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Introduction: A common problem in image restoration is image denoising. Among many noise models, the mixed Poisson —
Gaussian model has recently aroused considerable interest. Purpose: Development of a model for denoising images corrupted by
mixed Poisson — Gaussian noise, along with an algorithm for solving the resulting minimization problem. Results: We proposed a
new total variation model for restoring an image with mixed Poisson — Gaussian noise, based on second-order total generalized
variation. In order to solve this problem, an efficient alternating minimization algorithm is used. To illustrate its comparison
with related methods, experimental results are presented, demonstrating the high efficiency of the proposed approach. Practical
relevance: The proposed model allows you to remove mixed Poisson — Gaussian noise in digital images, preserving the edges.
The presented numerical results demonstrate the competitive features of the proposed model.
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Introduction

Image denoising is an important task in digi-
tal image processing. During the formation pro-
cedure, the image is usually degraded by noise.
The denoising problem is to recover u from an ob-
served image f with the size of M x N. In litera-
ture, many types of noise generated by different
devices and processes have been considered, e. g.,
Gaussian [1], Poisson [2], as well as mixed noise,
e. g., mixed Poisson — Gaussian [3]. In practical,
the Poisson — Gaussian model can accurately de-
scribe the noise present in a number of imaging
applications such as astronomy, medicine, biology,
etc... [4, 5]. The Poisson component accounts for
the signal-dependent uncertainty inherent to the
photon counting process, and the additive white
Gaussian noise component accounts for the other
signal-independent noise sources, such as thermal
noise [6].

As is well known, several approaches have
been developed for recovering images corrupted
by the mixed Poisson — Gaussian noise. Among
them, one of popular approaches is perhaps to-
tal variation (TV) model for mixed Poisson —
Gaussian noise removal (TVPG) [7, 8] using the
TV norm as regularization term, formulated as
follows:

* . A 2
=arg Vuldx +— —-f) dx+
u =ar Jnln(jd u| x 2_[9(” ) dx

+ B[, (u-Tlogu)dx), )

where f is the observed image; Q@ — R2 be bounded
open set and u must be positive almost everywhere
over Q; A, B are positive regularization parameters.

In literature, we can find many efficient al-
gorithms for solving the TV regularized mixed
Poison — Gaussian denoising model (1), such
as a primal-dual algorithm [9], an augmented
Lagrangian method [10-12], the split Bregman
method [13, 14], etc.

Asis well known, the TV regularizer framework
preserves edges well but has the transformation of
smooth regions into piecewise constant regions. To
avoid this problem, many regularization techniques
for the denoising problem have been introduced, in-
cluding non-local total variation [15], TV combined
with higher-order term [16], Euler’s elastic model
[17], a mean curvature model [18, 19]. Reccently,
a well-known method is the total generalized var-
iation (TGV) introduced as penalty functional for
image restoration [20, 21]. TGV includes higher-or-
der derivatives of u. Image reconstructed by TGV
regularization usually includes sharp edges and
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piecewise polynomial intensities [22]. With simplicity and prominence, the second-order TGV with weight o
(TGVO%) based models have been widely researched recently, and achieved great successes in image process-

ing [23—-25]. Applied for image denoising, the resulting model is given by:

u* :arcmin(TGV(f(u)+%fg(u—f)2 dx] 2)

u

The model (2) was proposed in [23] for denoising image corrupted by Gaussian noise. Therefore, in case of
mixed Poisson — Gaussian noise, the model itself cannot provide necessary accuracy for further data inter-
pretation and analysis.

Inspired by the advantages of TGVO% regularization, we propose an second-order TGV regularized model
for the mixed Poisson — Gaussian noise removal problem as follows:

In this paper, we employ the the second-order TGV instead of the standard TV norm in the model (1) and
propose the following optimization problem:

U arginin[TGV(f (u) +%Ig(u — f)2 dx+ s .[Q(u —flogu)dx), 3)

where A, and A, are positive parameter.

Our main contributions in this paper are following. We introduce a new total variation model for restoring
image with mixed Poisson — Gaussian on the basis of the TGV(E. The second important advantage is to extend
an efficient alternating minimization method for solving the proposed model. Furthermore, we provide ex-
perimental results to demonstrate the high efficiency of our algorithm for considered problem, in comparison
with related methods.

