I _O5PAGO0TKA UHOOPMALUUU U YITIPABAEHUE /

UDC 004.93
doi:10.31799/1684-8853-2021-4-18-27

Indexing algorithm based on storing additional distances
in metric space for multi-vantage-point tree

V. V. Fomina, Dr. Sc., Tech., Professor, orcid.org/0000-0001-7040-5386, v_v_fomin@mail.ru

I. V. Aleksandrov®, Post-Graduate Student, orcid.org/0000-0002-6258-8191

aHerzen State Pedagogical University of Russia, 48, Moika Emb., 191186, Saint-Petersburg, Russian
Federation

bThe Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 22-1, Bolshevikov Pr.,
193232, Saint-Petersburg, Russian Federation

Introduction: The similarity search paradigm is used in various computational tasks, such as classification, data mining,
pattern recognition, etc. Currently, the technology of tree-like metric access methods occupies a significant place among search
algorithms. The classical problem of reducing the time of similarity search in metric space is relevant for modern systems when
processing big complex data. Due to multidimensional nature of the search algorithm effectiveness problem, local research in
this direction is in demand, constantly bringing useful results. Purpose: To reduce the computational complexity of tree search
algorithms in problems involving metric proximity. Results: We developed a search algorithm for a multi-vantage-point tree, based
on the priority node-processing queue. We mathematically formalized the problems of additional calculations and ways to solve
them. To improve the performance of similarity search, we have proposed procedures for forming a priority queue of processing
nodes and reducing the number of intersections of same level nodes. Structural changes in the multi-vantage-point tree and the
use of minimum distances between vantage points and node subtrees provide better search efficiency. More accurate determi-
nation of the distance from the search object to the nodes and the fact that the search area intersects with a tree node allows you
to reduce the amount of calculations. Practical relevance: The resulting search algorithms need less time to process information
due to an insignificant increase in memory requirements. Reducing the information processing time expands the application
boundaries of tree metric indexing methods in search problems involving large data sets.

Keywords — complex data indexing, tree data structures, metric access methods, priority queue of nodes, multi-van-
tage-point tree.

For citation: Fomin V. V., Aleksandrov I. V. Indexing algorithm based on storing additional distances in metric space for multi-van-
tage-point tree. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2021, no. 4, pp. 18-27. d0i:10.31799/1684-

8853-2021-4-18-27

Introduction

When developing an applied analytical system
[1] based on metric methods of artificial intelligence
(methods of decision functions), the authors faced
the classic problem of computational complexity. The
task was to increase the speed of data processing by
modifying the indexing algorithms. The emphasis is
on modification of tree search algorithms as part of
the task of overlapping tree nodes in order to reduce
number of operations for calculating distances be-
tween objects. They use metric methods (K nearest
neighbor’s method, method of standards, method of
correction increments, and others) to solve similari-
ty search problems in practice. Distinctive features
of these methods are: 1) any object from data set D
is a point in space; 2) during the search, distances
between two objects are repeatedly calculated; 3) dis-
tance processing takes place in metric space.

Let X — an arbitrary set. The function dist is
called a metric on the X, if for all x, y, z € X the fol-
lowing conditions are satisfied: a) dist(x, y) > 0 (non
negativity); b) dist(x, y) = 0, when x =y (identity to
itself); c) dist(x, y) = dist(y, x) (symmetry); d) dis-
t(x, y) < dist(x, 2) + dist(z, y) (triangle inequality).

The presence of the triangle inequality (fourth
property — subparagraph d) is inherent in its met-
ric spaces. Therefore, the authors in the article did
not consider datasets in which the triangle inequality
does not performed. At the same time, we note that
there is a study on the modification of the VP-tree for
non-metric spaces using the Bregman distance, which
does not satisfy the triangle inequality principle [2].

To find the nearest object among the set of data
D in metric space, data indexing technology metric
access methods (MAM) is used [3, 4]. MAM uses a
special data structure to speed up the search for the
nearest object in database D by reducing number of
calculated distances.

‘We will highlight the following features of MAM
technology:

1) the presence of a metric (distance function)
for any two objects [5];

2) during the search, MAM algorithms use the
principle of triangle inequality [6], which makes it
possible to exclude the calculation of additional dis-
tances;

3) the computational complexity of the search
algorithm depends significantly on the number of
calculated distances between two objects [3].

18 7/ VHOOPMALVIOHHO-YNPABASIIOLLIVIE CUCTEMbI

7 Ne 4,2021

\ OBPAEOTKA MHMOPMAUWN N YNIPABAEHVE \

There are many types of MAM tree algorithms,
including GHT [7], D-index [8], BP [9], MM-tree
[10], Onion-Tree [11] and others. One of the first
MAM algorithms successfully applied in practice
was the M-Tree [12—-14]. Among the disadvantages
of M-Tree, we highlight the problem of overlapping
tree nodes, which increases the number of distance
calculations. An alternative approach to using van-
tage points to the M-Tree is the OMNI algorithm
[15]. OMNI uses strategically positioned vantage
points to increase efficiency. Another classical al-
gorithm Geometric Near Access Tree (GNAT) [16]
suggests taking into account not only the minimum
and maximum distances to objects, but also the dis-
tances between pairs of vantage points during the
search.

A characteristic feature of the M-Tree, OMNI,
and GNAT algorithms reviewed is the problem of
overlapping nodes of the same level with each other.
We can highlight the following M-Tree modifica-
tions to solve this problem:

— Slim-tree [17], which reduces the number of
intersections of nodes of the same level with each
other by using the slim-down algorithm. The disad-
vantage of the algorithm used is the need to re-in-
sert objects;

— PM-tree [18], which combines a compact par-
tition and a set of reference points. In the PM-tree,
one can form the areas of nodes by the intersection
of multiple hyperspheres defined by a global set of
vantage points.

