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Introduction: Many methods have been proposed to handle the image restoration problem with Poisson noise. A popular
approach to Poissonian image reconstruction is the one based on total variation. This method can provide significantly sharp
edges and visually fine images, but it results in piecewise-constant regions in the resulting images. Purpose: Developing an
adaptive total variation-based model for the reconstruction of images contaminated by Poisson noise, and an algorithm for
solving the optimization problem. Results: We proposed an effective way to restore images degraded by Poisson noise. Using
the Bayesian framework, we proposed an adaptive model based on a combination of first-order total variation and fractional
order total variation. The first-order total variation model is efficient for suppressing the noise and preserving the keen edges
simultaneously. However, the first-order total variation method usually causes artifact problems in the obtained results. To avoid
this drawback, we can use high-order total variation models, one of which is the fractional-order total variation-based model for
image restoration. In the fractional-order total variation model, the derivatives have an order greater than or equal to one. It leads
to the convenience of computation with a compact discrete form. However, methods based on the fractional-order total variation
may cause image blurring. Thus, the proposed model incorporates the advantages of two total variation regularization models,
having a significant effect on the edge-preserving image restoration. In order to solve the considered optimization problem, the
Split Bregman method is used. Experimental results are provided, demonstrating the effectiveness of the proposed method. Prac-
tical relevance: The proposed method allows you to restore Poissonian images preserving their edges. The presented numerical
simulation demonstrates the competitive performance of the model proposed for image reconstruction. Discussion: From the
experimental results, we can see that the proposed algorithm is effective in suppressing noise and preserving the image edges.
However, the weighted parameters in the proposed model were not automatically selected at each iteration of the proposed algo-
rithm. This requires additional research.
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Introduction penetration ability [14]. X-ray images are produced

using a digital receptor. The photon scattering fol-

Poisson noise is known as photon noise or shot
noise [1]. Poisson noise removal is an important
task in various applications such as electronic mi-
croscopy [2, 3], tomography [4, 5], X-ray [6, 7], etc.
In electronic microscopy imaging, the number of
electrons collected to create an image pixel follows
the Poisson distribution [8]. It means that parts of
an image with higher intensity have a higher noise
level than parts with low intensity. A low signal-to-
noise ratio leads to a high level of noise, which af-
fects detected edges and accuracy in measurement
[9, 10]. With the electron tomography technique,
data acquisition is the detection of scattered elec-
tron particles. The emission and subsequent detec-
tion of electrons follow a Poisson process [11]. These
processes degrade data quality due to Poisson noise
[12, 13]. Meanwhile, X-ray is a popular medical im-
aging technique. X-rays are produced using pho-
tons, which have very small wavelengths and high

lows Poisson noise distribution which leads to deg-
radation of the X-ray image quality and to the diffi-
culty of diagnosis [15].

For many years, many variational methods have
been proposed to handle the restoration problem
with Poisson noise [16—23]. One of variational mod-
els for Poissonian image reconstruction is the one
based on the total variation (TV) norm as regulari-
zation term [24]:

miél(” zllry +B(1, Kz—flog Kz)), 1)

where [ is a positive regularization parameter;
z must be positive in Q; K is a blurring operator,
the operator ||z, stands for the TV of u. Authors
in [25] replaced the TV regularization term in (1)

A
by | z|rv +§H2||§ and proposed bounded varia-
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tion-based Poissonian images restoration model as
follows (TV-model):

z =argmin[|z||TV +&||z||§ +5(1, Kz—flong)j. 2)
zeQ) 2

The model (2) performs very well for preserv-
ing edges while removing noise. However, it of-
ten causes undesired artifact effects in smooth
regions. To overcome these effects, some high-or-
der models have been introduced for restoring
blurred images corrupted by Poisson noise. The
authors in [26] replaced the term ||z ; in (2) with
higher-order ||z||;;7 and proposed following mod-
el (HTV-model):

; ) A
z = argm1n(||2||HTV +2 2|8 +pQ, z—flogz)j. 3)
2eQ) 2

Recently, fractional-order derivatives are
widely applied in image processing [27—31]. The
works have reflected the good performance of
the fractional-order derivative in image denois-
ing with edge-preserving. Following [29], the
fractional-order TV model for Poissonian image
denoising and deblurring is as follows (FTV-
model):

