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Introduction: The similarity search paradigm is used in various computational tasks, such as classification, data mining, 
pattern recognition, etc. Currently, the technology of tree-like metric access methods occupies a significant place among search 
algorithms. The classical problem of reducing the time of similarity search in metric space is relevant for modern systems when 
processing big complex data. Due to multidimensional nature of the search algorithm effectiveness problem, local research in 
this direction is in demand, constantly bringing useful results. Purpose: To reduce the computational complexity of tree search 
algorithms in problems involving metric proximity. Results: We developed a search algorithm for a multi-vantage-point tree, based 
on the priority node-processing queue. We mathematically formalized the problems of additional calculations and ways to solve 
them. To improve the performance of similarity search, we have proposed procedures for forming a priority queue of processing 
nodes and reducing the number of intersections of same level nodes. Structural changes in the multi-vantage-point tree and the 
use of minimum distances between vantage points and node subtrees provide better search efficiency. More accurate determi-
nation of the distance from the search object to the nodes and the fact that the search area intersects with a tree node allows you 
to reduce the amount of calculations. Practical relevance: The resulting search algorithms need less time to process information 
due to an insignificant increase in memory requirements. Reducing the information processing time expands the application 
boundaries of tree metric indexing methods in search problems involving large data sets.
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Introduction

When developing an applied analytical system 
[1] based on metric methods of artificial intelligence 
(methods of decision functions), the authors faced 
the classic problem of computational complexity. The 
task was to increase the speed of data processing by 
modifying the indexing algorithms. The emphasis is 
on modification of tree search algorithms as part of 
the task of overlapping tree nodes in order to reduce 
number of operations for calculating distances be-
tween objects. They use metric methods (K nearest 
neighbor’s method, method of standards, method of 
correction increments, and others) to solve similari-
ty search problems in practice. Distinctive features 
of these methods are: 1) any object from data set D 
is a point in space; 2) during the search, distances 
between two objects are repeatedly calculated; 3) dis-
tance processing takes place in metric space. 

Let X — an arbitrary set. The function dist is 
called a metric on the X, if for all x, y, z X the fol-
lowing conditions are satisfied: a) dist(x, y)  0 (non 
negativity); b) dist(x, у) 0, when x у (identity to 
itself); c) dist(x, y) dist(y, x) (symmetry); d) dis-
t(x, y)  dist(x, z) + dist(z, y) (triangle inequality).

The presence of the triangle inequality (fourth 
property — subparagraph d) is inherent in its met-
ric spaces. Therefore, the authors in the article did 
not consider datasets in which the triangle inequality 
does not performed. At the same time, we note that 
there is a study on the modification of the VP-tree for 
non-metric spaces using the Bregman distance, which 
does not satisfy the triangle inequality principle [2].

To find the nearest object among the set of data 
D in metric space, data indexing technology metric 
access methods (MAM) is used [3, 4]. MAM uses a 
special data structure to speed up the search for the 
nearest object in database D by reducing number of 
calculated distances.

We will highlight the following features of MAM 
technology:

1) the presence of a metric (distance function) 
for any two objects [5];

2) during the search, MAM algorithms use the 
principle of triangle inequality [6], which makes it 
possible to exclude the calculation of additional dis-
tances;

3) the computational complexity of the search 
algorithm depends significantly on the number of 
calculated distances between two objects [3].
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There are many types of MAM tree algorithms, 
including GHT [7], D-index [8], BP [9], MM-tree 
[10], Onion-Tree [11] and others. One of the first 
MAM algorithms successfully applied in practice 
was the M-Tree [12–14]. Among the disadvantages 
of M-Tree, we highlight the problem of overlapping 
tree nodes, which increases the number of distance 
calculations. An alternative approach to using van-
tage points to the M-Tree is the OMNI algorithm 
[15]. OMNI uses strategically positioned vantage 
points to increase efficiency. Another classical al-
gorithm Geometric Near Access Tree (GNAT) [16] 
suggests taking into account not only the minimum 
and maximum distances to objects, but also the dis-
tances between pairs of vantage points during the 
search. 

A characteristic feature of the M-Tree, OMNI, 
and GNAT algorithms reviewed is the problem of 
overlapping nodes of the same level with each other. 
We can highlight the following M-Tree modifica-
tions to solve this problem:

— Slim-tree [17], which reduces the number of 
intersections of nodes of the same level with each 
other by using the slim-down algorithm. The disad-
vantage of the algorithm used is the need to re-in-
sert objects;

— PM-tree [18], which combines a compact par-
tition and a set of reference points. In the PM-tree, 
one can form the areas of nodes by the intersection 
of multiple hyperspheres defined by a global set of 
vantage points.