An alternative to the M-Tree family of algo-
rithms is the VP-tree [19-21] and its modification
with several reference points in each node — the
multi-vantage-point (MVP) tree [22, 23]. The fea-
tures of the structures are the balance tree based on
the median data partition and the absence of inter-
section of nodes of the same level. The development
of VP-tree ideas is the algorithm Fixed-Queries
Tree (FQT) [24], which suggests using a single van-
tage point for all nodes of the same level to reduce
calculations. The absence of the problem of inter-
section of nodes of the same level has a significant
impact on the search efficiency. Thus, research [25]
has shown in practice that searching based on dis-
joint nodes in an MVP-tree is more efficient than in
an M-tree.

Currently, there are theoretical studies on the
use of VP / MVP-trees as a basic component to im-
prove the efficiency of various search methods [19,
21, 23]. Experimental results in [26, 27] confirmed
the competitiveness of VP / MVP-trees compared
to other metric data indexing methods. Analysis of
the results obtained in practice for VP / MVP-trees
proves their efficiency in metric spaces of small,
medium [26] and large [20] dimensions.

Now, there is a demand in the development of
search improvements for VP / MVP-trees, which is

confirmed by various modern publications [20, 28].
Therefore, the research of reducing the number of
calculated distances between two objects (search
complexity) for the MVP-tree when solving prob-
lems of searching the nearest objects is relevant.

One of the ways to improve the search efficiency
in the MVP-tree is to use a priority queue for pro-
cessing nodes. As part of the adaptation of the pri-
ority queue to the MVP-tree, the authors have de-
veloped an algorithm for determining the intersec-
tion of the search area with the subtrees of a node:
determination of intersection based on hierarchic
processing of nodes (DIHPN).

DIHPN algorithm

Feature considered MVP-tree is logarithmic
nearest neighbor search complexity depending on
the number of objects in the original data set D.
Without loss of generality, consider and analyze a
search algorithm for a classical MVP-tree with the
following characteristics:

1) U = 2 — branching of one vantage point;

2) Y = 2 — number of vantage points in one node
of the tree;

3) V={vl, v2} — set of vantage points in each
node of the tree, where vl — the primary point,
v2 — secondary;

4)B=UY=4 — number of children for each
node of the tree;

5) A ={A1, A2, A3, A4} — set of subtrees in each
node of the tree;

6) R={rl, r2, r3} — set of median distances (ra-
dii) that defines the boundaries of the four regions
of the node: Al € (v1, rl) && Al € (vV2, r2), A2 € (v],
rl) && A2 ¢ (v2, r2), A3 ¢ (v1, rl) && A3 € (vV2, r3),
A4 ¢ (v1, rl) && A4 ¢ (v2, r3), where (v, r) — hyper-
sphere centered at point v and radius r;

7) K =1 — branching of each leaf;

8) P=0 — number of stored distances in the
leaves from each leaf point to the set of vantage
points.

The research [29] have identified the following
features of the classical algorithm for finding the
nearest object n for the query point ¢ in the MVP-
tree:

1. The search for the nearest object is recursive.
During each iteration, it directly processes the data
of only one node of the tree.

2. The node processing queue is formed based
on the depth-first search principle. When a node
is processed, the search area is constrained by the
current node and all of its parent nodes. Each node
implicitly takes into account its own set of hierar-
chical search rules.

3. Due to the architecture of building an MVP-
tree, the descendants of A1, A2, A3, and A4 with-

Ne4,2021 N\

VIHDOPMALIVIOHHO-YNPABASIIOLLIME CUCTEMBbI N\ 19

/7 OBPABOTKA NH®OPMALW N YIIPABAEHVE /

in the same parent node do not intersect with each
other.

4. Taking into account the set of hierarchical
search rules and the architecture of building an
MYVP-tree allows you to set narrower boundaries for
the search area.

5. The set of points D of the node Node of the tree
Tyryp is defined by the intersection of two hyper-
spheres with centers at {v1, v2} and the correspond-
ing two radii from R = {rl, r2, r3} of the parent node
Parent.

6. Within the framework of parent node Parent,
the fourth area A4 has only minimal borders.

7. The MVP-tree is a balanced tree.

Research [30] suggests using the priority queue
C for processing nodes to improve efficiency of
the classical search for the nearest object. Sorting
nodes by increasing the distance from them to the
query point g allows you to set the priority of pro-
cessing areas. During research, when using the
priority queue C in the search for the closest object
for an MVP-tree, we identified the problem of ad-
ditional computations. The emergence of additional
calculations is due to the need to recreate the set of
hierarchical search rules for each node. The nodes
extracted from the priority queue for processing
can belong to different parts and levels of the MV P-
tree. Note that not taking into account the set of
hierarchical search rules can lead to an increase in
the number of overlapping nodes. Let us introduce
the following notation and characteristics:

1) D — input set of points for indexing;

2) Npmnts number of points in a D;

3) H — number of levels in the tree;

4) W — number of nodes at all levels in the tree;

5) L, — k-th level in the tree.

