It is easy to get the following formulas for com-
putation of the second and third signature elements:

s:uz(k—eyl)—u1(t—ey2)

mod g; (6)
21U —2Ug
2 (t—e —29(k—e
d= 1( yz) 2( yl)modq. )
21U —2Ug

6. Compute the fourth signature element o =
— pa—eﬁ—sy—d.

The output signature is four 256-bit numbers
(e, s, d, o) with total size equal to 128 bytes.

The second signature generation algorithm.

1. Generate four uniformly random integers
a<q,b<q,c<gq,andp <p.

2. Calculate the vector R = Y?ZPU¢p.

3. Calculate the vector R’ = Y'?Z'bU’p.

4. Compute the first signature element e that is a
hash-function value calculated from the document
M to be signed, to which the vectors R and R’ are
concatenated: e = f;(M, R, R').

5. Interpreting the hash value as a 256-bit bina-
ry number e, calculate the second s and third d sig-
nature elements, which represent the solution of the
system (5) and can be computed by formulas (6) and
(7), substituting the following values of the rand-
omization integers k and ¢:

k=ay; + bz, + cu; mod g and
t=ay, + bzy + cuy mod q.

6. Compute the fourth signature element c =
— paa—eBb—syc—d.

The main contribution to the computational
complexity of the signature generation procedure
is introduced by the exponentiation operations.
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The exponentiation in each of the four-dimen-
sional FAAs takes about 6144 multiplications
in GF(p). One exponentiation in GF(p) takes on
the average about 384 multiplications. One can
roughly estimate the execution time of the first
and second signature generation procedures as
25728 and 38016 multiplications in GF(p), corre-
spondingly.

The signature verification algorithm.

1. Calculate the vector R* = YeZsUd%.

2. Calculate the vector R'* = Y'*Z'sU"4G.

3. Compute the hash-function value from the
document M to which the vectors R* and R'*are
concatenated: e* = f,(M, R¥*, R'%).

4. If e* = e, then the signature is accepted as a
genuine one, otherwise the signature is rejected as
a false one.

One can roughly estimate the computational
complexity (execution time) of the signature verifi-
cation procedure as six exponentiations in the used
four-dimensional algebras or as 37248 multiplica-
tions in GF(p).

Signature scheme correctness proof.

To prove correctness of the introduced signature
scheme, consider a signature (e, s, d, ) computed in
full correspondence with the first signature gener-
ation procedure when using the correct signer’s pri-
vate key. When, submitting the signature (e, s, d, o)
to the input of the verification procedure, we have
the following proof of the correctness of the pro-
posed signature scheme with the first signature
generation algorithm [take into account formulas
in the system (5)]:

R*=Y’Z’U% =
= GY1Q%Y2 0 G5 Q%2 BsGdul Qdu2 de _
— Gt +du; Qeyz +829+duy (xeﬁsydc _

Gt (kem)Qevatt=ev) yeps, d ) —ep=s,—d _

kot
=G"Q p=R;
R!* — Y!@z!SU!dG —
—HY V2 o CHSA V522 Bstul Vdu2 ch _
—H TR +duy VY252 +duy 0LeBsde _

— g tEen)yevet(t-en) yegs, d o —eg=s,~d _

— Hkth — R!;
{R*=R;R*=R}=e*=e.

The final equality means the input signature
passes the verification procedure as a genuine
signature, i. e., the signature scheme performs
correctly. The correctness proof of the signature
scheme with the second signature generation algo-
rithm is similar to the presented one.