An alternative to the M-Tree family of algo-
rithms is the VP-tree [19–21] and its modification 
with several reference points in each node — the 
multi-vantage-point (MVP) tree [22, 23]. The fea-
tures of the structures are the balance tree based on 
the median data partition and the absence of inter-
section of nodes of the same level. The development 
of VP-tree ideas is the algorithm Fixed-Queries 
Tree (FQT) [24], which suggests using a single van-
tage point for all nodes of the same level to reduce 
calculations. The absence of the problem of inter-
section of nodes of the same level has a significant 
impact on the search efficiency. Thus, research [25] 
has shown in practice that searching based on dis-
joint nodes in an MVP-tree is more efficient than in 
an M-tree.

Currently, there are theoretical studies on the 
use of VP / MVP-trees as a basic component to im-
prove the efficiency of various search methods [19, 
21, 23]. Experimental results in [26, 27] confirmed 
the competitiveness of VP / MVP-trees compared 
to other metric data indexing methods. Analysis of 
the results obtained in practice for VP / MVP-trees 
proves their efficiency in metric spaces of small, 
medium [26] and large [20] dimensions. 

Now, there is a demand in the development of 
search improvements for VP / MVP-trees, which is 

confirmed by various modern publications [20, 28]. 
Therefore, the research of reducing the number of 
calculated distances between two objects (search 
complexity) for the MVP-tree when solving prob-
lems of searching the nearest objects is relevant.

One of the ways to improve the search efficiency 
in the MVP-tree is to use a priority queue for pro-
cessing nodes. As part of the adaptation of the pri-
ority queue to the MVP-tree, the authors have de-
veloped an algorithm for determining the intersec-
tion of the search area with the subtrees of a node: 
determination of intersection based on hierarchic 
processing of nodes (DIHPN).

DIHPN algorithm

Feature considered MVP-tree is logarithmic 
nearest neighbor search complexity depending on 
the number of objects in the original data set D. 
Without loss of generality, consider and analyze a 
search algorithm for a classical MVP-tree with the 
following characteristics:

1) U2 — branching of one vantage point;
2) Y2 — number of vantage points in one node 

of the tree;
3) V{v1, v2} — set of vantage points in each 

node of the tree, where v1 — the primary point, 
v2 — secondary;

4) BUY 4 — number of children for each 
node of the tree; 

5) A{A1, A2, A3, A4} — set of subtrees in each 
node of the tree;

6) R{r1, r2, r3} — set of median distances (ra-
dii) that defines the boundaries of the four regions 
of the node: A1(v1, r1) && A1 (v2, r2), A2(v1, 
r1) && A2 (v2, r2), A3(v1, r1) && A3 (v2, r3), 
A4(v1, r1) && A4 (v2, r3), where (v, r) — hyper-
sphere centered at point v and radius r;

7) K1 — branching of each leaf;
8) P0 — number of stored distances in the 

leaves from each leaf point to the set of vantage 
points.

The research [29] have identified the following 
features of the classical algorithm for finding the 
nearest object n for the query point q in the MVP-
tree:

1. The search for the nearest object is recursive. 
During each iteration, it directly processes the data 
of only one node of the tree.

2. The node processing queue is formed based 
on the depth-first search principle. When a node 
is processed, the search area is constrained by the 
current node and all of its parent nodes. Each node 
implicitly takes into account its own set of hierar-
chical search rules.

3. Due to the architecture of building an MVP-
tree, the descendants of A1, A2, A3, and A4 with-
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in the same parent node do not intersect with each 
other.

4. Taking into account the set of hierarchical 
search rules and the architecture of building an 
MVP-tree allows you to set narrower boundaries for 
the search area.

5. The set of points D of the node Node of the tree 
TMVP is defined by the intersection of two hyper-
spheres with centers at {v1, v2} and the correspond-
ing two radii from R{r1, r2, r3} of the parent node 
Parent.