Proposed method

The denoising model
In this paper, we consider the following optimization problem (3):

U= argmin(TGVf (u)+%J‘Q(u —f)z dx+ kzjg(u—flogu)dx).

u

Referring [20, 24], we shortly review the concept of the second-order TGV. The definnitions can be found
in Appendix.

Following the Refs. [7, 23—26], we have theorem (Theorem 1) for the considered model.

Theorem 1. The optimization problem (3) has a solution.

Proof: The proof will be given in the Appendix for completeness.

According to [20, 23-25], the discrete TGV(E regularization of u can be formulated as

TGV(f (z)=minoy ||Vu - w||1 +ag ||£(w) L
w

where w = (wy, wy)T; e(w)= (1/2)(Vw +Vw? )
The operators g(w) and Vu can be expressed as follows:

1
V1w1 —(V2w1 +V1W2)

\%
Vu:{ 1 u} and g(w)= 2 ,

vz u E(Vzwl +V1U)2) Vzll)z

where V = (V5 V,), V; and V, are derivative operators in the horizontal and vertical directions, respectively.
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According to the version of TGVO%, the discrete version of the minimization problem (3) is given by

u* —arg min(al [Vu-w], +oy "s(w)"1 + %”u - f||; +B(1, u—flog u>) @)
u, w

Computational method

In this section, we derive the numerical method for problem (4) in detail. By the classical augmented
Lagrangian multiplier method [16, 17, 19—21], we introduce three new variables (d, g, z) and rewrite the equa-
tion (4) in the constrained optimization problem as follows:

) A 2
min_(oslaly +alel, + Hle-rIE B2 riog=) | ®

st.d=Vu-w,g=¢Ww),z=u

d
d= 1 and g= & 8 .
dy g3 &

The augmented Lagrangian functional for the constrained optimization problem (5) is defined as

with

A
L(u, w,d, g, 2,01, pg, ag)z(al l], + ezl +§||z—f||2 +B(L, z—flogz)— (0, d - Vu+w)+

# M uf? - (& g -e()) + g ()} ~(u 2—u>+n?3||z—u||§j, ©®)

where 1y, Ny, N3 — positive parameters; 0, £, 1 — with Lagrangian multipliers.
The discrete gradient Vz and the second-order derivatives V2u of an image u for the pixel location (i, j) in
u(@=1..M; j=1..N) are defined like:

Vil j=Ugq j~ Uy i Volby i = Usq i~ Uy 5

Vul.’j| = \/(Vlui,j )2 + (V2Ui’]. )2 .

The minimization method to solve the problem (6) can be expressed as follows:

Vit ;= (Veu p Vi ),

1) _ argmm[_<e<k>, o) v ) ) g

u 2
2
)
wF) = arg min[—<9, a®) _yu B+ 4 w> + T]?lud(k) “vul®) 4y

w

APy

—<u(k), () _u>+n73

‘2

2

_ <¢, g®) _g(w)>+”72||g—s(w)||2); (7

)
)
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d*) _arg min[al ]| 1— <9, d— vy (k1) > N %”d _yy(BD) (k1)
d

g—s(w(k+1)) z],

AR - arg;nin{%"z -~ f||§ +B(1, z- flogz) —<u(k), z2— u(k+1)>+n?3

ghh) _ arg;nin[az lll1— <§(h)’ g— s(w(k+1) )> . Tl?z

. u(k+1)
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with update for 9(1k+1), <";(2k+1), ugﬁl) :

2

b)) (g(w(kﬂ))_ g(k+l)); 8)

u(k+1) _ u(k) 1 (u(k+1) _ (k1) )

o(e+1) _g(k) | - (vu(kH) _ glt1) _ (k1) )

The u subproblem in (7) is given by:

b

ulFr) - arg min(—<6(k), d®) —vu + ) > + 1%Hd(k) ~vu+w H2 - <p(k) ) u> +

u 2
2 2
sl 2}*1_1 PO I BT N
2) 2 M1 2 n3
2 2
Thus, we get
(k) (k)
mvT{me__d(k)_w(kqmg[uﬂ__z(k)}o. ®
Uil M3
We can rewrite the equation (9) as follows:
(k) (k)
(ThVTV +1n3 )u(kﬂ) =m V" {d(k) rulh) - G—J +n3 [Z(k) —H—J- (10)
Uil M3