7

Discussion

The fact that the same signature satisfies two
similar, but different, verification equations is en-
sured by the same pairs of powers (y;, y,), (21, 25),
and (u;, u,) and the same multipliers a, B, and v,
which are used to compute the corresponding ele-
ments of the first (Y, Z, U) and second (Y', Z', U’)
public keys. The public keys are computed after se-
lection random minimum generator systems <G, Q>
(in the first FAA) and <H, V> (in the second FAA)
which are secret. Every of the element of the first
(second) public key is calculated as an element of
the two-dimensional cyclicity group I' g - (I ggv-)s
which is multiplied by a random scalar. After sca-
lar multiplication we get with a high probability a
vector outside the group I' g o. (I y-)- Thus, the
elements of the first (second) public key are not ele-
ments of the group I' g o. (I gy y-)-

Suppose a vector W is an element of the group
I'_g g The problem of finding the powers w; and
w, such that W = G*1Q*2 is called discrete loga-
rithm problem in a two-dimensional cyclicity group
I _g,q-- In this paper we assume that a potential
signature forger can efficiently solve this problem,
i. e., if a minimum generator system is given, then a
forger can efficiently express any group element as
product of some powers of two generators.

Consider an arbitrary minimum generator sys-
tem <G;, Q;> of the primary group of order g2 in
the first algebra. The forger can generate random
integers o, B;, v; and efficiently compute the values
(Yi1> Yiz» 2110 Zi9> Usp» Uso) such that Yo, ! = G/11Q,Yz2,
ZB, 1 = G;1Q/2, and Uy, ! = G;“1Q;“2. Then, using
the formulas (6) and (7), he can compute a signature
satisfying the first verification equation. However,
this signature will satisfy the second verification
equation only if the primary group of order ¢2 of
the second algebra contains a minimum genera-
tor system <H,, V,> such that Yo, = HY1Vyz2,
Z'B, ! = H"V*2, and Uy, = H“1V*2, However, in
fact, the fixed four values (y,;, Y;9, 21> 2;9) define
one minimum generator system <H,, V> (that can
be supposedly computed) such that Yo, = HY1V Y2
and Z'f;1 =H;*1V?2, For the fixed values of the vec-
tors H; and V, one will get Uy, ! = H,*"V,*2, where
the values u';; and u';; are random. Since the first
and second commutative FAAs are independent,
the equalities u';; = u;; and u';5 = u;5 of two pairs of
256-bit numbers can take place only at random with
probability about 27512,

Therefore, we expect that the signature forger is
unable to find efficiently the required alternative
pair of vectors <G;, Q,> or to guess the secret ele-
ments <G, Q>. A quantum computer will not pro-
vide much help to the forger, since the discrete log-
arithm problem that arises is hidden (the “bases” of
logarithms, i. e., <G, Q> and <H, V> are unknown).
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In fact, breaking the proposed signature scheme is
to find two minimum generator systems of two dif-
ferent two-dimensional cyclicity groups (contained
in two different FAAs) which are consistent with
each other. These two minimum generator systems
are connected by the mechanism of doubling the
verification equation, i. e., by a single digital signa-
ture, which must satisfy the verification equation
given in two different independent commutative
FAAs.

One can note, that the method [18, 19] of the re-
ductionist security proof that was applied to the
Schnorr signature algorithm [20] can be also ap-
plied to the proposed signature scheme. Indeed, an
assumption that a signature forger is able to calcu-
late a signature equally well for six different hash
functions leads to potential possibility to compute
the private key (y1, Y5, @, 21, 29, B> Uy, Ug, ).

Indeed, like in [19], suppose a potential signa-
ture forger can compute signatures for different
hash functions, when the values of the randomiza-
tion parameters are k, ¢, and p are fixed. For four
different hash functions he computes the signa-
tures (e;, 81, dy, 67, (€9, S9, dy, Gy), (€3, S3, d3, G3),
and (ey, S4, dy, 04). Then the signature forger com-
poses the following system of eight linear equations
with eight unknowns y, ys, 21, 29, Uy, Uy, k, and ¢
[see (B)]:

2181 +udy =k —ejy; mod g
2981 +Usd] =t —eys mod ¢
2189 +uyds =k —egy; mod g
2989 +Ugdy =t —egys mod ¢
2183 +uydz =k —egy; mod g
2983 +Ugdg =t —egzyy mod ¢
2184 +uydy =k—e4y; modgq