2= argmin(|| ZHTVa +B(1, Kz-flogKz)), 4)

u

where B is positive parameter; || ZHTVa stands for
fractional-order TV defined in Eq. (10).
Motivated by the above studies, we introduce

an adaptive TV based optimization problem as fol-
lows:

2= argmink(z), B)
2eS(Q)
# .
2 =argmin(uy | zllpy + w2l +
zeQ)

A
+§||z||§ +B(1, Kz—flog Kz)),

where 1;, 1, and B are positive paramters, n,
1y € (0, 1).

Motivated by the previous works, we propose
a Poisson noise removal model that can sub-
stantially reduce artifact effects while preserv-
ing edges in the restored images. The proposed
model is designed by combining advantages of
the first order TV and fractional order TV. We
extend the split Bregman method for solving
the optimization problem. Furthermore, we pro-
vide experimental results to demonstrate the
efficiency of our algorithm for the considered
problem, in comparison with state-of-the-art me-
thods.

Preliminaries

We recall the principle behind Eq. (5). We aim at
reconstructing the original image u with the known
noisy image f. Our strategy is to find the image u
which maximizes the conditional probability P(ulf).
Bayes’s rule gives

P(f|2)P(z)

P(z|f)= ()

(6)

The probability density function of the observed
image f corrupted by Poisson noise is:

2 exp(-2)
1 '

Suppose that f has size M x N, and let Z={1, ...,
M} x {1, ..., N} denote the domain of f. For i € Z, we
write f; the pixel of f at position i (and similarly u;
the pixel of u at position i) [32]. Then:

f; (=2;)
P2 le L
e | S

iel fi!

P(f|2)=

Maximizing P(z|[f) is equivalent to minimiz-
ing —log(P(z|f)), so let us compute the quantity
—log(P(fl2)):

> 2, —f; log(z;) +log(f}) . (7

iel

Since f is constant, we can ignore the term
log(f;!). Now we assume that P(z) follows a choice of
the prior:

P(z)=exp(—%(¢(z)j, ®)

where t is a normalization factor being positive and
constant.
In this work, we assumpt that

o 2
@) =wy | zlpy +uo ||2||TVa +§H zlz -

The assumption on P(z) means that each pix-
el depends (weakly) on the neighbouring pixels
only, so we do not lose much by assuming indepen-
dence.

We now have all the ingredients to maximize
P(z|f). By Eq. (6), this amounts to minimize the ex-
pression —log(P(f|z)) — log(P(2)), so we can plug in
Equations (7) and (8) to get:

2= arg minZ(ld)(zi )+(2; —f;log(z; ))j

4 iel
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and we can view this expression as a discrete ap-
proximation of the functional E(-) defined as

a
B[l + a2y, + 51218 +pa1, 2 loga) |

where = 1 is positive and constant parameter.

In case of the blur effect, we can generalize the
model (5) for restoring a blurred image corrupted
by Poisson noise as follows:

E@) = 1zlrv +na 12lrv,, +

+ %II 2| +B(1,Kz —flong>j,

where [ is positive and constant parameter.

The discrete gradients of an image u for the pix-
el location (i, j) in z (i=1..M; j=1..N) are defined
like [33-35]:

| 2llpy = (V12)® +(V32)?, 9)

V12ij =211, —%,j> V22i,j =%i,j+1 ~3,j»
V1121 =2i11,; — 22, + 21>

Vog2ij =241 —22j+2 1,

Vi22;,; =V212ij =2;j =2 j-1 —%-1,j T i-1,j-1

I 2|y = \/(V11-2’)2 +(V122)% +(V312)® +(V22)?.

