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Introduction: Development of practical post-quantum signature algorithms is a current challenge in the area of cryptography.
Recently, several candidates on post-quantum signature schemes, in which the exponentiation operations in a hidden
commutative group contained in a non-commutative algebra is used, were proposed. Search for new mechanisms of using a
hidden group, while developing signature schemes resistant to quantum attacks, is of significant practical interest. Purpose:
Development of a new method for designing post-quantum signature algorithms on finite non-commutative associative algebras.
Results: A novel method for developing digital signature algorithms on non-commutative algebras. A new four-dimensional finite
non-commutative associative algebra set over the ground field GF(p) have been proposed as algebraic support of the signature
algorithms. To provide a higher performance of the algorithm, in the introduced algebra the vector multiplication is defined
by a sparse basis vector multiplication table. Study of the algebra structure has shown that it can be represented as a set of
commutative subalgebras of three different types, which intersect exactly in the set of scalar vectors. Using the proposed method
and introduced algebra, a new post-quantum signature scheme has been designed. The introduced method is characterized in
using one of the elements of the signature (e, S) in form of the four-dimensional vector S that is computed as a masked product
of two exponentiated elements G and H of a hidden commutative group: S = B-1G"H'C-1, where non-permutable vectors B and
C are masking multipliers; the natural numbers n and r are calculated depending on the signed document M and public key.
The pair <G, H> composes a minimum generator systems of the hidden group. The signature verification equation has the form
R = (Y,SZ,)8(Y,SZ,)e*, where pairwise non-permutable vectors Y, Z,, Y,, and Z, are element of the public key and natural number e
that is computed depending on the value M and the vector R. Practical relevance: Due to sufficiently small size of public key
and signature and high performance, the developed digital signature scheme represents interest as a practical post-quantum
signature algorithm. The introduced method is very attractive to develop a post-quantum digital signature standard.
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Introduction

At present the most widely used digital signa-
ture algorithms are based on the computational
complexity of the integer factorization problem [1,
2] and the discrete logarithm problem (DLP) [3, 4].
However, both of the said problems can be solved in
polynomial time on a quantum computer [5—7]. The
expected breakthrough in the technology of quan-
tum computations in the near future makes it ex-
tremely urgent to develop practical post-quantum
public-key signature algorithms (post-quantum are
called algorithms that are resistant to attacks us-
ing quantum computers) [8]. Computationally diffi-
cult problems other than factorization problem and
DLP are to be used as the base cryptographic prim-
itive of post-quantum digital signature algorithms.

In the current field of development of pub-
lic-key post-quantum cryptoschemes, considera-
ble attention of the cryptographers is paid to the
development of cryptoschemes on algebras [9, 10],

on Boolean functions [11, 12], and on linear codes
[13, 14].

A landmark event in the area of post-quantum
cryptography is the worldwide algorithm compe-
tition announced by the US National Institute of
Standards and Technology (NIST) for the period
2017-2024 with the aim of developing post-quan-
tum standards for digital signature algorithms and
public key agreement algorithms. The first round
[15] of the competition ended with the selection of
10 signature algorithms and 16 public key agree-
ment algorithms (i. e. 26 public-key algorithms out
of 69 initially submitted for participation in the
competition) as potential candidates for post-quan-
tum standards. The second round [16] ended with
the selection of three signature algorithms and four
public key-agreement algorithms (called finalists)
for the in-depth analysis in the third round. In ad-
dition, three alternative signature algorithms and
five alternative key agreement algorithms were se-
lected for consideration at the fourth round of the
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competition. For the first time in the NIST cryp-
tographic competitions, along with the finalists,
alternative cryptoschemes were selected for final
consideration.

However, the most interesting thing is that ac-
cording to the results of the third round of the com-
petition NIST intends to accept new post-quantum
signature algorithms for consideration at the fourth
round [17]. In a brief overview of the current results
of the competition [17], it is noted: “We are most
interested in a general purpose digital signature
scheme which is not based on structured lattices”.
Taking into account that algorithms Dilithium and
Falcon, which are based on lattices, are considered
the most promising for adopting the post-quantum
signature standard, one can conclude that NIST
remained somewhat dissatisfied with the current
results of the competition in the nomination of sig-
nature algorithms. Thus, search for new methods,
mechanisms, and algebraic supports for the devel-
opment of practical post-quantum digital signature
algorithms is still an urgent task.