Based on the notation introduced, we estimate
influence of the number of overlapping nodes in the
MVP-tree on the search efficiency. In previous au-
thor’s studies [31], the following dependencies and
estimates are given:

1) maximum estimate of the number of inter-
secting nodes NIL, from the number £ of the level
L, of the tree, when the set of hierarchical search
rules is not taken into account:

NIL(%) = B2,)}

where B = UY = 4 — number of children for each
node in the tree;

2) based on formula (1), dependence of the total
number of intersecting nodes NIT for the entire
MVP-tree was calculated and presented as follows:

NIT ~ BH~ NB @)

Studies have derived the dependence of the effi-
ciency of finding the nearest object to the point ¢

with the search radius rq for tree structures MAM

[3]:

1 H-L
O(NNG. 7))~
0 k=0

k
— Q
D k
X (Npoints)H X(aver +rq) ’ (6))

(1 +fat(Tyrvp (N rodes — 1)) %

where r, — radius required to cover the entire set of
points at the root of the tree T'y;yp; Q@ € R—internal
dimension of the space; fat(Typ) — absolute fat
factor of the tree Tyyp, which characterizes the
degree of intersection of nodes with each other;
N% 1.s — average number of nodes at the k-th level
of the tree; r¥ , — average radius of the node
coverage at the k-th level, which is calculated by the
formula:

-k
rfver = (Npomts)H @

The formula for calculating the parameter abso-
lute fat factor [3] is as follows:

Ic-HxN2. . 1
fat(TMVP) — > points % (W_H)’

points

(6))

where I, displays the total number of accesses to the
tree nodes required to respond to a point request
for each of the N© . objects in the tree T'yyp:

~ NIT. (6)

Taking into account the architectural features
of the MVP-tree and formula (4), we rewrite formu-
la (3) for the MV P-tree as the following dependency:

O(NN(g, rp)) ~ fat(Tyryp)- (7

Based on the fact that the range for the absolute
factor fat(Tyyp) is [0..1] and analysis of formu-
la (5), we get the dependence:

fat(Tyyp) ~ Io~ NIT. (C))

From formulas (1)—(8) it follows:

1) if the set of hierarchical search rules is not
taken into account, there is a problem of overlap-
ping nodes with each other;

2) the number of intersecting nodes within
the entire tree depends on the number of indexed
NDpoints in D;

3) search efficiency is inversely proportional to
the number of intersecting nodes.

As part of solving the problem of additional
computations, we propose to use a modification of

20 7/ VH®OPMAUVIOHHO-YMPABASIOLLVIE CUCTEMB

7/ Nea, 2021

\ OBPAEOTKA MHMOPMAUWN N YNIPABAEHVE \

the classical algorithm of the process of determining the fact of intersection of the search area with the cur-
rent node Node. The following logical statement determines the fact that a node Node of type Type intersects
with the search area (g, In) based on the classical method:

ype=A1)& &((In+r1)> 1) & &((In+r2) > 12))|
Type=A2)& &((In+r1)>11) & &((In+12)>r2

)

((Ty

overlap(Node, (q, In)) = ((())
g e (((Type A3)&&((In+1r3)>12) & &((zn+z1)>r1)))
((()

)
Type=A4)& &((in+11) > r1) & &(In +12) > 2)

where [1 — distance from point ¢ to point Node.vl; [2 — distance from point ¢ to point Node.v2.

Additional checks for intersections of the search area with parent nodes for Node at all higher levels
of the tree is the center of the proposed modification — the algorithm DIHPN (Fig. 1). The algorithm
DIHPN explicitly recreates the hierarchy of search rules, which allows you to set narrower boundaries
of nodes and avoid overlapping nodes of the same level with each other. We present a generalized depend-
ence of the number of overlapping nodes on the number of the current level £ and the number of processed
higher levels t:

NIL(k, t) = (BF+1-1)2, (10)

Based on formula (10), we concluded that an increase in the number of processed higher-level parents (pa-
rameter t) leads to a decrease in the number of intersecting nodes in the entire tree. In the limiting case of
the formula (10), when the algorithm requests all the higher parents for the current node, the number of in-
tersecting nodes is equal to one (the root). Because no two nodes of the same level intersect each other due to
the architectural.

The disadvantage of the DIHPN algorithm is the increase in the number of calculated distances between
two objects. Determining the distances from the query point to the vantage points of the parent nodes is
the reason for the increase in the computational complexity of the proposed algorithm. We can solve the
problem by storing the previously calculated results in additional memory L in order to avoid repeated cal-
culations.

As part of improving the efficiency of the DIHPN algorithm, we need to solve several problems:

1) the problem of effectively determining the distances from the query point q to the subtrees of node A1,
A2, A3, A4. Note that based on the distance to the query point g, the priority of the node in queue C is calculat-
ed. To improve the efficiency of distance determination, the authors developed the algorithm: determination
distance from request point to node area (DDRPNA);

2) the problem of increasing the efficiency of determining the fact of intersection of nodes with the search
area [formula (1)]. Determining the fact of intersection is the basis of the procedure for adding a node to the
priority queue C. We propose to modify the classic rules of intersection of MVP-tree regions [formula (9)]
based on the use of minimum distances: modification of the rules for determining the intersection of nodes
based on minimum distances (MRDINMD).

DDRPNA algorithm

To assign priorities that are more precise to nodes in queue C based on the distance from the query point
q to the subtrees of the MV P-tree node, we suggest to use the author’s DDRPNA algorithm. The problem ap-
pears by using only two reference points {v1, v2} for four regions. Thus, the distances can only be determined
to areas A3 and A1/A2. The choice of a specific second area depends on which region Al or A2 the vantage
point vl belongs. Enter the following notation:

1) AV1 — aregion of A12 =A1 + A2, which belongs to the vantage point v1;

2) AV2 — the area of A12 that does not contain the reference point vl, i. e. AV2 =A12 N AV1.