Due to the convenience in numerical implemen-
tation, from Greunwald — Letnikov (GL) fraction-
al-order derivative, the discrete fractional-order
TV ||z ||TVOL of z € Qis defined as follows [27, 31]:

| 2lrv, =V +(V§2) (10)

where the discrete gradients V{'z and V§z are de-
fined as follows:

L-1 L-1
o _ o a - a
(Vi2);; = > cy 2 k,j» (V22);= >.Ck Zi,j—k-
k=0 k=0

Parameter L is the number of neighboring pix-
els that are used to compute the fractional-order
derivative at each pixel; the coefficients {C;'} are
defined as follows [27]:

- C(a+1)

o — ,k=1..L-1.
T(k+1)(a+1—F)

Computational method

In this section, we derive the numerical method
for the problem (5) in detail. There are many meth-

ods which can be employed to obtain the solution of
the optimization problem. In this article, we decide
to employ the split Bregman method for solving the
optimization problem.

The split Bregman method performs break the
minimization problem down into easy subproblems
[836—38]. Subproblems can be directly solved with
tools like fast Fourier transform (FFT), shrinkage
operator that makes the optimization algorithm
rather fast. We have a scalar y and two convex func-
tionals W(-) and G()); and that we need to solve the
following constrained optimization problem:

argmin(|w||+yG(2)), s.t.w="Y¥(2). 11

zZ,W
We convert (11) into an unconstrained problem:

argmin(”w||+yG(z)+%||d—‘{’(z)—b||§j, (12)

2w

where w — splitting variable; p is positive constant
parameters; b — variable of the Bregman itera-
tions.

The solution to problem (12) can be approximat-
ed by the Split Bregman method:

2D = argmin[YG(z) +% lw® —w(z)-b® |3 }

2z

w1 =argmin[||w||1 +o =) —p® ||§j,

w

D) = ) (gD (k1)

We return to the problem (5). By introducing
three auxiliary variables u, p and ¢, Eq. (5) is equiv-
alent to the constrained optimization problem:

0
min (1 9+ ]+ 512§ + UL, u-logw |,
Pq,2,u

s.t.p=Vz, q¢=V%z, u=Kz, (13)

where Vz and V*z are defined in (9) and (10) respec-
tively.

We convert the problem (5) to the unconstrained
one as follows:

0, 2
up llpll+pg ||Q||+EH2||2+

min | +B(1, u—floguwy+2L | p-vz | +|, (14
D525l 2

p 2 P 2
+2]|g-Vo2| +2 Ju-Kz |}

where 117, 11y, P and y are positive parameters; p;, py
are Lagrangian multipliers.
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The extended split Bregman iterative method
employed for solving the problem (5) can be de-
scribed as follows:

0 2. Py (& k) |12
Sz + PP —vz-b [+

2B — argmin
¥4

p k k) 2
+ 2 g W v -b | +
p k k) 12
+ 2w - Kz -0l |
B(1, u—flogu) +
u®D — argmin

p k+1 k) |12
w | lus KD b

P —argmin] | pl1+ 21 p-vahD P f |
p

D = argmin| g+ 22172 -
q

with update for bg”l), bg”l), bg”l) :

(k+1) _ 3 (R) (k+1) (k+1)
b, =b, +Vz -p
bék+1) _ bék) +V0L2(k+1) _q(k+1) .

B = p(B) | g (H1) (D)

Hence, we have three subproblems to solve: z, p
and q.

Subproblem z. For the z subproblem, optimality
condition reads:

0z+p (V)T (V2 +b() - p®) 4
+pa (V)T (V2 +bP - gy =0.

Therefore, we have

O+p1 (V) V+pa (V) V)2 =
=p1M)" (" b5y +p (V)T (¢ -b(?).  (15)
The Eq. (15) can be solved efficiently with one

Fourier transform operation and one inverse FFT
operation as follows:

F(py (M) (p® —b{) +

+p2(V*) (@™ ")

0+p1 F((V)' V) + po F(VH)T V) |
+p1F((V) V) +paF((V™T) ) 16)

k1) _ p-1

where F and F! are the forward and inverse Fourier
transform operators.