It is obvious that system (10) is linear and symmetric positive definite, therefore z#+D can be efficiently
solved by fast Fourier transform [18], under the periodic boundary conditions:

F[mVT {d(k) +wl® G(k)J 13 {Z(k) B u(k) H
k+1) _p! il N3

(
* an(VTV)+n3

, (11

where F and F! are the forward and inverse Fourier transform operators.
The w problem is

w1 arg min(—<6(k), a®) w4 w> +

w

2
+ %Hd(k) —vul®) 4y L —<E_,(k), gk s(w)> +n?2||g— s(w)”ij =
#[? #[?
zn_]- w +d(k) _Vu(k+1) _6_ +n_2 S(w)_g(k) +E"_
2 m |, 2 nz |,

Therefore, we get:
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(k) (k+1) 9(1k) T igk)
m|dy -V wp - —— 4V | Vi — g +—— |+
N1 N2
1 é(k)
+ nzvg‘ —(V2w1 + Vle ) —83 +3— = 0,
2 N2
(12)
(%) (%)
k B+l 0 1
m dg )—Vzu( + )+w2 2 +1’]2V1T —(Vzwl +V1w2)—g3+3— +
m 2 N2
T (%)
+ T]2V2 V2LU2 — 89 +2— =0.
up;
We have:
T N2 o T N2 T (k+1) _ (k) egk)
T]1[+T]2V1 Vl +7V2V2le +?V2V1W2 =M1 Vlu _dl +— |+
M
of @) [ e
+NeVy| &1 ——— |[+M2Va | &3 ———|;
M1 M1
(13)
N2 oT Ng o T T (k+1) (k) e(zk)
?Vl Vzwl +[T‘|II +?V1 Vl +T]2V2V2jll)2 =M Vzu —dz +— |+
m
N S T -
+MgVi| 83 ——— [+NaVa| &2 ——— |
N2 N2
From (13), we have a system of linear equations in two unknowns w§k+1), wgkﬂ) :
a b w§k+1) S
p ot |7 (14)
c wg +1) t
with

T M2 T T T
a=(n11+n2V1V1 +72V2V2J; b=n?2V2V1; C=%2V1Vz;

d= [1’]1[ +n72V1TV1 + 1’]2V’£V2 ];

(k) (k) (%)
B+l k) © € €
s=m V1u( ' )—d§ ) V]| g -2 |+naVa | g3 -2 |,
m m m
(%) (%) (%)
B+l k) © € €
t:nl Vzu( * )—dg )+2_ +T]2V1T g3 -3 +1’]2Vg gz -2 .
M N2 N2

Similar to the u subproblem, we can solve problems (14) with fast Fourier transform, under the periodic

boundary conditions:
w:{k+1) =F71 F(Sd_bt) . wgk+1) :F71 F(at_cs) ) (15)
F(ad—cb) F(ad—cb)
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The d subproblem is given by:

2
d(k+1) - argmin(al ||d||1—<9, d— Vu(k+1) " w(k+1)>+%“d _vu(kﬂ) N w(k+1) ‘ J _
d 2
2
(k)
=argmin| oy |d| 1+n—1 d—vuFr) 4 (B 0
d 2 |,

The solution of the d subproblem can readily be obtained by applying the soft thresholding operator [27]:

()

yuErD) _ (k1) | A

k1) _ M max| [vulF) Z (k4D +ﬂ —ﬂ, 0] (16)
v () (41) ok o
n

The g subproblem is given by:

gP) _ arg;nin{(lz lel 1—<§(k), g— 8(w(k+1) )> +n?2

P S(w(k+1))

2

2

)

&
N2

Nz

2 g_g(w(kﬂ))_

=argmin| oy ||g|| 1+
¢ 2

The solution of the g subproblem can be obtained by applying the soft thresholding operator too:

k
g(w(k+1))+§() (k)
g _ ni 'max[g(w(kﬂ)) & _0‘_2,0], (17)
g(w(k+1))+§() 2| e
N2

The z subproblem is given by:

2
SB+1) _ argmin(%"z—f"2 +B<1’ Z—f10g2>—<p(3k), Z—u(k+1)>+n?3uz—u(k+l) ‘ ]:
‘ 2
A el
=argmin| [z~ 7|2 +p(L, 2~ Flogz)+ B Jo V) >
: |2 2 n3
2

Therefore, we get
k(z—f)+ﬁ(1—ij+n3(z—u“‘*”)—p(;‘) —0.
z
This equation can be rewritten as follows:

(+13)2? —z(ngu(k”) +pl) —B+xf)—3f -0.
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The solution of z#*D is the positive solution given by:

2
(nsu(m) o) —p+ kf) + J(ngu(kﬂ) ol —p+ Xf) +4(ng +1)Bf

(k+1)
? 2(ng +1.)

(18)

The complete method is summarized in Algorithm 1. We need a stopping criterion for the iteration: we end
the loop if the maximum number of allowed outer iterations N has been carried out (to guarantee an upper
bound on running time) or the following condition is satisfied for some prescribed tolerance o:

<G (19)

where o is a small positive parameter.
Algorithm 1: Alternating minimization method for solving the model (5).
. Initialize: 2@ = 4y = f; d0) = g0 = 0; WO =0; £ = 0.
. While Stopping condition is not satisfied do:
. Compute u**D according to (11).
. Compute w**D according to (15).
. Compute d**D according to (16).
. Compute g**D according to (17).
. Compute z**D according to (18).
. Update 60", u{F1) | elF) po (g).
10.k=Fk+ 1.
11. Endwhile.
12. Return u.

N U B W

Numerical experiments

In this section, we present some numerical results to illustrate the performance of the proposed model for
MPGN removal. In order to prove the superiority of the proposed model, we compare our results with closely
related approaches [8, 23]: the TVPG model (1) and TGV model (2). For compared models, the optimization
problem are implemented by the state-of-the-art alternating minimization algorithm. The original test imag-
es are shown in Fig. 1, a—d.

All experiments were carried out in Windows 10 and Matlab running on a desktop equipped with an Intel
Corei3, 2.1 GHz and 12 GB of RAM. To assess quality of the restoration results, we use peak signal-to-noise
ratio (PSNR) defined as follows:

2552 . MN

. 12
o -
2

’

PSNR= 1010g10

B Fig. 1. Test images: a — Boat; b — Head; ¢ — Clok; d — Lake
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whereu, u”aretheoriginalimage, the reconstructed
ornoisyimage accordingly; M and N are the number
of image pixels in rows and columns.

We also use other popular measure called SSIM
(structural similarity index measure). The SSIM
measure compares local patterns of pixel intensi-
ties normalized for luminance and contrast, and
allows us to get more consistent with human visual
characteristics [28]:

(2p by +c1)(2cu,u* +e, )

&« 2

SSIM(u, u*)=
(Hi +u3* +C1)(G§ +Glzt* +C2)

where 11, 11, are the means of u, u* respectively;
6,> O, — their standard deviations; o, ,. — the
covariance of two images u and u”; ¢, =(K;L)%
¢y =(K,L)?, L is the dynamic range of the pixel
values (255 for 8-bit grayscale images), and K; < 1,
K, <1 are small constants.

For our experiments, we set tolerance in (19):
6 =0.0001 and N =200. The observed images in
our experiments are simulated as follows. To test
different noise levels, the noisy images are gener-
ated by Poisson noise with some fixed peak I

and by Gaussian noise with standard deviationmg);.
Empirically, all of the compared methods perform
image denoising with their optimal parameters. All
images are processed with the equivalent parame-
ters A = 0.4, B = 0.6, which gave the best restoration

results. For our models, we set n; =5, ny=5 and
ng=1.

In Figures 2, a—d and 3, a—d we exhibit the
results of compared methods for noise levels
I.x=120,0,=5and I, ,, =60, c,=5.