One of attractive primitives of the post-quan-
tum signature algorithms is the hidden discrete
logarithm problem (HDLP) defined usually in finite
non-commutative associative algebras (FNAAs).
Earlier, many different forms of the HDLP were
proposed to develop signature algorithms on
FNAASs [18-20]. The main feature of the HDLP-
based signature schemes is the use of the exponen-
tiation operations in hidden commutative groups
and computing the signature in the form of two
integers. The latter defines possibility to forge sig-
natures in the case of known secret value of the dis-
crete logarithm in a hidden group, for calculation
of the public key secret vectors are used as mask-
ing multipliers though. Separate HDLP-based algo-
rithms are characterized by using an auxiliary sig-
nature element in the form of a vector S. In the last
type algorithms for eliminating attacks associated
with the use of the vector S as a fitting parameter,
a doubling of the signature verification equation is
proposed [20].

In this paper, we propose a new method for de-
veloping the signature algorithms including the ex-
ponentiation operations in a hidden group, which is
characterized in using a vector S as a main element
of the signature (e, S) including the randomization
integer e. The vector S is included in the verifica-
tion equation two or more times. The latter defines
computational infeasibility of forging a signature
by calculating the value of S from the verification
equation. At the same time, with the knowledge of
secret masking vectors, it is possible to calculate
the vector S satisfying the verification equation
for arbitrary fixed value of the randomizing signa-
ture element e. Using the proposed method, a new
candidate for post-quantum signature algorithm
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is developed. To provide higher performance a new
four-dimensional FNAA set by a sparse basis vector
multiplication table (BVMT) is proposed and used
as algebraic support of the signature algorithm.

Four-dimensional FNAA used
as algebraic support

A vector space of dimension m, which is set over
a finite ground field GF(p), with the additionally
defined vector multiplication operation that is dis-
tributive at the left and at the right relatively the
addition operation is called m-dimensional alge-
bra. A vector A is presented as an ordered set of its

coordinates: A = (ay, ay, ..., a,,_;) or as a sum of its
components: A =aqe, + a,e; + ... +a,, e, ;, where
e (i=0,1, .., m—-1)are formal basis vectors. If the

vector multiplication is non-commutative and asso-
ciative, then one gets m-dimensional FNAA.
Usually, the multiplication of two vectors
m

A:zzz)laiei and B=Z].=;)1bjej is defined by

the following formula: AB:ZZ(_)IZ;Z;laibjeiej,

where the coordinates a; and b, are multiplied as
elements of the field GF(p) and every the product
of two formal basis vectors is to be replaced by
an one-component vector indicated in a cell at the
intersection of the i-th row and j-th column of so
called BVMT. In general for the case m =4, one vec-
tor multiplication operation is implemented as ex-
ecuting about 16 multiplications and 12 additions
in GF(p). To reduce computational complexity of
the vector multiplication we propose a new sparse
BVMT shown as Table 1, which defines a four-di-
mensional FNAA with reduced two times complexi-
ty of the vector multiplication.

A left-sided unit E; of the said algebra can be
computed from the vector equation XA = A that can
be reduced to the following two independent sys-
tems of two linear equations with unknown values
of the coordinates of the vector X = (x, x;, x5, x3):

B Table 1. Multiplication of basis vectors (A # 0) in the
proposed four-dimensional FNAA with global two-sided
unitE=(0, 1,1, 0)

eo el ez 93
e, 0 0 e, req
e; e, e; 0 0
e, 0 0 e, eg
es he, eg 0 0
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a1Xp +agX9 =aop;
a9 X9 +Nagxy =ag;

a1x; +Aagxg =ayg;
agXy +agXxg =ay.

From the last two systems one easily gets E; = (0,
1, 1, 0). The right-sided unit E, can be computed
from the vector equation AX = A. The latter gives
E,=(0, 1,1, 0)=E;. One can easily see that the vec-
tor E=(0, 1, 1, 0) acts as global two-sided unit in the
considered four-dimensional FNAA. One can show
that for different fixed values A the vector equation
AX =E has a unique solution or has no solutions. In
the first case the vector A is called invertible and in
the second case it is called non-invertible. Inverse
value of A is denoted as the vector A~l. Considering
the vector equation AX = E or equation XA = E, one
can obtain the invertibility (non-invertibility) con-
dition of the vector A:

a,ay # Magag (a,ay = hayas). @®

Using the formulas (1) it is easy to find the num-
ber on non-invertible vectors (equal to p3 + p2 — p)
and then the number Q of invertible vectors (order
of the multiplicative group of the algebra):

Q=p(p?-D(p-1). @)

The structure of a FNAA from the view point of
its decomposition into a set of commutative subal-
gebras represents significant interest while using
it as algebraic support of the HDLP-based signature
algorithms [18]. Next section describes the struc-
ture of the introduced four-dimensional FNAA.