Subproblem u. For the u subproblem, optimality
condition reads:

B—”;f +pg(u—K2HD _pPy o,

At the (k + 1)-th iteration, we compute u by dis-
cretization scheme:

(k+1)
u ~-f
B—(k) + p3(u(k+1) _ KD bgk)) =0.
u
Therefore, we have

LD _ Bf +pgu'® (k2D 1 p))
B+pgul®

an

Subproblems p and g. The solution of the p sub-
problem can readily be obtained by applying the
soft thresholding operator:

p# = shrink[Vz(k+1) + bék) ) ﬂ} =
P2

v 9

= P max||vz®D B | _EL OJ. (18)
|v2FD )| [ P

The solution of the g subproblem can also be ob-
tained by applying the soft thresholding operator:

g = shrink(vo‘u(kﬂ) + bgak) ) H—ZJ =
P2
Votu(k+1) + b},k)

=— P max||veu®D 4 p® |_H_2, 0]. (19)
|vou D 4y | [ P py

The complete method is summarized in Algo-
rithm 1.

Algorithm 1: Adaptive split Bregman method
for solving the problem (5)

1. Initialize: 2@ =f; p© =q© =0; b =p{® =
pV. 1
00 f =

I u(k) _u(k—l) llo
1 |,

[\

. while ( <&)||(E< Npyay) do

. Calculate z**D using (16)
. Calculate u**D using (17)
. Calculate p**D using (18)
. Calculate ¢**1 using (19)

(B+1) _ 1.(R) (k+1) (k+1)
- by =b,” +Vz -p

0 = OOtk W

(B+1) _ 1.(R) o (k+1) (k+1)
- by =b,"+V7z -q
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9. Bl D = p® | gp(h+l) _ (D)

10. k=k+ 1
11. endwhile
12. return z

Experimental results

In this section, we present some numerical re-
sults to illustrate the performance of the proposed
model for Poisson noise removal. In order to prove
the efficiency of the proposed model, we compare
our reconstruction results with those of the men-
tioned models: TV-model, HTV-model and FTV-
model. The compared models are implemented by
the split Bregman method. We performed all exper-
iments under MATLAB and Windows 10 on a PC
with an Intel Core (TM) i5 CPU at 2.4 GHz and 8
GB of RAM. Empirically, all images are processed
with the equivalent parameters o =1.5, p; =0.6,
n,=0.4, p; =0.01, p,=0.01, p;=0.01, 6=0.0001.
We set the stopping condition for Algorithm 1:
£€=0.00004 and N =500. The observed images in
our experiments are simulated as follows. Poisson
noise is data dependent, the noise level of the ob-
served images depends on the pixel intensity val-
ue. To test different noise levels, the noisy image is

simulated by adding Poisson with some fixed value
Peak. The test images are shown in Fig. 1.

The peak signal-to-noise ratio (PSNR) used in
comparison are defined as follows:

2
”u* - u“z

where M and N are the number of image pixels in rows
and columns; u, u* are the original image, the recon-
structed or noisy image accordingly. We also use oth-
er popular measure called structural similarity index
measure (SSIM) which allows us to get more consist-
ent with human visual characteristics [39]:

uyh = te)(20, « +c2)

SSIM(u, u”)=—— TR ;
(uy, R +¢1)(o}, +G . +c3)

where ,,, 11, are the means of u, u” respectively; G,
G, — their standard deviations; Oyt — the covar-
iance of two images u and u*; ¢y, ¢y are positive con-
stants.

We first deal with Image denoising. In this case,
K is an identity matrix. In Figs. 2 and 3, we aim

B Fig. 2. Image “Lena”. Recovered images of different
methods for image denoising with Peak = 255: a — orig-
inal image; b — noisy image; ¢ — TV;d — HTV; e — FTV;
f— ours

B Fig. 3. Image “Lena”. Recovered images of different
methods for image denoising with Peak = 100: a — orig-
inal image; b — noisy image; ¢c — TV; d — HTV; e — FTV;
f— ours
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to restore the image “Lena” corrupted by Poisson
noise with Peak = 255 and Peak = 100, respective-
ly. In these figures, we also present the zoom-in on
small details of the recovered images.

We see that TV-model is efficient for removing
noise and simultaneously preserving the edges.
However, the numerous artifact exists in result im-
age recovered by TV-model. Meanwhile, the HTV-
model and FTV-model can lead to edge blurring
when image denoising. The images recovered by our
model are more smooth and distinct than those of
another three approaches.