6. Within the framework of parent node Parent, 
the fourth area A4 has only minimal borders. 

7. The MVP-tree is a balanced tree.
Research [30] suggests using the priority queue 

C for processing nodes to improve efficiency of 
the classical search for the nearest object. Sorting 
nodes by increasing the distance from them to the 
query point q allows you to set the priority of pro-
cessing areas. During research, when using the 
priority queue C in the search for the closest object 
for an MVP-tree, we identified the problem of ad-
ditional computations. The emergence of additional 
calculations is due to the need to recreate the se t of 
hierarchical search rules for each node. The nodes 
extracted from the priority queue for processing 
can belong to different parts and levels of the MVP-
tree. Note that not taking into account the set of 
hierarchical search rules can lead to an increase in 
the number of overlapping nodes. Let us introduce 
the following notation and characteristics:

1) D — input set of points for indexing;
2) ND

points — number of points in a D;
3) H — number of levels in the tree;
4) W — number of nodes at all levels in the tree;
5) Lk — k-th level in the tree.
Based on the notation introduced, we estimate 

influence of the number of overlapping nodes in the 
MVP-tree on the search efficiency. In previous au-
thor’s studies [31], the following dependencies and 
estimates are given:

1) maximum estimate of the number of inter-
secting nodes NILk from the number k of the level 
Lk of the tree, when the set of hierarchical search 
rules is not taken into account:

 NIL(k)B2k,  (1)

where B = UY = 4 — number of children for each 
node in the tree;

2) based on formula (1), dependence of the total 
number of intersecting nodes NIT for the entire 
MVP-tree was calculated and presented as follows:

 NIT  BH ~ ND
points.  (2)

Studies have derived the dependence of the effi-
ciency of finding the nearest object to the point q 

with the search radius rq for tree structures MAM 
[3] :
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where r0 — radius required to cover the entire set of 
points at the root of the tree TMVP;   R — internal 
dimension of the space; fat(TMVP) — absolute fat 
factor of the tree TMVP, which characterizes the 
degree of intersection of nodes with each other; 
Nk

nodes — average number of nodes at the k-th level 
of the tree; rk

aver — average radius of the node 
coverage at the k-th level, which is calculated by the 
formula:
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The formula for calculating the parameter abso-
lute fat factor [3] is as follows: 
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where IC displays the total number of accesses to the 
tree nodes required to respond to a point request 
for each of the ND

points objects in the tree TMVP:

 IC ~ NIT.  (6)

Taking into account the architectural features 
of the MVP-tree and formula (4), we rewrite formu-
la (3) for the MVP-tree as the following dependency:

 O(NN(q, rq)) ~ fat(TMVP).  (7)

Based on the fact that the range for the absolute 
factor fat(TMVP) is [0..1] and analysis of formu-
la (5), we get the dependence:

 fat(TMVP) ~ IC ~ NIT.  (8)

From formulas (1)–(8) it follows:
1) if the set of hierarchical search rules is not 

taken into account, there is a problem of overlap-
ping nodes with each other;

2) the number of intersecting nodes within 
the entire tree depends on the number of indexed 
ND

points in D;
3) search efficiency is inversely proportional to 

the number of intersecting nodes. 
As part of solving the problem of additional 

computations, we propose to use a modification of 
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the classical algorithm of the process of determining the fact of intersection of the search area with the cur-
rent node Node. The following logical statement determines the fact that a node Node of type Type intersects 
with the search area (q, ln) based on the classical method:
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where l1 — distance from point q to point Node.v1; l2 — distance from point q to point Node.v2.
Additional checks for intersections of the search area with parent nodes for Node at all higher levels 

of the tree is the center of the proposed modification — the algorithm DIHPN (Fig. 1). The algorithm 
DIHPN explicitly recreates the hierarchy of search rules, which allows you to set narrower boundaries 
of nodes and avoid overlapping nodes of the same level with each other. We present a generalized depend-
ence of the number of overlapping nodes on the number of the current level k and the number of processed 
higher levels t:

            NIL(k, t)(Bk+1–t)2.                                                                                (10)

Based on formula (10), we concluded that an increase in the number of processed higher-level parents (pa-
rameter t) leads to a decrease in the number of intersecting nodes in the entire tree. In the limiting case of 
the formula (10), when the algorithm requests all the higher parents for the current node, the number of in-
tersecting nodes is equal to one (the root). Because no two nodes of the same level intersect each other due to 
the architectural. 