Structure of the algebra used
as algebraic support

To study the structure of the FNAA set by
Table 1, we apply the method used earlier in the pa-
per [18]. Consider the set of the vectors X that are
permutable with a fixed vector A = (a,, a;, a,, a3).
The set of vectors X = (x(, x;, Xy, X3) can be com-
puted as solution space of the following vector equa-
tion:

AX-XA=(0,0,0,0). 3)

If X, and X, are two solutions, then X, + X, and
X, X, are also solutions. One can show that the set
of solutions of the equation (3) represents a subalge-
bra ¥,. The said vector equation can be reduced to
the following system of four linear equations with
the unknowns x,, x{, x5, and xg:

a1xg +agXg —agX1 —agXg +Aagxy =0;
a1 x1 +Aagxg —ayx; —hagxg =0; @

a1 X9 + hagxg —agxg —Ahagxg =0;
agX1 +A9X3 —A1X3 —A3Xy =0.

The system (4) reduces to the following system of
three linear equations:

agxoy —agXxs ZO;
(al—ag)xo +a0(x2—x1):0; (5)
ag(xl —x2)+(a2 —al)xg =0.

Depending on the vector A there are possible the
following cases.

I. Case a;, = a3 = 0. The system (5) reduces to the
system

{(al —ag)xo =0;
(al —(12).7C3 =0.

If a, # ay, then the subalgebra ‘¥, includes the set
of vectors described by the following formula:

X =(xg, X1, X9, x3) =(0, d, h, 0), 6)

whered, h=0, 1, ..., p— 1. The set (6) contains 2p — 1
non-invertible vectors of the forms (0, 0, z, 0) and
0, d, 0, 0) and (p — 1)2 invertible vectors, i. e.,
the multiplicative group I'; of the ¥, subalgebra
has order Q; = (p — 1)2. A generator system of the
group I'; includes two vectors or order p — 1. Such
group is called a group possessing two-dimensional
cyclicity. Subalgebras containing a multiplicative
group of the I'; type are called subalgebras of the
¥, type.

If a; = a,, then every vector of the considered
FNAA is permutable with A. Indeed, in this sub-
case we have a scalar vector A =(0, a;, a;, 0).

IL. Case a; #0; ag = 0. The system (5) reduces to
the system

xg =0;

a —a
X9 =X1 — 1 2

.')CO .
ao

The set of elements of the subalgebra ¥, is de-
scribed by the following formula

X =[d, hh-2"%2, Oj, (7
ap

where d, h = 0, 1, ..., p — 1. Taking into account
the non-invertibility condition in (1), for the non-
invertible vectors contained in (6) one can write
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h[h_udjzo_
ap

For the subcase a, # ay, from the latter formu-
la one can conclude that the set (7) contains 2p — 1
non-invertible vectors and we have subalgebra of
the 'V, type.

For the subcase a; = a,, from the non-invertibil-
ity condition in (1) we have £ = 0 and p non-invert-
ible vectors of the form (d, 0, 0, 0). Respectively,
the order of multiplicative group of the subalgebra
¥, is equal to Q, = p? — p = p(p — 1). The multiplica-
tive group is cyclic and is attributed to the I', type.
Subalgebra containing a multiplicative group of the
I', type is attributed to the ¥, type.

IIL. Case ay = 0; ag # 0. The system (5) reduces to
the system

x3 =05
a1 —ay
as

X9 =X1 — xX3.

The set of elements of the subalgebra ¥, is de-
scribed by the following formula:
b hj’

where d, h =0, 1, ..., p — 1. Taking into account
the non-invertibility condition in (1), for the non-
invertible vectors contained in (8) one can write

d(d p =% d] 0.
as

For the subcase a, # a,, from the latter formula one
can conclude that the set (8) contains 2p — 1 non-in-
vertible vectors and we have subalgebra of the \V; type.

For the subcase a, = a,, from the non-invertibil-
ity condition in (1) we have d = 0 and p non-invert-
ible vectors of the form (0, 0, 0, i). Respectively,
the order of multiplicative group of the subalge-
bra ¥, is equal to Q, = p2 — p = p(p — 1). The mul-
tiplicative group is cyclic and is attributed to the
I'y type. Subalgebra containing a multiplicative
group of the I', type is attributed to the ¥, type.