To determine the distance from the query point ¢ to the subtree Area of the node Node, the authors propose
to use the following algorithm:

1) if the subtree Area is an area Node.AV1 and an internal node of the tree:

— determine the distance /1.1 from the query point ¢ to the primary vantage point of the node Node.v1;

— set the desired distance I1 as the distance [1.1;

Ned, 2021 N\ VIHDOPMALIVIOHHO-YNPABASIIOLLIME CUCTEMBbI N\ 21

7/ OBPABOTKA NH®OPMALW N YIIPABAEHVE

//Node — current
tree node;

//q — point-query
//ln — distance
from ¢ to n;

Yes

Flag Parent := true; Flag Parent :=false;

Flag Overlap

Flag Overlap := true;

= true;

(While ((Flag _Parent=true) && (Flag _Overlap = true))\]

Parent := Node.Parent; Type := Node.Type;

Yes No

<Faren 0 17>

[1:= dist (q, Parent.vl);
12 :=dist (q, Parent.v2);
L :=L + Parent;

[1:= L [Parent.vl];
[2:= L [Parent.v2];

rl := Parent.rl; r2 := Parent.r2; r3 := Parent.r3;

In = min (1, (2, In); q := min;,{n, vl,v2};

Is the logical
statement
[formula (9)] true?

|Flag_Overlap = true; | Flag Overlap:= false ;|

Yes

Parent.Parent=0?

Flag Parent := false; Node := Node.Parent;

L End of cycle while J

End

B Fig. 1. Flow chart of DIHPN algorithm

22

7

//Node — current
tree node;
// Type — type area
(Start /¢ — point-query
//1 — distance from ¢
to Type area;

l:=-1;
[1:=dist(q, Node.vl);
13:=dist(q, Node.v2);

| = min (i3, [14+r1.3); |

14.1 :=dist(q, A4.v1);
14.2 :=dist (q, A4.v2);
l:=min(14.1,14.2,
11+rl.4, |l3+r2.4);

d := Random_Point (44);
4.1 :=dist(q, d);
[:=min(14.1,
11+r1.4, 13+r2.4);

| 112 :=dist (Node.v1, Node.v2); |

(12> Node.r2?

AV1 :=A1; AV2:=A2; AV1 :=A2; AV2 :=Al;

rvl.l:=rl.1; rv2.1:=r2.1; rvl.l:=rl1.2; rv2.1:=r2.2;
rv2.1:=rl1.2; rv2.2:=r2.2; rv2.1:=rl1.1; rv2.2:=r2.1;

A

lv.1 :=dist(q, AV2.v1);

lv.2 :=dist(q, AV2.02);
[:==min(lv.1, lv.2, [:==min(lv.1,
[1+rv2.1, 13+rv2.2); [1+rv2.1, 13+1rv2.2);

d := Random_Point (AV2);
lv.1 :=dist(q, d);

End

B Fig. 2. Flow chart of DDRPNA algorithm

7/ VH®OPMAUVIOHHO-YMPABASIOLLVIE CUCTEMB

7/ Nea, 2021

\ OBPAEOTKA MHMOPMAUWN N YNIPABAEHVE \

2) if the subtree Area is an area Node.AV2 and an internal node of the tree:

— determine the distance (2.1 from the query point ¢ to the primary vantage point of the node Node.v1;

— calculate the distance [2.2 from the query point ¢ to the secondary vantage point of the node Area.v2;

— select the minimum value among (12.1, [2.2) as the desired distance [2;

3) if the subtree Area is an area Node.A3 and an internal node of the tree:

— determine the distance (3.1 from the query point ¢ to the primary vantage point of the node Node.v2;

— set the desired distance [3 as the distance [3.1;

4) if the subtree Area is an area Node.A4 and an internal node of the tree:

— determine the distance /4.1 from the query point g to the primary vantage point of the node Area.vl;

— calculate the distance /4.2 from the query point ¢ to the secondary vantage point of the node Area.v2;

— select the minimum value among (14.1, [4.2) as the desired distance /4;

5) if the subtree Area is a leaf of the tree:

— select a random point d from the Area;

— set the value of the desired distance as the distance from the query point ¢ to the point d.

To increase the efficiency of the algorithm, we propose to additionally calculate and use the minimum dis-
tances between the vantage points {v1, v2} and the subtrees of the node. Denote by ri, j the minimum distance
between the i-th vantage point and the j-th area {AV1, AV2, A3, A4} of the current tree node. Then, for the
regions AV1, AV2, A3 and A4, it is possible to determine more precise distances to the query point ¢:

1) for AV1, find the minimum among (I1, I3 + r2.1);

2) for AV2, find the minimum among (I2, [1 + rl1.2, [3 + r2.2);

3) for A3, find the minimum among (I3, {1 + r1.3);

4) for A4, find the minimum among (I4, I[1 + r1.4, 13 + r2.4).

We have implemented the proposed ideas in the DDRPNA algorithm (Fig. 2). The architectural changes
associated with the DDRPNA algorithm in the MVP-tree (Y*B = 8 minimum distances at each node) increase
the amount of memory for storing the indexing tree.

Modification of the node intersection rules MRDINMD

Another problem of the DIHPN algorithm is the problem of efficiently determining the intersection of the
search area with the subtrees of the current node. The less intersections of the search area with the nodes of
the MVP-tree, the higher the search efficiency. This problem can be solved by using the previously introduced
minimum distances ri, j.

Studies [32] proposed a method to improve the efficiency of determining the intersection of the search area
and nodes for a PM-tree. The features of the proposed method are:

1) using both minimum and maximum distances from vantage points to areas of the current node;

2) set of vantage points is global and common to all nodes of the tree.

The method proposed in [32] for determining the intersection of the search area and tree nodes by the au-
thors is adapted for the MVP-tree.

The features of the adaptation are:

1) the use of only a set of minimum distances from the vantage points to the areas of the tree node;

2) using local vantage points for each node of the tree instead of a set of global control points.