2984 + lL2d4 =t— eqYs mod q

Note, the probability that the main determinant
of his system of equations equals to zero is negli-
gibly small (g71). Solving the latter system one can
get the values of y,, y,, 21, 25, 4, and u,. It easy
to show that, using the formulas o, = pa¢5iy 4 for
i=1, 2, 3, 4 (see step 6 in the first signature gen-
eration algorithm) and finding roots from different
ratio values ,/c; in GF(p), one can calculate the val-
ues of scalars a, 3, and y. Thus, taking into account
that operations of finding roots in GF(p), where
p=2q+ 1, have polynomial computational complex-
ity, one can conclude that a polynomial algorithm
for forging a signature is reducible to a polynomial
algorithm of solving the HDLP underlying the in-
troduced signature scheme.

The above provides a general idea for construct-
ing a signature scheme and a general justification
for its resistance to attacks using conventional and

\ SALLNTA MHDOPMALLAN N\

B Table 4. Comparison with some known post-quantum
signature schemes

. . Rate of Rate of
. Signa- Public . .
Signature X . signature signature
ture size, | key size, . o ps .
scheme byte byte generation, | verification,
y 4 arb. un. arb. un.
Falcon 1280 1793 50 25
Crystals-
Dilithium 2701 1472 15 2
Rainbow 64 150 000 - -
[15] 192 768 50 80
[16] 192 512 40 80
Proposed 128 768 70 80

quantum computers. Detailed consideration of the
security issue and obtaining detailed estimates is a
separate independent task for the new study.

It is important that the proposed fundamen-
tally new method for setting the HDLP can be im-
plemented in numerous different ways. The most
obvious is the use of different pairs of finite asso-
ciative algebras. In particular, pairs of algebras of
different orders, different types and structures can
be used. In particular, is interesting to consider the
following versions:

i) one algebra is commutative and the other one
is non-commutative;

ii) one algebra is defined over a ground finite
field GF(p), and the other one is defined over a finite
extension of the binary field GF(2%).

The introduced design method opens up quite
wide possibilities for implementing various design
variants of digital signature schemes. The intro-
duced signature scheme suites well for software
implementation, since it uses only additions, mul-
tiplications, exponentiations and inversions (mod p
and mod ¢).

Currently, the NIST competition [21] for the
development of post-quantum public-key crypto-
systems has entered the final stage [22]. The final-
ists in the category of post-quantum signatures
were Falcon [23] and Crystals-Dilithium [24], and
Rainbow [25]. It is interesting to compare the pro-
posed signature scheme with the finalists and with
other HDLP-based signatures. A rough comparison
is presented in Table 4.

Conclusion

A new design method and a practical HDLP-
based post-quantum signature scheme have been
introduced. The proposed method is quite simple to
understand and has fundamental differences from

Ne2,2021 N\

VNH®OPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI N\ 49



/

SAWNTA NHOOPMAUNI

other known methods of designing post-quantum
digital signature schemes. This reduces the com-
plexity of the further stage of a detailed study of
the security of the developed signature scheme.
Another important advantage of the proposed
method is that it opens up the possibility of devel-