IV. Case a # 0; ag # 0. The system (5) reduces to
the system

a1 —ay

X:(O,d,d—h )

as

\

N\
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X:[d, nh+2"4 d,a—3d], )

ao ao

where d, h = 0, 1, ..., p — 1. Taking into account
the conditions (1), for the non-invertible vectors
contained in (9) we have

a a a
P 2=
a9

+dp 2”4 (10)

ap

From the quadratic equation (10) one has solu-

tion
a —ag (a1-ap )2 2 203
h= d+ 5 d®+\d
2(10 4a0 Qg
a; —as £NA
1 2 d, (11)
2a0
where
A=(a1 —ay )2 +4kaoa3. 12)

Depending on the value A we have the following
subcases.

IVa. Subcase A is quadratic residue modulo p
(A # 0). From (11) one can see that for every value
ofd=1, 2, ..., p — 1 we have two different values
of h. This gives 2(p — 1) nonzero non-invertible vec-
tors. Totally, the number of non-invertible vectors
is equal to 2p — 1, therefore the set (9) describes sub-
algebras of the ¥, type containing multiplicative
group of I'; type.

IVb. Subcase A is quadratic non-residue modu-
lo p (A # 0). The equation (11) has no solutions and
the set (9) contains only one non-invertible vector,
namely, the zero vector (0, 0, 0, 0). The order of
multiplicative group of the ¥, algebra is Qg =p? - 1.
This group is attributed to the third type denoted
as I[';. A subalgebra described by formula (9) repre-
sents a field that is isomorphic to GF(p2). Therefore,
the groups of the I'; type are cyclic.

IVe. Subcase A = 0. From (11) one can see that
for every value of d =0, 1, ..., p — 1 we have exactly
one value of k. This gives p non-invertible vectors,
therefore, the set (9) describes subalgebras of the
Y, type containing multiplicative group of I'; type,
which has order equal to Q, = p(p — 1).

Like it has been shown in [18], one can prove the

X3 = Xo a_3; following formulas:
ap i) for the number n of different ¥, subalgebras:
1—0.2 n:P2+P+1;
Ye=H—— — %o ii) for the number 1, of different subalgebras of
0 the 'V, type:

The set of all elements of the subalgebra ‘P, is de- Ny = p(p+1), (13)

scribed by the following formula: 1 2 7
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iii) for the number n, of different ¥, subalge-
bras:

ne=p+1 (14)

iv) for the number 1 of different V5 subalgebras:

_p(p-1)

2 (15)

M3

The number of commutative groups of the types
I';, Ty and Iy, in which the group operation is the
vector multiplication, is defined by the formulas
(13)—(15), correspondingly.

Proposed method

Into the base of the proposed method for devel-
opment post-quantum digital signature algorithm
is put the idea of using the vectors G and H con-
tained in a hidden group to compute both the pub-
lic key in the form of several vectors, for example,
Y;, Z,, Y,, Z, (which are pairwise non-permutable)
and the signature element of the form of vector
S = B'1G"H"C!, where non-permutable vectors B
and C are masking multipliers. The design of con-
crete signature scheme should be so that computa-
tion of the non-negative integers n and m allows one
to get the value of S, which satisfies the signature
verification equation with several occurrences of
the signature element S that is non-permutable with
every element of the public key. For example, in the
case of two occurrences of the vector S one can use
the verification equation of the following form

2

R=(Y;SZ; ) (YoSZy) , (16)
where e is the signature randomization element in
the form of a natural number computed as a hash
function value from an electronic document M (to be
signed) and the vector R. Including in the signature
generation procedure a step of computation of
the vector R in the form R = AG*H!A! provides
potential possibility of finding the required values
of the vector S.

To implement this method one needs to use a
FNAA containing sufficiently large number of
commutative groups. The proposed four-dimen-
sional FNAA suits well as algabraic support of the
method. Using the results on study its structure
one can propose algorithms for generation of the
vectors G and H defining the type of the hidden
group (I';, ['y, or I'y). In accordance with the formu-
las (13), (14), and (15), it appears that the most at-
tractive is the use of hidden groups of the types I';
and I';. In the next section we describe a signature
scheme in which the hidden group of the I'; type is

7

used. However, the number of the I'; groups is al-
so sufficiently large, therefore the use of a hidden
group of the I'y type seems to be not critical from
the security point of view. Besides, there is no need
to fix the hidden group type and the user can select
it at stage of generating the public key.