The disadvantage of the DIHPN algorithm is the increase in the number of calculated distances between 
two objects. Determining the distances from the query point to the vantage points of the parent nodes is 
the reason for the increase in the computational complexity of the proposed algorithm. We can solve the 
problem by storing the previously calculated results in additional memory L in order to avoid repeated cal-
culations. 

As part of improving the efficiency of the DIHPN algorithm, we need to solve several problems: 
1) the problem of effectively determining the distances from the query point q to the subtrees of node A1, 

A2, A3, A4. Note that based on the distance to the query point q, the priority of the node in queue C is calculat-
ed. To improve the efficiency of distance determination, the authors developed the algorithm: determination 
distance from request point to node area (DDRPNA);

2) the problem of increasing the efficiency of determining the fact of intersection of nodes with the search 
area [formula (1)]. Determining the fact of intersection is the basis of the procedure for adding a node to the 
priority queue C. We propose to modify the classic rules of intersection of MVP-tree regions [formula (9)] 
based on the use of minimum distances: modification of the rules for determining the intersection of nodes 
based on minimum distances (MRDINMD). 

DDRPNA algorithm

To assign priorities that are more precise to nodes in queue C based on the distance from the query point 
q to the subtrees of the MVP-tree node, we suggest to use the author’s DDRPNA algorithm. The problem ap-
pears by using only two reference points {v1, v2} for four regions. Thus, the distances can only be determined 
to areas A3 and A1/A2. The choice of a specific second area depends on which region A1 or A2 the vantage 
point v1 belongs. Enter the following notation:

1) AV1 — a region of A12A1 + A2, which belongs to the vantage point v1;
2) AV2 — the area of A12 that does not contain the reference point v1, i. e. AV2A12 ÇAV1.
To determine the distance from the query point q to the subtree Area of the node Node, the authors propose 

to use the following algorithm:
1) if the subtree Area is an area Node.AV1 and an internal node of the tree: 
— determine the distance l1.1 from the query point q to the primary vantage point of the node Node.v1;
— set the desired distance l1 as the distance l1.1; 
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 Fig. 1. Flow chart of DIHPN algorithm
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2) if the subtree Area is an area Node.AV2 and an internal node of the tree: 
— determine the distance l2.1 from the query point q to the primary vantage point of the node Node.v1;
— calculate the distance l2.2 from the query point q to the secondary vantage point of the node Area.v2;
— select the minimum value among (l2.1, l2.2) as the desired distance l2;
3) if the subtree Area is an area Node.A3 and an internal node of the tree:
— determine the distance l3.1 from the query point q to the primary vantage point of the node Node.v2;
— set the desired distance l3 as the distance l3.1; 
4) if the subtree Area is an area Node.A4 and an internal node of the tree:
— determine the distance l4.1 from the query point q to the primary vantage point of the node Area.v1;
— calculate the distance l4.2 from the query point q to the secondary vantage point of the node Area.v2;
— select the minimum value among (l4.1, l4.2) as the desired distance l4;
5) if the subtree Area is a leaf of the tree:
— select a random point d from the Area;
— set the value of the desired distance as the distance from the query point q to the point d.
To increase the efficiency of the algorithm, we propose to additionally calculate and use the minimum dis-

tances between the vantage points {v1, v2} and the subtrees of the node. Denote by ri, j the minimum distance 
between the i-th vantage point and the j-th area {AV1, AV2, A3, A4} of the current tree node. Then, for the 
regions AV1, AV2, A3 and A4, it is possible to determine more precise distances to the query point q:

1) for AV1, find the minimum among (l1, l3 + r2.1);
2) for AV2, find the minimum among (l2, l1 + r1.2, l3 + r2.2);
3) for A3, find the minimum among (l3, l1 + r1.3);
4) for A4, find the minimum among (l4, l1 + r1.4, l3 + r2.4).
We have implemented the proposed ideas in the DDRPNA algorithm (Fig. 2). The architectural changes 

associated with the DDRPNA algorithm in the MVP-tree (Y*B8 minimum distances at each node) increase 
the amount of memory for storing the indexing tree.

Modification of the node intersection rules MRDINMD

Another problem of the DIHPN algorithm is the problem of efficiently determining the intersection of the 
search area with the subtrees of the current node. The less intersections of the search area with the nodes of 
the MVP-tree, the higher the search efficiency. This problem can be solved by using the previously introduced 
minimum distances ri, j.