The modification of the classical MVP-tree area intersection rules [formula (9)] based on the minimum
distances MRDINMD is represented as

Al:(In+r)>land(In+r2)>12and (In+11)>rl.1and (In+12)>r2.1

A2:(In+r1)>lland (In+12)>r2and (In+11)>rl1.2and (In+12) >r2.2
overlap(Node, (q, In)) = . (11)
A3:(In+r3)>12and(In+11)>rland (In+11)>r1.83and (In+12)>r2.3

Ad:(In+11)>rland (In+12)>r2and (In+11)>rl.4and (In+12)>r2.4

The developed modification MRDINMD by the authors replaces the classic rules of intersection of areas for
MVP-tree in search algorithms and DIHPN (see Fig. 1).

The methods obtained during the research for reducing the number of calculated distances to improve
the search efficiency in the MVP-tree have a theoretical basis [formulas (10) and (11)]. Thus, the purpose of
the authors’ practical research is to evaluate and analyze the performance gain of the modified search in the
MVP-tree compared to the classical one, depending on the dimension of the space and the number of objects
in the data.

Ned, 2021 N\ VIHDOPMALIVIOHHO-YNPABASIIOLLIME CUCTEMBbI N\ 23

/7 OBPABOTKA NH®OPMALW N YIIPABAEHVE /

Experiments

We have carried out an experimental evaluation
of the efficiency of the proposed algorithms in the
context of the nearest neighbor search problem.
During the experiments, we tested: 1) algorithm
DIHPN; 2) combination of DIHPN and DDRPAN;
3) combination of DIHPN + DDRPNA + MRDINMD
algorithms.

Computer characteristics as a part of experi-
ments: 64-bit Windows 7 operating system, Intel
i5-2500K processor, 16 GB RAM. We wrote the pro-
gram in Java and compiled it using the NetBeans
IDE. We use the following MVP-tree parameters:
NU=2;2)Y=2;3)B=4;4)K=1;5)P=0;

Four data sets were selected as experimental da-
ta from repository ANN-Benchmarks [33]: 1) Last.
fm (65 number of attributes); 2) SIFT (128 number
of attributes); 3) MNIST (784 number of attributes);
4) GIST (960 number of attributes). Note that we
have divided each dataset into two data categories:
a set of SQ queries to find the nearest neighbor and
the original set of objects.

Within the experiment, the MVP-tree has the
following features: 1) we use the Euclidean distance
as the distance metric; 2) we normalized each di-
mension of the data sets in the range [0, 1]; 3) we use
a random selection heuristic to select the vantage
points. We repeated each experiment 3 times, after
which we averaged the results.

A measure of the computational complexity of
the tested algorithm is the absolute number of op-
erations (NumberDistances) for calculating the dis-
tances between two points during a search for a SQ
set. To simplify understanding, all the results of
the tested algorithms were normalized relative to
the basic search algorithm. Based on the stated goal
of the research, we have chosen the classical search
algorithm MVP-tree [29] as the basic algorithm for
comparison. We calculate the effectiveness of the
proposed algorithms using the formula:

Eff ,;; = (NumberDistances,; ; /
NumberDistancesyyp) x 100%, 12)

where Eff,;, — the efficiency of the tested
algorithm ALG; NumberDistances,;, — the
number of operations for calculating the distances
between two points during the search for the SQ set
of the algorithm ALG; NumberDistancesyyp — the
number of calculated distances between two points
for the set SQ using the classical search algorithm
MVP-tree.

Thus, we obtained all the results of the work
based on measuring and normalizing the absolute
number of calculated distances between two ob-
jects (NumberDistances). Therefore, the evaluation
of the efficiency of the tested algorithms does not

depend on the programming language, the develop-
ment environment and technical characteristics of
computing resources.

We used the following data set parameters for
the experiment: 1) the original set of 60 000 ob-
jects, the number of attributes in the object is 65,
128, 784 and 960; 2) a corresponding set of SQ que-
ries of 3000 objects.

We presented two summary graphs: 1) the graph
of the computational complexity of search algo-
rithms for different data dimensions (the number
of attributes), shown in Fig. 3, a; 2) the graph of
the computational complexity of search algorithms
for different original data sizes (the number of ob-
jects), which is shown in Fig. 3, b.

Based on the analysis of Fig. 3, we were made
the following conclusions for the algorithms devel-
oped by the authors to reduce the number of com-
putations for the nearest neighbor search in the
MVP-tree: 1) the proposed algorithms increase the
search performance in both small and large space
dimensions; 2) with the growth of the data dimen-
sion (the number of attributes), the efficiency of the
developed search algorithms increases; 3) with the
growth of the number objects of data, the efficiency
of the applied algorithms increases.

Thus, the results of the experiment confirm the
effectiveness of the author’s solutions for nearest
neighbors searching in big data with a significant
number of attributes. The proposed theoretical al-

a) 90
85
80

75 o

70 A
oL _S

P ST —=— DIHPN
65 [| ‘.~—~_..
60

55 T T T T
65 128 784 960

Data Dimension

Eff, %

1

—-o— DIHPN +
DDRPAN

b) 9o

85 --&--DIHPN +
30 DDRPAN +

MCRBMD
75
[}

70 N
N
SNa— B A
65 T
S |

Eff, %

~

60
55

T T

20 40 60 80 100

Data Sizes, %

1

B Fig. 3. Efficiency of different data dimensions (a)
and sizes (b)

24 7/ VH®OPMAUVIOHHO-YMPABASIOLLVIE CUCTEMB

7/ Nea, 2021

\ OBPAEOTKA MHMOPMAUWN N YNIPABAEHVE \

gorithms have found application in an applied clas-
sification system for solving pattern recognition
problems based on precedent methods. The devel-
oped algorithms increase the computational perfor-
mance of the nearest neighbor search procedure in
the indexed set of original objects.

Conclusion

We presented algorithmic solutions related to
the adaptation of the classical search algorithm to
the priority queue of node processing, sorted by in-
creasing the distances from the query point to the
nodes.