Proposed candidate for post-quantum
signature scheme

Suppose that the four-dimensional FNAA is de-
fined over the field GF(p) with prime characteristic
p =2q + 1, where q is a 256-bit prime. It is easy to
generate such primes, including the case, when the
structure of primes ¢ and p is such that the multi-
plication modulo p and modulo ¢ can be executed
without using the arithmetic division operation
(this item has practical significance to get signifi-
cantly higher performance of the digital signature
algorithm described below). In the developed signa-
ture scheme a hidden group of the I'; type is used
as a hidden group. To set the latter the following
algorithm for generating its minimum generator
system <G, H> is used.

1. Select at random an invertible vector
A =(ay, a,, ay, ag) such that a a5 # Aaya; and, using
the formula (12), compute the value of A.

2.If A # 0 is a quadratic non-residue, then go to
step 1. Otherwise set integer variable d = 1.

3. Using the formula (11), compute the integer A.

4. Using the formula (9), compute the vector
X =(xg, X1, Xg, X3).

5. If aya5=rayas, then set the variabled <—d + 1
and go to step 3. Otherwise compute the vector H =
= XV =X2= (hy, hy, by, h).

6.If H = E or (k, kg) = (0, 0), then set the varia-
ble d < d + 1 and go to step 3. Otherwise generate a
primitive element @ € GF(p) and compute the sca-
lar vector L = (0, a, o, 0).

7. Generate a random integer £ < ¢ and com-
pute the vector G = L*H. Then output the vectors H
and G.

In line with the proposed method, the follow-
ing procedure of computing the public key is pro-
posed.

Algorithm for computation of the public key.

1. Generate private vectors G and H that compose
a minimum generator system <G, H> of a of hidden
group of theI’; type (i. e. a primary group of order q2,
which possesses two-dimensional cyclicity).

2. Generate at random invertible vectors A, B,
and C that are pairwise non-permutable, every of
which in also non-permutable with each of the vec-
tors G and H.

3. Generate uniformly random integers u < ¢
and w < q. Then compute the following four vectors
serving as elements of the public key (Y;, Z;, Y,, Z,):
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Y, = AG“B; Z, = CHA'};
Y, = AH“B; Z, = CGA L. 17

(Calculation of the vector Al can be execut-
ed as finding solution of the vector equation
AX =E)

The size of the public key is equal approximately
to 4096 bits (512 bytes). The private key is the fol-
lowing set of values: u, w, G, H, A, B, and C. The
size of the private key is equal approximately to
5632 bits (704 bytes).

Signature generation algorithm.

Suppose the owner of the public key wishes to
sign an electronic document M. Then he can use the
following algorithm.

1. Generate uniformly random integers £ < g and
t < g and compute the vector R:

R = AGFH!AL. (18)

2. Using a pre-agreed hash function f, compute
the first signature element e = f(M, R).
3. Calculate the integers n and r as follows:

E—ue—é®
n:—zmodq;
e+e

_t—wez—e

e+€2

modg.

4. Calculate the second signature element in the
form of vector S:

S =B 1G"H"C L. 19)

The size of the signature (e, S) is equal approx-
imately to 1280 bits (160 bytes). Computational
complexity of the signature generation algorithm
can be estimated as 4 exponentiation operations in
the FNAA set by Table 1 (=12 288 multiplications
in GF(p)).

Signature verification algorithm.

To verify the signature (e, S) assigned to docu-
ment M one can use the following procedure.

1. Compute the vector R*:

R =(Y;,SZ; )’ (Y2SZ, )e2 . (20)

2. Using a pre-agreed hash function f, compute
the value e* = f(M, R¥).

3. Compare the values e* and e. If e* = ¢, then the
signature (e, S) is accepted as genuine. Otherwise
the signature is rejected.

Computational complexity of the signature ver-
ification algorithm can be estimated as 2 exponen-
tiations in the FNAA used as algebraic support
(~6144 multiplications modulo p).

\ SAWNTA NHOOPMAUNN N\

Proof of the signature scheme correctness.

Consider a signature (e, S) to document M,
which is computed correctly in full correspond-
ence with the signature generation procedure,
while using the correct signer’s private key. In line
with the signature verification algorithm, for the
signature (e, S) one can write the following:

e &2
R*:(Y]_SZ]_) (YZSZ2) =
e
- (AG”BB—lG”H’“C‘chA—l ) x
2
«(an“BBl6"H C'06A ™ =
( Gu+nHr+1A—1) ( Hw+an+1A—1) _
_ (AG(u+n r+1 1)(AH w+r)e n+1)e2 Alj _
2

_AG(u+n)e+(n+1) H(r+1)e+(w+r) A—1:

n(e+e2 )+eu+e2

r(e+e2 )+we2 +e . 1
Al
k—eu—é®

—AG e+

2
k—we”—e
(e+e2 )+eu+e2 (e+e2 )+we2 +e

H e+e?
=AG'H'A 1 =R=>
:>f(M, R*)zf(M, R)=e¥=e.