Studies [32] proposed a method to improve the efficiency of determining the intersection of the search area 
and nodes for a PM-tree. The features of the proposed method are: 

1) using both minimum and maximum distances from vantage points to areas of the current node;
2) set of vantage points is global and common to all nodes of the tree.
The method proposed in [32] for determining the intersection of the search area and tree nodes by the au-

thors is adapted for the MVP-tree.
The features of the adaptation are:
1) the use of only a set of minimum distances from the vantage points to the areas of the tree node;
2) using local vantage points for each node of the tree instead of a set of global control points.
The modification of the classical MVP-tree area intersection rules [formula (9)] based on the minimum 

distances MRDINMD is represented as 
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         (11)

The developed modification MRDINMD by the authors replaces the classic rules of intersection of areas for 
MVP-tree in search algorithms and DIHPN (see Fig. 1). 

The methods obtained during the research for reducing the number of calculated distances to improve 
the search efficiency in the MVP-tree have a theoretical basis [formulas (10) and (11)]. Thus, the purpose of 
the authors’ practical research is to evaluate and analyze the performance gain of the modified search in the 
MVP-tree compared to the classical one, depending on the dimension of the space and the number of objects 
in the data.
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Experiments

We have carried out an experimental evaluation 
of the efficiency of the proposed algorithms in the 
context of the nearest neighbor search problem. 
During the experiments, we tested: 1) algorithm 
DIHPN; 2) combination of DIHPN and DDRPAN; 
3) combination of DIHPN + DDRPNA + MRDINMD 
algorithms. 

Computer characteristics as a part of experi-
ments: 64-bit Windows 7 operating system, Intel 
i5-2500K processor, 16 GB RAM. We wrote the pro-
gram in Java and compiled it using the NetBeans 
IDE. We use the following MVP-tree parameters: 
1) U2; 2) Y2; 3) B4; 4) K1; 5) P0;

Four data sets were selected as experimental da-
ta from repository ANN-Benchmarks [33]: 1) Last.
fm (65 number of attributes); 2) SIFT (128 number 
of attributes); 3) MNIST (784 number of attributes); 
4) GIST (960 number of attributes). Note that we 
have divided each dataset into two data categories: 
a set of SQ queries to find the nearest neighbor and 
the original set of objects.

Within the experiment, the MVP-tree has the 
following features: 1) we use the Euclidean distance 
as the distance metric; 2) we normalized each di-
mension of the data sets in the range [0, 1]; 3) we use 
a random selection heuristic to select the vantage 
points. We repeated each experiment 3 times, after 
which we averaged the results.

A measure of the computational complexity of 
the tested algorithm is the absolute number of op-
erations (NumberDistances) for calculating the dis-
tances between two points during a search for a SQ 
set. To simplify understanding, all the results of 
the tested algorithms were normalized relative to 
the basic search algorithm. Based on the stated goal 
of the research, we have chosen the classical search 
algorithm MVP-tree [29] as the basic algorithm for 
comparison. We calculate the effectiveness of the 
proposed algorithms using the formula:

EffALG (NumberDistancesALG / 

 NumberDistancesMVP)  100%,  (12)

where EffALG — the efficiency of the tested 
algorithm ALG; NumberDistancesALG — the 
number of operations for calculating the distances 
between two points during the search for the SQ set 
of the algorithm ALG; NumberDistancesMVP — the 
number of calculated distances between two points 
for the set SQ using the classical search algorithm 
MVP-tree. 

Thus, we obtained all the results of the work 
based on measuring and normalizing the absolute 
number of calculated distances between two ob-
jects (NumberDistances). Therefore, the evaluation 
of the efficiency of the tested algorithms does not 

depend on the programming language, the develop-
ment environment and technical characteristics of 
computing resources. 

We used the following data set parameters for 
the experiment: 1) the original set of 60 000 ob-
jects, the number of attributes in the object is 65, 
128, 784 and 960; 2) a corresponding set of SQ que-
ries of 3000 objects. 

We presented two summary graphs: 1) the graph 
of the computational complexity of search algo-
rithms for different data dimensions (the number 
of attributes), shown in Fig. 3, а; 2) the graph of 
the computational complexity of search algorithms 
for different original data sizes (the number of ob-
jects), which is shown in Fig. 3, b.

