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Introduction: The development of post-quantum standards on digital signature algorithms is one of the current challenges faced by
the global cryptographic community. Recently, two types of algebraic signature schemes with a hidden group have been proposed, in
which the finite non-commutative associative algebras set over the field GF(p) are used as an algebraic support. The design of that type
of signature algorithms on the algebras set over the finite fields of Characteristic two represent significant interest for improving the
performance and reducing the hardware implementation cost. Purpose: To develop post-quantum algebraic signature algorithms in which
computations in a finite field of Characteristic two are used. Results: Several 4-dimensional finite non-commutative algebras set over
the GF(2?) fields are proposed as algebraic support of the signature schemes with a hidden group. We suggest some recommendations
for choosing the value of the extension degree z. In particular cases the value of z represents a Mersenne degree. Compared with the
signature algorithms which are based on the hidden logarithm problem, the algebraic signature algorithms based on the computational
complexity of solving systems of many quadratic equations with many variables are considered to be a preferable type of cryptoschemes
with a hidden group. We have introduced new practical signature algorithms with a hidden group. In two of the developed algorithms the
signature (e, S) represents an integer e and a 4-dimensional vector S and is verified with vector equations with three and four entries of
the signature element S. Practical relevance: Like other known signature schemes with a hidden group, the proposed two schemes have
sufficiently small size of signature and public key. Due to comparatively small hardware implementation cost and high performance, the
introduced candidates for post-quantum signature algorithms represent practical interest and are attractive as a potential prototype of
a post-quantum digital signature standard.
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Introduction

The predicted emergence of quantum computers
in practice in the near future and the availability
of polynomial in time quantum algorithms for solv-
ing the discrete logarithm problem and the factor-
ization problem [1-3] determine the high degree of
relevance of the development of post-quantum pub-
lic-key cryptographic schemes, which are resistant
to quantum attacks (attacks with using ordinary
and quantum computers). Post-quantum signature
algorithms are to be based on hard problems differ-
ent from discrete logarithm and factorization prob-
lems.

In particular, the quantum computer is not effec-
tive for finding solutions of systems of many quad-
ratic equations with many unknowns and computa-
tional difficulty of this problem underlies the resist-
ance of the multivariate signature algorithms [4-6].
There are known signature schemes on algebras [7,
8], on algebraic lattices [9], on codes [10, 11], and on
hash functions [12]. A certain disadvantage of the
known post-quantum signature schemes is a large
size of public key and signature. In order to reduce
the total size of the signature and the key, the signa-

ture schemes with a hidden group are proposed, in
which finite non-commutative associative algebras
(FNAA) are used as an algebraic support [13, 14].
One can distinguish two types of algorithms with
a hidden group, which differ in the type of the used
computationally difficult problem:

1) algorithms, security of which is based on the
computational difficulty of the hidden discrete loga-
rithm problem (HDLP) [13, 15];

2) algorithms, security of which is based on the
computational difficulty of finding a solution of a
system of many quadratic equations with many un-
knowns [14, 16].

A hidden group represents a subset of elements
of some m-dimensional FNAA, which composes a
commutative group. In the algorithms of the both
types, the elements of the public key are computed
as a masked (secret) element H of the hidden group.
The masking is performed, for example, as the left
and the right multiplications of the m-dimensional
invertible vector H by some secret invertible vec-
tors A and B which satisfy the following conditions
BA = AB, HA = AH, HB = BH.

The FNAAs defined over a ground finite field
GF(p) with prime p = 2g + 1, where q is also a
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prime, are used as algebraic supports of the known
signature algorithms with a hidden group [7, 13]. To
improve the performance and reduce the hardware
implementation cost, development of the post-quan-
tum algebraic signature algorithms on FNAAs set
over finite fields of characteristic two, i. e. over the
fields GF(2%), represents significant interest.

In this paper, three different 4-dimensional
FNAAs, including the algebras defined by a sparse
basis vector multiplication tables (BVMTSs), set over
the GF(2?) fields are used as algebraic support of
the proposed three new algebraic signature algo-
rithms with a hidden group: i) one HDLP-based
algorithm and ii) two algorithms with a hidden
group, which are based on computational difficul-
ty of solving a system of many quadratic equations
with many unknowns. Compared with the former
one, the latter are considered as more preferable
candidates for post-quantum signature schemes.
Recommendations for choosing the value of the ex-
tension degree z of the GF(2?) field are suggested for
each of two types of the signature algorithms with
a hidden group.