In Figs. 4, 6 and 8, we show the results of com-
pared methods for noise levels Peak=100. In
Figs. 4, b, 6, b, and 8, b, we represent the noisy imag-
es. In the others, Figs. 4, ¢, 6, c—f, 8, c—f, we show
respectively the reconstructions given by TV, HTV,
FTV and our proposed approach. In Figs. 5, 7and 9,
we show the zoomed details of the original images,
observed images and the zoomed details of the re-

stored images respectively in Figs. 4, 6 and 8. From
the details in Figs. 5, 7 and 9, we can see that the our
model can get better visual improvement than the
others. In Tables 1 and 2, we show the comparison
results in terms of SSIM and PSNR (the best result
is highlighted in bold). We can clearly see that our
method outperforms the other relative methods for
restoring images damaged by Poisson noise.

In the case of image deblurring and denoising,
we consider blurred images degraded by Poisson
noise. For simulation, we use the Gaussian blur with
a window size 5 x 5 and standard deviation of 1.
After the blurring operation, we degrade the im-
ages by Poission noise with Peak = 100. In Fig. 10,
we perform simultaneously image deblurring and
denoising on image “Lena”. Fig. 10, b denotes cor-
rupted image. In Fig. 10, c—f, we show respectively
the reconstructions given by TV, HTV, FTV and our
approach.

B Fig.4.Image “Aerial”. Recovered images of different
methods for image denoising with Peak = 100: a — orig-
inal image; b — noisy image; ¢c — TV; d — HTV; e — FTV;
f — ours

B Fig. 6. Image “Man”. Recovered images of different
methods for image denoising with Peak = 100: a — orig-
inal image; b — noisy image; ¢c — TV; d — HTV; e — FTV;
f — ours

B Fig. 5. Image “Aerial”. The zoomed-in details of the
recovered images in Fig. 4: a — original image; b — noisy
image; ¢ — TV; d — HTV; e — FTV; f — ours

B Fig.7. Image “Man”. The zoomed-in details of the re-
covered images in Fig. 6: a — original image; b — noisy
image; ¢ — TV; d — HTV; e — FTV; f — ours
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B Fig.8.Image “MRI”. Recovered images of different meth-
ods for image denoising with Peak = 100: a — original image;
b — noisy image; c — TV; d — HTV; e — FTV; f — ours

B Fig.9.Image “MRI”. The zoomed-in details of the re-
covered images in Fig. (8): a — original image; b — noisy
image; ¢ — TV; d — HTV; e — FTV; f — ours

B Table 1. PSNR values for recovered images given by
the compared methods with various noisy levels

B Table 2. SSIM values for recovered images given by
the compared methods with various noisy levels

Noise PSNR

level

Peak Noisy TV HTV FTV Ours
Lena

255 | 26.9200 | 31.1786 | 30.9261 | 31.0504 | 31.8640
100 | 22.8909 | 29.1995 | 28.8624 | 29.2134 | 29.4694
Man
255 | 27.6436 | 29.6582 | 29.5528 | 29.8153 | 30.1140

Noise SSIM

level
Peak Noisy TV HTV FTV Ours

Lena

255 0.6721 | 0.8794 | 0.8812 | 0.8780 | 0.8891

100 0.5234 | 0.8368 | 0.8423 | 0.8411 | 0.8505

Man

255 0.8028 | 0.8770 | 0.8731 | 0.8713 | 0.8835

100 | 23.5718 | 26.5633 | 26.2971 | 26.7400 | 26.8960

100 0.6578 | 0.7830 | 0.7784 | 0.7862 | 0.7986

Aerial

255 | 26.7701 | 28.4530 | 28.2417 | 28.4966 | 29.006

Aerial
255 0.8277 | 0.8649 | 0.8585 | 0.8645 | 0.8805

100 | 22.6521 | 25.8654 | 25.7517 | 25.6930 | 26.2966

100 0.7154 | 0.7787 | 0.7639 | 0.7647 | 0.7882

MRI

MRI

255 | 30.1130 | 30.7451 | 30.7111 | 30.8487 | 30.9878

255 0.9025 | 0.9401 | 0.9427 | 0.9344 | 0.9484

100 | 26.9175 | 28.9371 | 28.9151 | 28.9780 | 29.2772

100 0.8416 | 0.9107 | 0.9114 | 0.9095 | 0.9272

B Fig. 10. Image “Lena”. Recovered results for the test
images: a — original image; b — noisy image; ¢ — TV;
d— HTV; e — FTV; f — ours