Based on the analysis of Fig. 3, we were made 
the following conclusions for the algorithms devel-
oped by the authors to reduce the number of com-
putations for the nearest neighbor search in the 
MVP-tree: 1) the proposed algorithms increase the 
search performance in both small and large space 
dimensions; 2) with the growth of the data dimen-
sion (the number of attributes), the efficiency of the 
developed search algorithms increases; 3) with the 
growth of the number objects of data, the efficiency 
of the applied algorithms increases.

Thus, the results of the experiment confirm the 
effectiveness of the author’s solutions for nearest 
neighbors searching in big data with a significant 
number of attributes. The proposed theoretical al-

  Fig. 3. Efficiency of different data dimensions (a) 
and sizes (b)
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gorithms have found application in an applied clas-
sification system for solving pattern recognition 
problems based on precedent methods. The devel-
oped algorithms increase the computational perfor-
mance of the nearest neighbor search procedure in 
the indexed set of original objects.

Conclusion

We presented algorithmic solutions related to 
the adaptation of the classical search algorithm to 
the priority queue of node processing, sorted by in-
creasing the distances from the query point to the 
nodes.

The proposed solutions allow to:
— eliminate additional calculations when using 

the priority queue for processing nodes by reducing 
the number of intersecting nodes of the same level;

— identify and generalize the theoretical de-
pendence of the number of intersections on the com-
plexity of the search calculations (the number of 
additional processed levels);

— improve the efficiency of the priority queue 
for processing nodes by more accurately determin-
ing the distances from the query point to the sub-
trees of the tree node;

— use additional minimum distances between 
the vantage points and the subtrees of the node, 
which improves the search algorithm;

— reduce search time by reducing the number of 
processed nodes based on the use of minimum dis-
tances in the procedure for determining the inter-
section of the search area with the area of the tree 
node.

The developed algorithms of search procedures 
in tree structures have demonstrated promising re-
sults of their application to the class of data index-
ing problems in metric space.

A limitation of the proposed algorithms is the 
heuristic of random selection of vantage points. 
The use of random selection heuristics does not 
guarantee stable results for the same data. As fur-
ther improvements to the search algorithms, we are 
planning to use combinations of greedy heuristics 
when selecting vantage points.
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Алгоритм индексации, основанный на хранении дополнительных расстояний в метрическом пространстве, 
в рамках структуры дерева множества опорных точек 

В. В. Фомина, доктор техн. наук, профессор, orcid.org/0000-0001-7040-5386, v_v_fomin@mail.ru 

И. В. Александровб, аспирант, orcid.org/0000-0002-6258-8191
аРоссийский государственный педагогический университет им. А. И. Герцена, набережная р. Мойки, 48, Санкт-

Петербург, 191186, РФ
бСанкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича, Больше-

виков пр., 22-1, Санкт-Петербург, 193232, РФ 

Введение: парадигма поиска по сходству применяется в различных вычислительных задачах, таких как классификация, ин-
теллектуальный анализ данных, распознавание образов и др. В настоящее время среди алгоритмов поиска значительное место 
занимает технология древовидных метрических методов доступа. Классическая проблема сокращения времени поиска по сход-
ству в метрическом пространстве является актуальной для современных систем при обработке больших сложных данных. Ввиду 
многоаспектности проблемы эффективности поисковых алгоритмов локальные исследования в этом направлении востребованы 
и продолжают приносить полезные результаты. Цель: снизить вычислительную сложность алгоритмов древовидного поиска в 
задачах, использующих метрическую близость. Результаты: разработан алгоритм поиска для структуры данных в виде дерева 
множества опорных точек, основанный на приоритетной очереди обработки узлов; математически формализованы проблемы до-
полнительных вычислений и способы их решения. Для повышения быстродействия поиска по сходству предложены процедуры 
формирования приоритетной очереди обработки узлов и уменьшения количества пересечений узлов одного уровня. Повышение 
эффективности происходит на основе изменения древовидной структуры данных и использования минимальных расстояний 
между опорными точками и поддеревьями узла. Уменьшение числа вычислений достигается за счет более точного определения 
расстояния до узлов от искомого объекта и факта пересечения области поиска с узлом дерева. Практическая значимость: получен-
ным алгоритмам поиска требуется меньше времени для обработки информации за счет несущественного повышения требований 
к памяти. Снижение времени обработки информации расширяет границы применения древовидных метрических методов индек-
сации в задачах поиска в больших массивах данных.

Ключевые слова — индексация сложных данных, древовидные структуры данных, метрические методы доступа, приоритет-
ная очередь узлов, дерево множества опорных точек.
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