The proposed solutions allow to:

— eliminate additional calculations when using
the priority queue for processing nodes by reducing
the number of intersecting nodes of the same level;

— identify and generalize the theoretical de-
pendence of the number of intersections on the com-
plexity of the search calculations (the number of
additional processed levels);

— improve the efficiency of the priority queue
for processing nodes by more accurately determin-
ing the distances from the query point to the sub-
trees of the tree node;

— use additional minimum distances between
the vantage points and the subtrees of the node,
which improves the search algorithm;

— reduce search time by reducing the number of
processed nodes based on the use of minimum dis-
tances in the procedure for determining the inter-
section of the search area with the area of the tree
node.

The developed algorithms of search procedures
in tree structures have demonstrated promising re-
sults of their application to the class of data index-
ing problems in metric space.

A limitation of the proposed algorithms is the
heuristic of random selection of vantage points.
The use of random selection heuristics does not
guarantee stable results for the same data. As fur-
ther improvements to the search algorithms, we are
planning to use combinations of greedy heuristics
when selecting vantage points.

References

1. Fomin V. V., Duke V. A., Aleksandrov I. V. The use of
machine learning methods for the determination of
the fuel consumption of a gas turbine frigate. Marine
Intellectual Technologies, 2019, vol. 4, no. 4(42),
pp. 197-201.

2. Nielsen F., Piro P., Barlaud M. Bregman vantage
point trees for efficient nearest Neighbor Queries.
2009 IEEE International Conference on Multimedia
and Expo, 2009, pp. 878-881. do0i:10.1109/ICME.
2009.5202635

3. Oliveira P. H., Traina C., Kaster D. S. CLAP, ACIR
and SCOOP: Novel techniques for improving the per-
formance of dynamic Metric Access Methods. Infor-
mation Systems, 2017, vol. 72, pp. 117-135. doi:10.
1016/j.is.2017.10.003

4. ZabotG.F., Cazzolato M. T., Scabora L. C., Traina A. J. M.,
Traina Jr. C. Efficient indexing of multiple metric
spaces with spectra. 2019 IEEE International Sympo-
sium on Multimedia (ISM), 2019, pp. 169-1697.
do0i:10.1109/1SM46123.2019.00038

5. Calistru C. M., Ribeiro M. C., David G. T. Flexible
descriptor indexing for multimedia databases. Pro-
ceedings of the Fourth International Workshop
on Content-Based Multimedia Indexing, 2005,
pp. 1-8.

6. Sehili Z., Rahm E. Speeding up privacy preserving
record linkage for metric space similarity measures.
Datenbank-Spektrum, 2016, vol. 16(3), pp. 227-236.
do0i:10.1007/s13222-016-0222-9

7. Chavez E., Luduena V., Reyes N., Roggero P. Faster
proximity searching with the distal SAT. Informa-

tion Systems, 2016, vol. 59, pp. 15—-47.d0i:10.1007/978-
3-319-11988-5 6

8. Hanyf Y., Silkan H., Labani H. Criteria and tech-
nique to choose a good p parameter for the D-index.
Intelligent Systems and Computer Vision (ISCV),
2015, pp. 1-6. doi:10.1109/ISACV.2015.7106169

9. Almeida J., Torres R. D. S., Leite N. J. BP-tree: An
efficient index for similarity search in high-dimen-
sional metric spaces. Proceedings of the 19th ACM In-
ternational Conference on Information and Knowl-
edge Management, 2010, pp. 1365-1368. doi:10.
1145/1871437.1871622

10. Pola I. R. V., Traina Jr. C., Traina A. J. M. The MM-
tree: a memory-based metric tree without overlap be-
tween nodes. Proceedings of the 11th East European
Conference on Advances in Databases and Informa-
tion Systems, 2007, pp. 157-171. doi:10.1007/978-3-
540-75185-4 13

11. CareloC. C. M., Polal. R. V., Ciferri R. R., Traina A. J. M.,
Traina C. T., de Aguiar Ciferri C. D. Slicing the met-
ric space to provide quick indexing of complex data
in the main memory. Information Systems, 2011,
vol. 36(1), pp. 79—98. doi:10.1016/j.is.2010.06.004

12. Guhlemann S., Petersohn U., Meyer-Wegener K. Re-
ducing the distance calculations when searching an
M-Tree. Datenbank-Spektrum, 2017, vol. 17(2),
pp. 155-167. doi:10.1007/s13222-017-0258-5

13. Kokotinis I., Kendea M., Nodarakis N., Rapti A.,
Sioutas S., Tsakalidis A. K., Tsolis D., Panagis Y.
NSM-tree: Efficient indexing on top of NoSQL data-
bases. International Workshop of Algorithmic Aspects
of Cloud Computing, 2016, pp. 3—14. doi:10.1007/978-
3-319-57045-7 1

Ne4,2021 N\

VIHDOPMALIVIOHHO-YNPABASIIOLLIME CUCTEMBbI N\ 25

/7 OBPABOTKA NH®OPMALW N YIIPABAEHVE

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Donko I., Szalai-Gindl J. M., Gombos G., Kiss A. An
implementation of the M-tree index structure for
PostgreSQL using GiST. 2019 IEEE 15th Internation-
al Scientific Conference on Informatics, 2019,

pp. 189-194. doi:10.1109/Informatics47936.2019.
9119265
Chen L., Gao Y., Zheng B., Jensen C. S., Yang H.,

Yang K. Pivot-based metric indexing. Proceedings of
the VLDB Endowment, 2017, vol. 10(10), pp. 1058—
1069. doi:10.14778/3115404.3115411