7

oping a new class of practical post-quantum cryp-
tosystems. The latter is of particular importance
in the light of the widely conducted researches on
the development of post-quantum digital signature
standards.
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ITocTkBaHTOBaA cxema umprBoﬁ IMOAIIMCH HA rpyIime C qumpexmepHoﬁ IUKJINYHOCTBIO
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BBenenue: paszpaboTKa IPAKTUYHBIX ITOCTKBAHTOBBIX CXEM IOJNUCH ABJISAETCSA OJHUM U3 BHI30OBOB IPUKJIAAHON Kpunrorpadpuu. He-
CKOJIBKO Pa3JMYHBIX ()OPM CKPBITOM 3aZlau¥l JUCKPETHOTO JOTapu(MUPOBAHUA OBLIN IIPEJIO}KEHBI HETABHO B KAUECTBE IPUMUTHBA CXEM
MOJNUCH, CTOMKUX K KBAHTOBBIM aTakaM. Ilesb: paspaboTKa HOBOM (DOPMBI CKPBITOH 3aaun AUCKPETHOTO0 Jorapud)MUPOBaHN S, 38 JaHHOMK
B KOMMYTATHBHOH IpyIe, 00J1ajaolneil MHOTOMEPHOU IIUKJINYHOCTBIO, M METO/Ia IIOCTPOEHU A IIOCTKBAHTOBBIX cXeM noxunucu. Pesyis-
TaThI: IPEJIJIOJKEeHA HOBasA (hopMa CKPBITON 3a/iaUy JUCKPETHOTO JIOTapu(MUPOBAaHUA B KauecTBe 6230BOT0 IPUMUTHUBA JJIA IPAKTUIHBIX
IMOCTKBAHTOBBIX aJITOPUTMOB ITUMPOBOI moxnrcu. IIpecTaBieHbl JBe HOBbIE YeThIpEXMEPHbIe KOHEUHbIe KOMMYTATUBHbBIE aCCOIUATUB-
HbIe aJIre6pbl B KaUueCTBe aJredpandecKoro HOCUTEJIA IIPeJIOKeHHON HOBOM BEIUNCINTEIbHO TPYAHOM 3agaun. PazpaboTan MeTo II0CTPO-
€HUSA CXeM IOAINCH Ha OCHOBe mociiefHeil. CyTh MeTo/a COCTOUT B MCIIOJIb30BAHUU YABOEHHOTO OTKPBITOTO KJOUA U ABYX OJUHAKOBBIX
ypPaBHEHUH [Jis IPOBEPKU MOAJUHHOCTY OJHOM U TOH sKe moanucH. s reHepamuu mapbl OTKPBITHIX KJII0UeH BBIOUMPAIOTCS COAYUalHBIM
obpasom gBa 6asuca <G, Q> u <H, V> nByX pasjnuHBIX KOHEUHBIX I'PYIII I'g, Q- 1 | e 00J1aaI0IIUX JBYMEPHOUN [IUKJIUYHOCTHIO.
Ilepssrit orkpeiThiit Kiatou (Y, Z, U) Beruucasercsa caeayomum obpasom: Y = GY1Q%2a, Z = G*1Q*2B, U = G*1Q"“2y, rae HabOD IeJIBIX YHCes
Y15 Ygs @, 295 29, B5 Uy, Uy, V) ABIIACTCA CEKPETHBIM KJ0UOM. Bropoit oTkpeiTeIil Kitou (Y', Z', U') BerunciseTcsa cIeayomuM o6pa3om:
Y =HY1V¥2q, Z' = H*1V?*23, U’ = H“'V“2y. Hcnonb3oBaHue OAMHAKOBBIX IIaPAMETPOB [JI51 BBIUNCJIEHUS COOTBETCTBYIOUX APYT APYTY dJie-
MEHTOB, IPUHAJIEIKAIINX PABHBIM OTKPBITBIM KJIOUaM, 00eCIIeurBaeT BO3MOYKHOCTD BBIUUCIEHUS eNHOM HOAIIUCH, YI0BIETBODSOIIEH
IBYM CXOIHBIM IIDOBEPOYHBIM YPABHEHUAM, 3aJaHHBIM B PA3/IMUHBIX KOHEUHBIX KOMMYTATUBHBIX aCCOIMATUBHBIX anredpax. IIpakTu-
yecKas 3HAYUMOCTb: IIPEJJIOKeHHas cxeMa [ POBOI MOJIUCY IPECTABIAET IPAKTUUYECKUI MHTEPeC I Pa3paboTKU IOCTKBAHTOBBIX
aJTOPUTMOB IOAIUCH, 00JIaJA0IUX CPABHUTEIbHO MAJBIMUA Pa3MePaMHU IO/IINCH, OTKPBITOTO ¥ CEKPETHOTO KJIIOUei.
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