Four-dimensional FNAA used as algebraic
support

Brief explanation of the notion of FNAA is pro-
vided in [16]: “A vector space of dimension m, which
is set over a finite field GF(p) or GF(2?), with addi-
tionally defined vector multiplication operation (that
possesses the property of distributivity at the left
and at the right relatively the addition operation) is
called m-dimensional algebra [16]. A vector A can be
represented in the following two forms: i) as an or-

dered set of its coordinates: A = (a(, a;, ..., a,, ;) and
ii) as a sum of its components: A = aye, + a,e; +
+... + a, e, ;, wheree; ¢ = 0,1, ..., m — 1) are

basis vectors. If the defined multiplication opera-
tion is non-commutative and associative, then one
gets m-dimensional FNAA. Usually, the product of

the vectors A = Zzalaiei and B= Z;;lbjej is

defined by the formula AB = ZZ&IZ:ZOI a;bjee;,
where the values a; and b; are multiplied as the field
elements and every the product of two formal basis
vectors is to be replaced by an one-component vec-
tor indicated in a cell at the intersection of the i-th
row and j-th column of so called BVMT”.

Usually, to perform one multiplication opera-
tion in some 4-dimensional algebra (see, for exam-
ple, Table 1 [8]) one need to execute 16 multiplica-
tions and 12 additions in the field GF(p) or GF(2?).
However, computational complexity of this opera-
tion can be reduced, using sparse BVMTs (see, for

example, Tables 2 [7] and 3 [16]).

7

B Table 1. Multiplication of basis vectors (Ac # 1, L # 0, and
o # 0) in the 4-dimensional FNAA [8]

€, e, e, e;
e, re, req e, e;
e; e e, ce, ce,
€y Areq reg €y e;
e; e, e, ce, ceg

B Table 2. Sparse BVMT () # 0) defining the 4-dimensional
FNAA with global two-sided unit E = (1, 1, 0, 0) [7]

€, e, e, e;
(< (< 0 0 e;
e; 0 e; e, 0
e, e, 0 0 heq
e, 0 e, re, 0

B Table 3. Sparse BVMT () #0) defining the 4-dimensional
FNAA with global two-sided unit E = (0, 1, 1, 0) [16]

€, e, e, e;
[ 0 0 € rey
e; e, e; 0 0
e, 0 0 e, e;
es Aegy eq 0 0

In addition to a faster multiplication operation,
the 4-dimensional FNAAs defined by the sparse
BVMTs are attractive to the fact that their detailed
structure (in terms of decomposition into a set of
commutative subalgebras) is known for the case
of defining the algebras over the fields GF(p) with
arbitrary odd characteristics p. Besides, using the
technique by [7, 8], one can show that, in the case of
defining the algebras over the fields GF(2?), where
z > 0, the 4-dimensional FNAAs set by Tables 1 and 2,
possess the following common properties:

1) the 4-dimensional FNAA contains 22 + 22 + 1
of commutative subalgebras of the order 222, every
pair of which intersecting exactly in the set of scalar
vectors {L: L = hE, h =0, 1, ..., 272 — 1}, where E is
the global two-sided unit;

2) the order of multiplicative group I of the alge-
bra is equal to

Q = 27222 — 1)(2¢ - 1); )]

3) the group I' contains sufficiently large num-

ber (> 2?) of commutative subgroups I'; possessing
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2-dimensional cyclicity (i. e., a minimum generator
system of the subgroup I'; contains two vectors of
the same order) and having order equal to
Q, =@22-1% (2)
4) the group I' contains sufficiently large num-
ber (> 2?) of commutative cyclic subgroups I'y of the
order
Qy = 22z 1 = (22 - 1)(2¢ + 1); 3)
5) the group I' contains commutative cyclic sub-
groups I'; of the order
Qg = 2527 - 1). 4)
The condition of invertibility of some vector A in
the FNAA set by Table 2 over a field GF(p) [7] is
also valid in the cased of defining the FNAA over
the GF(2?) fields:
a0y # Migls. (%)
Similarly, we have the following invertibility con-
dition for the FNAA set by Table 3 over the GF(2?)
fields [16]:
a,aq # Mayas. (6)
For the 4-dimensional FNAA set by Table 1 over
the GF(2?) fields (commutative groups of the I'j, T,
and I'y types are also contained in this algebra),
from [8] one gets the invertibility condition
a,09 # apag (7
and the following formula for the two-sided global
unit E depending on the structural constants A and

o (that can be selected arbitrarily, but satisfying the
conditions Ao # 1, L # 0, and & # 0):

c 1 1 A

E: ’ ) ’ . (8)
oh—1 1-ocA 1l-ocA oA-1

To execute the exponentiation operation in
FNAAs, i. e. for calculating the value R = Wk (W is
a vector; k is a non-negative integer), we propose the
following modification of the fast-exponentiation al-
gorithm, which is free of using the E value:

INPUT: Wand £ > 0.

1.Set V<« W, and n < k.

2. If n mod 2 = 1, then go to step 4.

3.V« V2 n « ndiv2, and go to step 2.