Maliki N., Silkan H., Maghri M. Efficient indexing
and similarity search using the Geometric
Near-neighbor Access Tree (GNAT) for face-images
data. Procedia Computer Science, 2019, vol. 148,
pp. 600-609. doi:10.1016/j.procs.2019.01.033
Razente H. L., Sousa R. M. S., Barioni M. C. N. Met-
ric indexing assisted by short-term memories. Simi-
larity Search and Applications, 2018, vol. 11223,
pp. 107-121. doi:10.1007/978-3-030-02224-2 9

Chen L., Gao Y., Li X., Jensen C. S., Chen G. Efficient
metric indexing for similarity search and similarity
joins. IEEE Transactions on Knowledge and Data
Engineering, 2017, vol. 29(3), pp. 556-571.
do0i:10.1109/TKDE.2015.2506556

Li S., Yu H., Yuan L. A Novel approach to remote
sensing image retrieval with multi-feature VP-tree
indexing and online feature selection. IEEE Second
International Conference on Multimedia Big Data,
2016, vol. 1, pp. 133-136.d0i:10.1109/BigMM.2016.11
Jiang D., Sun H., YiJ., Zhao X. The research on near-
est neighbor search algorithm based on vantage point
tree. 2017 8th IEEE International Conference on Soft-
ware Engineering and Service Science, 2017, pp. 354—
357. doi:10.1109/ICSESS.2017.8342931

SuY., Zhang Y., Wan C., Yu G. GDPC: A GPU-acceler-
ated density peaks clustering algorithm. Database
Systems for Advanced Applications, 2020, vol. 1,
pp. 305-313. doi:10.1007/978-3-030-59410-7 21
Cheng H., Yang W., Tang R., Mao J., Luo Q., Li C.,
Wang A. Distributed indexes design to accelerate
similarity based images retrieval in airport video
monitoring systems. Proceedings of the 12th Interna-
tional Conference on Fuzzy Systems and Knowledge
Discovery, 2015, pp. 1908-1912. doi:10.1109/FSKD.
2015.7382239

Lin Y. Q., Fu Y. G., Su Q., Wang Y. M., Gong X. T.
A rule activation method for extended belief rule base
with VP-tree and MVP-tree. Journal of Intelligent &

26

24.

25.

26.

27,

28.

29.

30.

31.

32.

33.

7

Fuzzy Systems, 2017, vol. 33(6), pp. 3695—3705.
doi:10.3233/JIFS-17521

Figueroa K., Paredes R., Ibarrola J. A. C., Reyes N.
Fixed height queries tree permutation index for prox-
imity searching. In: Pattern Recognition. MCPR
2017. Carrasco-Ochoa J., Mart nez-Trinidad J., Ol-
vera-L pez J. (eds). Lecture Notes in Computer Sci-
ence, Springer, Cham, 2017. Vol. 10267. Pp. 74—83.
d0i:10.1007/978-3-319-59226-8 8

Mao R., Liu W., Igbal Q., Miranker D. P. On index
methods for an image database. ACM International
Workshop on Multimedia Databases, 2003, pp. 1-9.
Boytsov L., Nyberg E. Pruning algorithms for low-di-
mensional non-metric k-NN search: A Case study.
Proceedings of the 12th International Conference on
Similarity Search and Applications, 2019, pp. 72-85.
d0i:10.1007/978-3-030-32047-8 7

Pandey V., Renen A., Kipf A., Kemper A. How good
are modern spatial libraries? Data Science and Engi-
neering, 2021, vol. 6(11), pp. 192—-208. doi:10.1007/
$41019-020-00147-9

Liu S., Wei Y. Fast nearest neighbor searching based
on improved VP-tree. Pattern Recognition Letters,
2015, wvol. 60, pp. 8-15. doi:10.1016/j.patrec.
2015.03.017

Bozkaya T., Ozsoyoglu M. Distance-based indexing
for high-dimensional metric spaces. Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, 1997, pp. 357-368. doi:10.1145/
253262.253345

Hjaltason G. R., Samet H. Index-driven similarity
search in metric spaces. ACM Transactions on Data-
base Systems, 2002, vol. 28, no. 4, pp. 517-580. doi:
10.1145/958942.958948

Fomin V., Aleksandrov I., Gallyamov D., Kirichek R.
Modified indexing algorithm based on priority queue
in metric space for MVP tree. The 4th International
Conference on Future Networks and Distributed Sys-
tems (ICFNDS 2020), Saint-Petersburg, Russia, No-
vember26-27,2020,8p.doi:10.1145/3440749.3442617
Humberto L. R., Maria C. N. B. Storing data once in
M-tree and PM-tree. 12th International Conference on
Similarity Search and Applications SISAP, 2019,
pp. 18-31. doi:10.1007/978-3-030-32047-8 2

Erik Bernhardsson — Ann-Benchmarks. Available at:
https://github.com/erikbern/ann-benchmarks (ac-
cessed 15 July 2021).

7/ VH®OPMAUVIOHHO-YMPABASIOLLVIE CUCTEMB

7 Nea4, 2021

\ OBPAEOTKA MHMOPMAUWN N YNIPABAEHVE \

YK 004.93
d0i:10.31799/1684-8853-2021-4-18-27

AJNropuT™M MHIEKCAIUY, OCHOBAHHBIH HA XpAHEHUU JONOJHUTEIbHBIX PACCTOSHUN B METPHYE€CKOM IIPOCTPAHCTEBE,
B paMKaX CTPYKTYPHI JepeBa MHOKECTBA OIIOPHBIX TOYEK

B. B. ®omMuH?, JOKTOp TeXH. HAYK, mpodeccop, orcid.org/0000-0001-7040-5386, v_v_fomin@mail.ru

. B. Anexcauapos®, acoupanT, orcid.org/0000-0002-6258-8191

aPoccuiicKuii rocyapcTBeHHbIN Tefarornueckuil yuusepcurer uM. A. . T'epriena, nabepe:xkuasa p. Moiiku, 48, CaHKT-
ITerepOypr, 191186, P®