A=

The final equality means the input signature
passes the verification procedure as a genuine sig-
nature, i. e., the signature scheme performs cor-
rectly.

Discussion

The developed signature algorithm uses the ex-
ponentiation operation in a hidden commutative
group and powers of these operations are secret,
like in the known HDLP-based signature schemes
[18—20]. However, in the latter schemes for comput-
ing a signature it is sufficient to use only the values
of the said powers, while in the signature scheme
described in the previous section, without using the
secret vectors G, H, A, B, and C a valid signature
cannot be directly generated. This is due to a new
mechanism used for masking the hidden group,
which is presented by formulas (17).

If a potential forger knows the powers u and w
and the minimum generator system of the hidden
group <G, H>, then he will be able to forge signa-
tures as follows:

1. Compute the vectors U = G¥ and W = H¥.

2. Using the public key elements and consider-
ing the vectors A/, B1, and C' as unknowns com-
pose the following system of four linear vector
equations:

Ne1,2022 N\
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Y;B1=A"U;
Z,A'=C'H;
Y,B 1 =A'W;
ZyA'=C'G.

3y

[The system (21) reduces to a system of 16 line-
ar equations in GF(p) with 12 unknown coordinates
of the vectors A/, B, and C'. Evidently, the system
(21) has a solution, namely, A’ = A, B! =Bl and
C'=C]

3. Solve the system (21). Then, using the found
values of A, B, C and signature generation proce-
dure from previous section, generate a signature.
[If the system (21) has a solution different from
(A, B, C) = (A, B, C), then it will also provide
generation of a valid signature.]

Currently, the proposed method and the algo-
rithm of the case is quite new and is still unclear
what way the signature scheme can be efficiently
attached, when no element of the private key is
known for the attacker. One can propose the next
general approach for forging a signature, which
consists in finding an alternative representa-
tion of the public key, i. e., finding the values
A, B,C, G, G, H, H, where G, G, H, and H
are pairwise permutable vectors, such that they
satisfy the following system of the vector equa-
tions

Y;B 1 =A'G,;
7,A'=C'H};
Y,B ' =AH,;
Z,A'=C'G'.

(22)

One can easily show that for such alternative
representation of the public key a valid signature
can be calculated using a signature verification al-
gorithm which is similar to that described in pre-
vious section. However, all of the equations in (22)
contain products of a couple of unknowns, there-
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fore, solving the system (22) appears to be a compu-
tationally hard problem.

Indeed, the requirement of permutability on
the unknown vectors G/, G, H', and H , adds three
vector equations to (22) and one gets the system
of seven equations in the FNAA, which reduces to
the system of 28 quadratic equations in GF(p) with
28 unknowns. Finding a solution for such systems
is a computationally difficult problem [21, 22]. One
can suppose that the computational complexity of
finding a solution of the system (22) defines the se-
curity level of the proposed signature scheme.

Development of the methods for solving the sys-
tem (22) and estimation of their computational com-
plexity is an independent research task. We would
only like to note that improving the complexity of
the solution of the mentioned computational prob-
lem can be achieved by increasing the size of the
prime p and/or increasing the public key size. The
latter can be implemented by calculating two addi-
tional public-key elements Y; and Zj, using addi-
tional private integers b <gand d < g, which are also
uniformly random values: Y; = AHB; Z; = CGYAL.
Respectively, such modification of the public key
requires updating the verification equation. For ex-
ample the following one can be used:

2 2
R=(Y;SZ; )’ (Y2SZs)" (YsSZ3)™ . (23)

(In line with the method presented in
Section “Proposed method” and signature algo-
rithm described in previous Section “Proposed
candidate for post-quantum signature scheme”, the
reader can easily update the signature generation
procedure in correspondence with the modified ver-
sions of the public key and verification equation.)