For a better visual comparison, we show some de-
tails of the restored images in Fig. 4 for noise levels
I)ax =120, 0,=5, and in Fig. 5 for I, ,, =60, 5, =5.
In these Figures, we include details of the noisy and
original images. It can be seen that our method gives
even better visual improvement than the other two
methods. For the comparison of the performance
quantitatively, the measures of PSNR and SSIM
values are reported in Tables 1 and 2. In each of the
Tables, we include the PSNR and SSIM values for
noisy images and recovered images, and the average
results over test images for each method are shown.
The better restored results are highlighted in bold.

In Figures 6, a—d and 7, a—d, we also show the
results details of compared methods for noise lev-
els I___ =120, O, = 10 and I, =60, G, = 10, re-
spectively. We report the PSNR and SSIM values
for noisy images and recovered images in Tables 3
and 4. The average results over test images also ap-
pear in last row of each table. The better restored
results are highlighted in bold.

From Figures, we can see that the images re-
covered by our proposed model are better quality
than those of the compared approaches. Beside, the
measurable comparisons reported in Tables 1-4,
the our proposed approach gets higher PSNR, SSIM
values than those of the TVPG and TGV approach-
es. It indicates the competitive performance of the
proposed method for denoising image corrupted by

a)

B Fig. 2. Recovered results for the test images with

noise level I =120, G, = 0.5: a — Noisy; b — TVPG;
c—TGV;d — Ours

B Fig. 3. Recovered results for the test images with
noise level I, .. =60, Gy = 0.5: a — Noisy; b — TVPG; ¢ —
TGV; d — Ours
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B Fig.4. The zoom-in part of the recovered images in first row and in second row of Fig. 2: a — details of original imag-
es; b — details of noisy images; ¢ — details of restored images by TVPG; d — details of restored images by TGV; e — de-
tails of restored images by our approach

a)

.
<) d) 9]

o o

B Fig.5. The zoom-in part of the recovered images in third row and in second row of Fig. 3: a — details of original im-
ages; b — details of noisy images; ¢ — details of restored images by TVPG; d — details of restored images by TGV; e —
details of restored images by our approach

B Table 1. PSNR and SSIM values for noisy images and restored images with noise level I .. =120, 6,=5

Image : PSNR : SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 20.5670 26.9777 27.1435 27.5823 0.5482 0.7688 0.7749 0.7812
Clock 15.3632 24.2404 25.9160 26.4658 0.36742 0.8856 0.8884 0.8956
Lake 18.6823 24.7286 24.7002 25.7141 0.61996 0.7649 0.7779 0.7864
Head 20.7322 26.9048 27.9500 28.8874 0.60745 0.8624 0.8657 0.8739
Average 18.8362 25.7129 26.4274 27.1624 0.5358 0.8204 0.8267 0.8343
B Table 2. PSNR and SSIM values for noisy images and restored images with noise level I, .. =60, 6,=5
Image PSNR SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 18.6799 24.0460 24.7064 25.1713 0.3871 0.6701 0.6818 0.6931
Clock 13.0537 24.3635 24.4234 25.5345 0.2600 0.8409 0.8423 0.8587
Lake 16.339 22.0954 22.4670 22.8379 0.4735 0.6762 0.6877 0.6920
Head 16.7107 25.2752 25.6161 26.4411 0.5736 0.7724 0.7923 0.8087
Average 16.1958 23.9450 24.3032 24.9962 0.4235 0.7399 0.7510 0.7631
28 / NHDOOPMAUNOHHO-YNPABASIIOWLVNE CUCTEMbI / Ne¢ 2, 2021
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B Fig. 6. Recovered results for the test images with

noise level I, =120, 5,=10: a — Noisy; b — TVPG;

¢ — TGV; d — Ours

B Fig. 7. Recovered results for the test images with
noise level I =60, O = 10: a — Noisy; b — TVPG; ¢ —

max

TGV; d — Ours

B Table 3. PSNR and SSIM values for noisy images and restored images with noise level I, =120, G, = 10