B Fig. 11. Image “Lena”. The zoomed-in details of the
recovered images in Fig. 10: a — original image; b —
noisy image; ¢ — TV; d — HTV; e — FTV; f — ours
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B Table 3. PSNR values for recovering blurred images
with noisy level Peak = 100

PSNR
Noisy TV HTV FTV Ours

Image

B Table 4. SSIM values for recovering blurred images
with noisy level Peak = 100

SSIM
Noisy TV HTV FTV Ours

Image

Lena | 20.6275 | 22.7049 | 22.5994 | 22.8684 | 23.3133

Lena | 0.4354 | 0.7503 | 0.7190 | 0.7647 | 0.7739

Man |19.4880 | 20.5501 | 20.0390 | 20.4229 | 20.6916

Man | 0.4748 | 0.5702 | 0.5432 | 0.5853 | 0.5994

Aerial | 18.3362 | 18.7176 | 18.9762 | 18.8378 | 19.4537

Aerial | 0.5220 | 0.6047 | 0.5430 | 0.6074 | 0.6214

MRI | 24.3167 | 24.9252 | 24.231 | 24.6373 | 25.0166

MRI | 0.7956 | 0.8642 | 0.8527 | 0.8690 | 0.8760

Meanwhile, Fig. 11 shows enlarged images re-
covered by four methods in Fig. 10. In Tables 3 and
4, we report the quantitative measures of PSNR
and SSIM values for different images and compared
methods. The Figures and Tables demonstrate
again the effectiveness of our proposed method for
image reconstruction under Poisson noise even in
presence of blur.

Conclusions

In this paper, we have researched the hybrid
regularizers model, combining the fractional-order
and first-order TV for denoising images corrupt-
ed by Poisson noise. Computationally, an extended
split Bregman method is employed for solving the
proposed optimization problem. Finally, compared
with the existing state-of-the-art models, the ex-