6CankT-IleTepOypreKuii rocy1apCTBEHHBINM YHHBEPCUTET TeJIeKOMMYHuKAuii uM. npod. M. A. Bonu-Bpyesuua, Bossbiie-
BUKOB IIp., 22-1, CaukTr-IleTepbypr, 193232, P®

BBenmenne: napagurma rnoucKa 1o CXo/ACTBY IPUMEHAETCA B PA3JINYHBIX BEIYUCIUTEIbHBIX 3a/[a4aX, TAKUX KaK KaaccuuKaIus, nH-
TeJIIeKTYaJIbHBIM aHAJIN3 JaHHbIX, pacllo3HaBaHUe 00pasoB u ApP. B HacTosAlee BpeMs Cpeau aJlOPUTMOB IIOMCKA 3HAUUTEJIHHOE MECTO
3aHUMAaET TeXHOJIOTUA APEeBOBUHBIX METPUUECKUX METOJ0B JocTyna. Kiaccuueckas mpobyieMa COKpaIlleHus BpeMeHHU IIOMCKA 10 CXO-
CTBY B METPUUECKOM IPOCTPAHCTBE ABJIAETCA aKTYaJIbHOU /I COBPEMEHHBIX CUCTEM IIPU 00Pab0TKe GOJBIINX CIOKHBIX JaHHBIX. BBUIY
MHOT'0ACIIEKTHOCTH IP00IeMbl 3((HEKTUBHOCTH ITOMCKOBBIX AJITOPUTMOB JIOKAJIbHBIE UCCIE0BAHUSA B 9TOM HAIIPaBJIEHUN BOCTPEOOBAHBI
¥ IPOJOJIKAIOT IIPUHOCUTH II0JIe3HbIe pe3yabTaThl. 1leb: CHUBUTD BBIYUCIUTEIbHYIO CIO0KHOCTb aJITOPUTMOB APEBOBUIHOTO IIOKMCKA B
3azlauyax, UCIOJb3YIOINX METPUUYECKYIO 61130cTh. Pe3yasraTsl: paspaboTaH aJropuTM IIOUCKA A CTPYKTYPHI JaHHBIX B BUJE JepeBa
MHOK€eCTBA OIIOPHBIX TOUEK, OCHOBAHHBIN Ha IIPUOPUTETHON ouepeau 00pabOTKY y3JI0B; MaTeMaTHYeCKu (DOPMaIn30BaHbI IIPOOJIEMBI 10~
TOJTHUTEJNBHBIX BBIUMCIEHUN U CIIOCOOBI X pelneHud. {1 moBBIIIIeHNA OBICTPOLEHICTBUA IIOMCKA 110 CXOACTBY IIPEAJIOKEHbI IIPOIeAyPhI
GopMUPOBaHUA IPUOPUTETHON ouepesu 06PabOTKY Y3JI0B U YMEHBIIEHUA KOJUYECTBA IIEPECEUEHNU Y3I0B OJHOTO yPoBH:A. [loBbIIIIeHTE
9(h(GEKTUBHOCTU IIPOUCXOAUT HA OCHOBE M3MEHEHUSA APEBOBUIHOHW CTPYKTYDPHI JAHHBIX U KUCIIOJH30BAHUA MUHUMAJIBHBIX PACCTOSHUN
MEeXKAY OIIOPHBIMU TOYKAMU U IMOAAEPEBbAMU y3Jia. ¥ MEHbIIIeHNe YKCJia BEIUNCIEHUI JOCTUTAeTCs 3a cueT 60Jiee TOUHOTO OIIpeeIeHUs
PaCCTOAHUSA IO Y3JIOB OT UICKOMOTO 00'beKTa 1 (paKTa IepeceyeHuns 00JIacTy ITIOMCKA ¢ y3JI0M iepeBa. IIpakTuyecKkass 3HAaUMMOCTb: TIOJTyUeH-
HBIM aJICOPUTMAaM IIOMCKa TpeGyeTcss MeHbIlle BpeMeH! [JIs1 00paboTKU NH(OPMAIIUK 3a CUET HeCYIeCTBEHHOTrO MOBLINIEeH TPeOOBaHU I
K naMmATu. CHUKeHre BpeMeH 00paboTKY nH(popMauy paciiupsaeT rpaHuIbl IPUMEeHEeHUA JPEBOBUAHBIX METPUYECKUX METOL0B UH/EK-
caluu B 33/laYax IMOUCKA B OOJIBIINX MaCCUBaX JaHHBIX.

KaroueBsle ciioBa — MHAEKCAIIUS CI0KHBIX TaHHBIX, IPEBOBUJHBIE CTPYKTYPHI JaHHBIX, METPUUECKHE MEeTObI JOCTYIIa, IPUOPUTET-
Hasd ouepeb Y3JI0B, IePeBO MHOYKECTBA OIMIOPHBIX TOUEK.

s murupoBanusa: Fomin V. V., Aleksandrov I. V. Indexing algorithm based on storing additional distances in metric space for multi-
vantage-point tree. Hnpopmayuonno-ynpasasouue cucmemst, 2021, Ne 4, ¢. 18-27. doi:10.31799/1684-8853-2021-4-18-27

For citation: Fomin V. V., Aleksandrov I. V. Indexing algorithm based on storing additional distances in metric space for multi-vantage-
point tree. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2021, no. 4, pp. 18-27. do0i:10.31799/1684-
8853-2021-4-18-27

Ned, 2021 N\ VIHDOPMALIVIOHHO-YNPABASIIOLLIME CUCTEMBbI N\ 27