The use of a hypothetical quantum computer is
not effective for solving the specified problem of
solving the system of equations (22). In addition,
when analyzing the security of the proposed dig-
ital signature algorithm, there is no need to solve
DLP or HDLP, despite the fact that the exponential
operations play a significant role in the developed
algorithm. For example, in contrast to the known

B Table 2. Comparison with some known post-quantum digital signature algorithms

Signature scheme Signature size, byte Public key size, byte Sigiitfifg?ﬁ;a.tion Sign;a‘;s;‘,eavr%r.ilflir(l:.ation
Falcon [24] 1280 1793 50 25
Dilithium [25] 2701 1472 15 2
HDLP-based [19] 192 768 50 80
HDLP-based [20] 192 512 40 80
HDLP-based [26] 96 576 30 40
Proposed 160 512 140 290
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HDLP-based algorithms in which the exponenti-
ations plays a fundamental role, the proposed al-
gorithm can be modified in such a way that, when
generating a public key, exponentiation operations
will not be used.

Thus, in comparison with the known HDLP-
based algorithms, the introduced method and the
developed digital signature algorithm is charac-
terized in that the appearance of computationally
efficient algorithms for solving DLP and HLP does
not mean that the signature algorithm has ceased
to be safe. In this connection one can notice that the
presence of a large-sized prime divisor in the de-
composition of the order of the multiplicative group
of the GF(p) field is not a critical requirement. This
feature simplifies the implementation of the algo-
rithm when using the FNAA, set over a field GF(2%),
as algebraic support.

A draft comparison of the developed signature
algorithm with two finalists (Falcon and Dilithium)
of the NIST competition [23] and some of the HDLP-
based signature schemes are presented in Table 2.
The algorithm proposed in this article has a signif-
icant advantage in the sizes of the signature and
public key. Besides, it has higher performance.

\ SAWNTA NHOOPMAUNN N\

Conclusion

Like in a number of known HDLP-based signa-
ture schemes, in the developed algorithm a hidden
group is used, but the latter algorithm more pre-
cisely should be called an algorithm with a hidden
group. The proposed method can be used to devel-
op many different algorithms with a hidden group,
which are attractive as candidates for practical
post-quantum signature algorithms.

The results of this article can be considered as
a starting point for the formation of a new concept
of the development of post-quantum digital signa-
ture algorithms on non-commutative algebras, in
framework of which one will be able potentially to
reduce significantly the size of the public key and
the signature while simultaneous increasing per-
formance.
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Beenenne: pa3paboTKa IPAKTUYHBIX IIOCTKBAHTOBBIX CXEM IIOAIINCH SBJIAETCA OLHUM U3 TEKYIUX BBI3OBOB B 00/1aCTH KpUNTOrpaduu.
HepnaBHO IIpenIoskeHbl HECKOIBKO KAHAMIATOB HA IIOCTKBAHTOBBIE CXEeMBI (D POBOI ITOANICH, B KOTOPHIX UCIIOJIb3YETCs OlepaIiusd dKC-
MOHEHIIUPOBAHUS B CKPBITON IPYIIIe, COAEPIKAIIeiics B HeKOMMYTaTUBHOI aireope. IIonCcK HOBBIX MEXaHN3MOB UCII0Jb30BAHUSA CKPBITOM
rPYNIBI IPU paspaboTKe cxeM IU(POBOMA IOAINUCH, CTOMKNX K KBAHTOBBIM aTaKaM, IPEJCTABJIAET CYIIECTBEHHBIN TPAKTUYECKUI UHTe-
pec. Ilexs: paspaboTaTh HOBEBIH CIIOCOO MOCTPOEHUS TOCTKBAHTOBHIX aJTOPUTMOB IU(POBOI MOANNCH HA KOHEUHBIX HEKOMMYTATUBHBIX
accoIMaTUBHBIX anredpax. Pe3yasTaTsl: IpeAIoKeHbI HOBBIN CIIOCO0 Pa3paboTKM aIropuTMOB IU(POBO MOANNCH HA HEKOMMYTAaTUBHBIX
anrebpax 1 HOBafd YeThIpeXMepHas HEKOMMYyTaTHBHAaA ajiredpa, 3ajaHHas HaJ NpocThiM moseM GF(p), B KauecTBe HOCUTENA YKA3aHHBIX
anropuTMoB. Biarogaps safgaHuio onepanuy BEKTOPHOTO YMHOMKEHU II0 IPOPEKEHHBIM TabInIlaM YMHOKeHI A 6a3UCHBIX BEKTOPOB 00e-
CIIeunBaeTCsA MOBHIIIeHNE IPOU3BOUTEIHFHOCTY aJIrOPUTMOB. VdyueHre CTpOeHUA aIre6psl I0KA3aio, YTO OHA IPEeJICTaBUMAa B BU/ e MHO-
JKecTBa KOMMYTATUBHBIX IIOAAJITe0D, IOIAaPHO IIePEeCeKAIOINXCA CTPOTO B MHOKECTBE BCeX CKAJIAPHBIX BEKTOPOB. IIpeIosKeHHBIN MeTO
OTJINYAeTCs UCIIOIB30BAHNEM OHOTO U3 9JIEMEeHTOB IoAINCH (e, S) B Bue BeKTopa S, BEIYMCIAEeMOT0 KaK 3aMacKIPOBAHHOE IPOU3BeLeHIe
cremneneit 1Byx aiemenToB G u H ckpbiToil KoMmMyTaTuBHOM rpynnsl: S = B-LG"H'C™1, rue nenepecranoBounble BeKTops! B u C apasiores
MaCKUPYIOIUMUA MHOKUTEJIAMI; HATYPAJIbHBIE YUCJIA 1 U I" BBIYUCIAIOTCA B 3aBUCUMOCTH OT ITOAIUCHEIBAEMOTr0 JOKYMeHTa M U OTKPBI-
Toro Kiaoua. ITapa <G, H> cocrasisier 6a3uc CKPBITOM I'PYIIbI. Y PaBHEHUE BepUMUKAIIUY ITOAINCY UMeeT BUI R = (YISZI)Q(Y2SZ2)‘32,
I/le IONAPHO HellePecTaHOBOUHBIE BEKTOPEI Y, Z, Y, u Z, ABIAIOTCA dIeMeHTaMU OTKPBITOr0 KJI0Ua; HaTypPaJbHOE YUCJIO ¢ BBIYUCIIA-
erTca B 3aBHcuUMOCTH OT 3HaueHusa M u BexkTopa R. IIpakTHueckas 3HauMMOCTH: Giarofaps OCTATOYHO MAaJIbIM pasMepaM IOJINCH U
OTKPBITOTO KJII0Ua U BBICOKOI IPOU3BOAUTEIHHOCTH paspaboTanHas cxema I{ud)pOBOI MTOAINCH IIPEACTABIAET HHTEPEC KAaK MPAKTUUHBIH
IMOCTKBAHTOBBIA aJITOPUTM IMOAMUCHU. IIpeaiosKeHHbIN MeTO MOYKeT OBITh MCIIOJb30BaH JIA Pa3spaboTKU CTaHAAapTa Ha ITOCTKBAHTOBBIN
aNITOpUTM IUPPOBOH MOAINCH.