PSNR SSIM
Image
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 19.7547 24.7675 25.9887 26.1733 0.4376 0.7255 0.7218 0.7316
Clock 14.5413 22.4326 24.6121 25.9687 0.2980 0.8571 0.8421 0.8749
Lake 17.805 23.3247 23.7328 24.2787 0.5191 0.7249 0.7270 0.7396
Head 16.031 26.3812 26.5097 27.0119 0.6075 0.8154 0.8292 0.8358
Average 17.0330 24.2265 25.2108 25.8582 0.4655 0.78073 0.7800 0.7955
B Table 4. PSNR and SSIM values for noisy images and restored images with noise level I, , . = 60, G, = 10
Image PSNR SSIM
Noisy TGV TVPG Ours Noisy TGV TVPG Ours
Board 17.5737 23.3837 23.5885 23.8189 0.2566 0.6060 0.6054 0.6215
Clock 12.2833 24.3595 24.2930 24.4320 0.1793 0.7965 0.7726 0.8150
Lake 14.6131 20.8641 20.8629 21.5523 0.3230 0.6018 0.6097 0.6207
Head 14.1531 23.4717 24.2758 24.6904 0.4588 0.7304 0.7386 0.7496
Average 14.6558 23.0198 23.2551 23.6234 0.3044 0.6837 0.6816 0.7017
Conclusions minimization algorithm is employed for solving the

In this paper, we have investigated a second-or-
der TGVO? based model for denoising image cor-
rupted by MPGN. Computationally, an alternating

proposed optimization problem. Finally, compared
with several existing state-of-the-art approaches,
the experiments demonstrate competitive perfor-
mance of the proposed method.
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Appendix

Definition 1 [20, 23-25]. Let Q — R2 be a bound
domain, k> 1 and o = (0, ay) > 0.

Then the total generalized variation of order k
with weight o for u € LY(Q) is defined as the value of
the functional:

TGV ()= sup{ [, udiv?edx|9 < C3(0, 8%¢),

I8l <o

div&)"oO <oy } )

where d denotes the dimension of images,
C(% (Q, SdXd) is the space of compactly supported
symmetric d x d matrix fields, S%? is the set of all
symmetric d x d matrices,

. d 9% (o d 92%‘
(dive), =37, P (div®s) Zi:l’jﬂaxi@xj'

i

The infinite norms of 0 and div6 are given by

1
d 232
o, =sup( S o P

1

. d . 2\2
||d1v8||Oo =i1£(zj=1‘(d1v9)j(x)‘ j .

Definition 2 [20, 23-25]. The space of functions
of bounded generalized variation (BGV) is defined
as follows:

BGVZ(Q)= {u e 1(Q)|TavE (u)< oo},
ez =luly +TGVS (w).

BGV2(Q) is a Banach space independent of the
weight vector o, TGVO% is a seminorm and a con-
vex function in BGV2(Q). Subsequently, we de-

note the spaces UzC%(Q,]R), V =C2 (Q, Rz) and
G:C(%(Q, SM).

Proof for Theorem 1.

Let u® be a bounded minimizing sequence. By
the compactness property in the space of bound var-
iation BV(QY), there exists u* € BV(Q)), such that u(®
converges weakly to u* € BV(Q) and u® converges
strongly to u” in L1(Q). According to [7, 28—26], we
know that the functions TGVZ (u) and data fidelity
term are all lower semi-continuous, proper and con-
vex; and according to Fatou’s lemma [29], we have

E@) > E@b).

Thus, u*is a minimizer of the optimization prob-
lem (4).
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Mopens Ha OCHOBe IIOJTHOI 00001I€HHOH BapHaiyl BTOPOT0 MOPAIKA JJI BOCCTAHOBJIEHU ST H300pakeHN

CO CMEeIIaHHBIM ITYAaCCOHOBCKO-TayCCOBCKHUM IIIYMOM
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AYHUBePCUTET HAaYKU U TexHUKU, Hrysu Jlyur Baur, 54, [lanaur, 550000, BeeTHam