4. RV, V& V2 nendiv2.

5.If n = 0, then STOP.

6. If n mod 2 = 1, then go to step 8.

7.V« V2, n <« n div 2, and go to step 6.

\
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8. R« RV, V<« V2 n « ndiv2, and go to step 5.

OUTPUT: R = WE,

Development of the algebraic signature algo-
rithms with a hidden group, which are based on com-
putational difficulty of the HDLP, is connected with
the requirement of existence of a large-size prime
factor of the order of the hidden group. Taking into
account that the said algorithms use hidden groups
which are subgroups of the commutative groups of
the I'} and I’y types, one can recommend the values
of z shown in Tables 4 and 5. The values z = 61, 89,
107, 127, 521, and 607 are Mersenne degrees that
define prime values of 2% — 1.

Development of the algorithms with a hidden
group, which are based on computational difficul-
ty of solving a system of many quadratic equations
with many unknowns, is free of the requirement of
existence of a large-size prime factor of the order of
the hidden group. Security of the algorithms of this
type depends on the size of the order of the hidden
group and is not dependent on the factorization of
the order. However, to provide a higher performance
the hidden group order should be free of small-size
factors (for example, less than 20 bits). If the order
of a group of the I';-type is free of the said factors,

B Table 4. The case of using the I';-type and I'y-type
commutative groups (or their subgroups)1 as a hidden group
in the HDLP-based signature algorithms

Number of prime Number of prime
Degree | factors of the value || Degree | factors of the value
z 2z2-1 z 22-1
(their size in bits) (their size in bits)
61 16D 281 2 (17 and 265)
89 1(89) 373 2 (25 and 349)
107 1(107) 421 2 (50 and 372)
127 1(127) 457 2 (28 and 430)
131 2 (9 and 123) 521 1 (521)
197 2 (13 and 185) 607 1(607)

B Table 5. Additional values of z for the case of using the
I'y-type commutative groups (or their subgroups) as a hidden
group in the HDLP-based signature algorithms

Number of prime Number of prime
Degree | factors of the value | Degree | factors of the value
z 2241 z 2241
(their size in bits) (their size in bits)
101 1 (100) 311 2 (16 and 294)
127 1 (126) 313 1(312)
179 2 (36 and 142) 347 1 (346)
199 1(198) 433 2 (22 and 410)
229 2 (25 and 204) - -
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B Table 6. The case of using a hidden group of the I';-type

Number of B-bit Number of B-bit
Degree | prime (B > 30) factors || Degree | prime (8 > 26) factors
z of the value 272 -1 z of the value 27 - 1
(their size in bits) (their size in bits)
89 Mersenne degree | 257 3 (49, 8?1,7a]nd 129)
101 | 2@3and59) (17| 271 | 2G* [af;? 238)
103 | 2(39and 63) [17] || 293 | 2 (86 and 208) [17]
107 | Mersenne degree || 307 4 (31, 42, 68, and
166)
109 | 230and80)[17] | 831 |® @4 5?1’7?‘“1 238)
127 | Mersenne degree | 347 | 2 (74 and 274) [17]
137 | 2(65and 73) [17] || 379 | 2 (38 and 342) [17]
139 | 2@3and97)17] | 389 | 326 3?1’733“ 332)
149 | 2 (67 and 83) [17] | 421 2 (50 and 372)
3 (41, 56, and 78) 4 (65, 80, 83, and
173 [17] 433 208)
199 |2@sand 162 171 503 | 4 %I and

7

B Table 7. The case of using a hidden group of the I',-type

Number of B-bit Number of B-bit
Degree | prime (B > 36) factors || Degree | prime (§ > 22) factors
z of the value 27 + 1 z of the value 27 + 1
(their size in bits) (their size in bits)
4 (31, 42, 68, and
101 1 (100) 307 166)
127 1 (126) 347 1 (346)
3 (44, 100, and
179 2 (36 and 142) 379 235)
4 (40, 51, 52, and
199 1(198) 389 246)
257 | 3 (46,69, and 142) | 433 2 (22 and 410)
271 | 2@5and231) | 503 | +©% 63‘1’8)71’ and

then each of them can be used as the hidden group
of the designed signature scheme.

The order Q, of the I'y group contains factor 3 [see
formula (3)]. If no other small-size factors are con-
tained in Q, = (2° — 1)(2* + 1), then the subgroup of
the order Q,/3 can be used as a hidden group. The
values of z suitable for development of signature algo-
rithms with a hidden group of the I';-type, based on
difficulty of solving a system of quadratic equations,

are shown in Table 6 [17] (I'y-type —in Table 7). In the
case of the hidden group of the I',-type, one should
use the z values that determine the absence of short
divisors for the values 22 — 1 and 2% + 1 (except the
two-bit divisor 3 for the second value).