periments demonstrate the efficiency of the pro-
posed method.
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Beegenne: n3BeCTHO MHOKECTBO METO/IOB JIJIS1 PEIIIeHN IPO0IeMbl BOCCTAHOBJIEHUA N300PAKEHUI ¢ TOMOIIILI0 TyaCCOHOBCKOTO IIIy-
Ma. OJHUM U3 MOMYJIAPHBIX OJX0J0B K PEKOHCTPYKIIUY IIyaCCOHOBCKOTO M300PaKeHUs ABJSETCS METO], OCHOBAaHHBIM Ha IIOJIHON Ba-
puanuu. C IOMOIIIO 3TOTO MEeTOAa MOKHO IIOJIYYUTh BeChbMa pe3Kue I'PaHUIbl M BU3YAJbHO UeTKUe M300pa'KeHusa, HO OH IMPUBOJUT K
00pa30BaHUIO KYCOUHO-TIOCTOSHHBIX 00JacTeil B Pe3yIbTUPYIOIUX n3obpakeHuax. Ileas: paspaboTka afanTUBHON MOJEJHN Ha OCHOBE
TIOJIHBIX BapUanuil U1 PEKOHCTPYKIIUY M300paskeHNl, NCKaKeHHBIX IIYaCCOHOBCKUM IIIYMOM, ¥ aJITOPUTMA PEeIIeHUs 3aJaYll OIITUMU3a-
uu. PesyasraTsl: mpeaiokes sh(OeKTUBHBIN METO/ IJIs1 BOCCTAHOBJIEHUS N300PaKeHNM, NCKAYKEHHBIX IIyaCCOHOBCKUM 1rymoM. Ha 6ase
06aiiecoOBCKOI CTPYKTYPHI ITPeJJIoyKeHa afalTUBHAs MO/eJib, OCHOBaHHAs HA KOMOWHAIIUY IOJHOM Bapualliy IePBOTO MOPAJKA U IIOJHOMN
Bapuanuu ApoOHOTro mopsaaKa. BoccTaHOBIeHNE N300paKeHnsI Ha OCHOBE MOJIEJIU MTOJHOM BapHUalliy IIePBOTO MOpsaaKa 3(hdEeKTUBHO A
IIIYMOIIOZABJIEHUSA U OJJHOBPEMEHHO COXPaHEHUs OCTPHIX rpaHul. OLHAKO MeTOJ IIOJHOW BapUaluy IIePBOTO IOPSAAKa 00BIYHO BHI3bIBA-
eT mpobJsieMbl ¢ apTedaKTaMu B IMOJYYEHHBIX pesdyJibrarax. UTo0bl 130€)KaTh 9TOT0 HELOCTATKA, MCIIOJIb30BAHbI MOIEJU IIOJHON Bapu-
anuy BBICOKOTO IOPSIKA, OAHA U3 KOTOPHIX SIBJISETCA OCHOBAHHOU Ha ITOJIHOM Bapualuy JPOGHOTO MOPSAKAa AJISA BOCCTAHOBJIEHUS M30-
OpaskeHuii. B Mogesiu moTHOM Bapuanuu JpoGHOr0 MOPSJKa IIPOU3BOJHbIE MMEIOT IOPALOK 0OJIbIIIe UJIN PABHBIN eUHUIIE. ITO IPUBOJUT
K yI00CTBY BBIYMCJIEHUI C KOMIIAKTHOUN AuCKpeTHOI hopmoii. Ho MeToabl, OCHOBaHHBIE Ha ITOJHON Bapuamuu APOOHOTO IMOPALKA, MOTYT
BBI3BATh Pa3MbITHE N300paskeHus. Takum o0pasoM, MpeAToKeHHasd MO/eJIb BKJIOUaeT B ce0s IPEeNMYIIecTBa JBYX MOJeJIeil peryasapusa-
MU IIOJIHOM BapHaIlliy U CYIIeCTBEHHO BJIMSAET HAa BOCCTAHOBJIEHNE U300parKeHus ¢ COXpaHeHueM rpanuil. [lJia pelieHus paccMaTpuBae-
MO ONITUMUBALUOHHON 3aaun UCIIOab3yeTca meTox Split Bregman. IIpuBeeHsl sKCIIepuMeHTaIbHBIE PE3YAbTATEI, J€MOHCTPUPYIOII[IE
3G e TUBHOCTD IIPeAIoKeHHOro MeToa. [IpakTnyecKkas 3EHaYMMOCTH: IIpe/JIaraeMbIi METO/ II03BOJISET BOCCTAHABINBATE ITYaCCOHOBCKHE
n300pakeHns C cCOXpaHeHneM rpanuil. IIpeacTaBieHHOe YNCIEHHOE MOAEJINPOBAHIE HATJISJHO JeMOHCTPUPYET KOHKYPEHTOCIIOCOOHOCTh
IPeIJI0KEeHHON MOJeNN IJIsl BOCCTAHOBJIEHUA N300paKeHU, TerPauPOBAaHHBIX IIyaCCOHOBCKUM mrymMoM. O6cyskaeHue: U3 pe3yabTaToB
9KCIIEPUMEHTOB BUHO, YTO MPEAJIOKEHHBIN aaroputM 3¢h@deKTuBeH B IIyMOIIOAaBIEHNN U COXPAaHEHUU I'PaHull nusobpaskerHus. OgHaxko
B3BEIIIEHHBIE ITapaMeTPhI, CYII[eCTBYIOI[ME B IPEJIOKEeHHON MO/eJIN, He BEIOUPAINCh aBTOMATHYECKH Ha KasK/I0M UTepaIluu IPeaIoKeH-
HOT'0 aJITOPUTMA, UYTO TPEOYeT AOMOJTHUTENbHBIX UCCIeTOBAHUM.

KaroueBsle ciioBa — IoJIHAsI Bapuallusi, BOCCTAHOBJIEHIE N300paKeHNU s, IYaCCOHOBCKUI IITyM, METOJ MUHUMUBAIIUN.
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