6Yuusepcuter sxoHoMuku, Hry Xanx Coxn, 71, anasnr, 550000, BreTHAM

Beenenue: BoccTaHOBIeHNEe N300pakeHNII UTPAET BaXKHYIO POJIb B 00paboTke IudpOBLIX n300pakenuii. PacnpocTpaneHHOH Ipo6Jie-
MO¥ BOCCTAHOBJIEHUS M300PaKeHUI SIBJAsIeTCSA IIyMOIOaBaeHue. B o6acTu 1mrymMonogaBieHns U300pakKeHul CyIeCTBYeT MHOMKECTBO
MoOJieJIell IIIyMa, OJHOU M3 HUX MOYKHO Ha3BaTh MOJEJIb CMEIIaHHOI'0 IIYaCCOHOBCKO-TAyCCOBCKOT'O IITyMa, KOTOPas C HeJJaBHETO BpeMeHU
BBIBBIBaeT Oosbinoil nHTepec. Ileas: paspaboTka Moe N IIYMOIOAABICHUA N300paKe N, NCKaKeHHBIX CMEIIaHHBIM IIyaCCOHOBCKO-Ta~
YCCOBCKUM IITYMOM, U aJITOPUTMA AJIs PEIIeHUA Pe3yJIbTUPYIONell 3afaunl MUHUMU3anu. Pe3yabTaTsl: IpeaIoykeHa HOBas MOJeJb I0JI-
HOI BapuAaIlUuU JJIS BOCCTAHOBJIEHUS M300PAKEHUA CO CMEIIIaHHBIM ITyaCCOHOBCKO-TayCCOBCKUM IITYMOM Ha OCHOBE IIOJIHOI 0000IIeHHOMi
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Bapualuy BTOPOTO MOpAAKa. [{Jid pellleHus: pacCMaTpUBaeMol 3aiaun ONTHUMHUBAINUY IPpUMeHAeTCA d3GEKTUBHBIN aJIrOPUTM YepeayIo-
mieficss MUHUMU3AIUU. B KauecTBe UIIIOCTPAI[AY, B CDABHEHNE C POJCTBEHHBIMY METOLAMU, IPEICTABICHBI SKCIEPUMEHTAIbHBIE PEe3YJIb-
TaThl, CBUJETEJIHCTBYIONIVE O BBICOKOU ad(PeKTuBHOCTH NpeAsaraeMoro moaxona. Ilpakruueckas 3HaYNMOCTbh: pazpaboTaHHASA MOJENIb
IMO3BOJIAET YIAJIUTE CMEIIaHHBIBIH IYaCCOHOBCKO-TAYCCOBCK U IITyM Ha (G POBLIX N300paKeHUAX C COXpaHeHUeM rpanuil. IIpuBeieHHbIE
YuCJIeHHbIE Pe3YJIbTATHI JeMOHCTPUPYIOT KOHKYPEHTOCIIOCOOHbIE XapPaKTEPUCTUKY MIPEIJIOKEHHON MOAENN [JIsi IIIYMOIIOJAaBIeHUA 30~
OpaskeHU, NCKAKEeHHBIX CMEIIaHHbIM IIyaCCOHOBCKO-TAYCCOBCKUM IITYMOM.

KuaroueBsie caioBa — IIIyMOIIOaBJIeHIEe N300paKe s, [TOJHAs Bapualus, MUHUMU3AI[Usd, CMEIIaHHbII IIyacCOHOBCKO-TayCCOBCKUIT
Iy m.

IOusa yuruposanust: Pham C. T., Tran T. T. T., Nguyen T. C., Vo D. H. Second-order total generalized variation based model for restoring
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8853-2021-2-20-32
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IIpu HaAIMYMK IIOJIOKUTEIbHON PEIeH3UN CTAThs PACCMATPUBAETCS PEIAKIIMOHHON KOJIJIEerH-
eir. I[lpuusaTas B Ie4aTb CTaThs HAIPABJISETCA aBTOPY AJIS COrIACOBAHUS PENAKTOPCKUX IPABOK.
ITocite coryiacoBaHusi aBTOP IPEACTABJISET B PeAAKIINI0 OKOHUYATEJIbLHBIM BADUAHT TEKCTA CTATHU.

IIpomeaypsl COrIacOBaHUSA TEKCTA CTATHBM MOI'YT OCYINECTBJISTHCA KaK HEIOCPEICTBEHHO
B PelaKIINH, TaK 1 1o e-mail (ius.spb@gmail.com).
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