KuaroueBsie c10Ba — IOCTKBAHTOBBIE KPUIITOCXEMBI, KOMIIbIOTepHAs 0e30IIaCHOCTD, dJIEKTPOHHAA Mu(poBas MOAINCH, 3aKada JUC-
KPEeTHOrO JIorapu(MupoBaHusa, KOHEUHbIe HEKOMMYTATUBHBIE aJare0phl, aCCOIUMATUBHBIE AJITe0phl, IIUKJINYEeCKYe TPYIIIbI, MHOTOMEPHAaA
IUKJINIHOCTE.
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KOJIMUECTBO cTpaHuil, doi;

— IS JKYPHAJBHBIX CcTaTeil — (DaMUINsA U NHUIMAJIBI AaBTOPOB, IOJHOE HA3BaHUE CTAThU, Ha3BaHMe JKypPHAJIA, TO] U3IAHW, HOMED
JKypHAaJIa, HoMmepa crpanuiy, doi;

— CCBHLIKY Ha WHOCTPAHHYIO JIUTEPATYPY CIeAYeT AaBaTh Ha A3bIKe OPUTMHATA 6e3 COKPAII[eHHIT;

— IIPU UCIIOJIb30BAHUM Web-MaTepuasioB yKasbIBaliTe agpec caiiTa u JaTy o0palieHus.

Crucok JauTepaTypsl opopMIIsiiTe IByMS OTAEIbHBIMU GJI0KaMu 1o o0pasmam lit.dot Ha caiire :xypuamna (http://i-us.ru/paperrules):
JIuteparypa u References.

Bosee mogpo6HO IpaBmia MOATOTOBKY TEKCTa ¢ 00pasiiaMu N3JI0YKeHbI Ha HallleM caiiTe B pasjeie « PYKOBOACTBO IJIA aBTOPOB» .

KonTaxkTs!

Kyna: 190000, Caukr-IleTepbypr,
B. Mopckas ya., x. 67, I'VAII, PUIT
Kowmy: Penaknusa sxypaaia « ATHGOPMAIIMOHHO-YIPABJIAIOI[AE CUCTEMBI»
Teu.: (812) 494-70-02
1. mouTa: ius.spb@gmail.com
CaiiT: www.i-us.ru
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