When developing the signature schemes with a
hidden group, it is assumed to use algorithms for
generating a basis (minimum generator system) of
the hidden group. For example, you can use the fol-
lowing algorithms.

Algorithm 1: generating a basis of the T';-type
group.

1. Using the invertibility condition [see formulas
(5)-(7)], generate a random invertible vector V of
the order g = 27 — 1.

2. If the vector V is contained in the set of scalar
vectors, 1. e., if V = oE for some value c € GF(2?),
then go to step 1.

3. Generate a random integer £ (0 < £ < q) and
a random binary polynomial p € GF(2?) of the order
27— 1.

4. Compute the vector H = BV~.

5. Output the pair of vectors H and G = V as a
basis <G, H> of a random I';-type group.

This algorithm works correctly, since the vectors
of the order 2° — 1 in the groups of the I'y and T'-
types are scalar vectors.

Algorithm 2: generating a basis of the T'y-type
group.

1. Using the invertibility condition [see formulas
(56)-(7)], generate a random invertible vector V of or-
der the ¢ = (22 — 1)(2% + 1).

2. Output the vector V as a generator (basis
<V>) of a random I'y-type group.

This algorithm works correctly, since the I';-type
and I's-type groups do not contain vectors of the or-
der (2 — 1)(2¢ + 1). Evidently, the vector J = V3 is
a generator of a commutative cyclic group I'y of the
order g/3, which is a subgroup of the I'y-type group
generated by the vector V.

The described 4-dimensional FNAAs are used as
algebraic carrier of three new signature algorithms
with a hidden group. Evidently the said FNAAs (set
over GF(2?) could be used to update the known al-
gorithms of such type, for example, described in [7,
13] (for the first type of the signature algorithms
with a hidden group) and in [15] (for the second type
of the signature algorithms with a hidden group).
However, the authors prefer to illustrate existence
of variety of possibilities, when designing algo-
rithms with a hidden group.

A signature scheme based on HDLP
In this section it is introduced a HDLP-based

signature algorithm (the first signature scheme)
that illustrates the first type of the algebraic signa-
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ture schemes with a hidden group. The development
of various types of HDLP-based algorithms and
methods for setting a hidden group formed the pre-
requisites on the basis of which the second type of
signature algorithms with a hidden group was born.
The reader can easily see the similar construction
elements in the two types of the algorithms intro-
duced in this paper (see also the next section).

Suppose a 4-dimensional FNAA is set by Table 2
over the field GF(2%), where z = 521 and g = 22— 1 is
a prime number. Using a group of the I';-type (set by
some basis <G, H>), you can generate a public key
in the form of three vectors U, Y, and Z as follows:

1. Generate two random invertible vectors A and
B of the order o > p — 1, satisfying the conditions
AB = BA, AG = GA, BG = GB.

2. Generate two random integersx < g and u < q.
Then calculate the first element U of the public key:
U = AG*H“BL.

3. Calculate the second element Y of the public
key: Y = BGBL.

4. Calculate the third element Z of the public
key: Z = BHAL.

The pair of numbers (x, u) and the vectors G,
H, A, and B compose a secret key (having size
~ 1173 bytes) and are used for generating a signa-
ture to some electronic document M. The size of
the public key represented by the triple of vectors
(U, Y, Z) is equal to ~ 782 bytes.

Algorithm for generating a signature.

1. Generate a random natural integer £ < ¢ and
calculate the vector K = G*~.

2. Generate a random natural integer ¢ < g and
calculate the vector R = AKH/AL.

3. Using a specified 521-bit hash function f, cal-
culate the first signature element e as a hash-func-
tion value from the document M to which the vector
R is concatenated: e = f(M, R).

4. Compute the second signature element s:

s = fl[k— tx jmodq.
e u+1

5. If the value under the root is a quadratic
non-residue modulo g, then go to step 2.
6. Compute the third signature element d:

d=[ﬁ—l}modq.

This algorithm outputs a 196-byte signature
in the form of a triple of 521-bit integers (e, s, d).
Computational difficulty of the signature genera-
tion algorithm is defined mainly by exponentiation
operations performed at steps 1 and 2. It is easy to
see that on the average three exponentiations in the
FNAA used as algebraic support (= 18 432 multipli-
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cations in GF(2521)) are executed to generate one
signature.

Algorithm for verifying a signature.

1. Calculate the vector

S
R -(UY“z(Uz)’) .

2. Calculate the hash-function value from the
document M to which the vector R’ is concatenated:
e =f(M,R).

3. If er = ¢, then the signature is accepted as a
genuine one. Otherwise the signature is rejected.

Computational difficulty of the signature verifi-
cation procedure can be estimate as three exponen-
tiations in the 4-dimensional FNAA used as alge-
braic support (~ 18 432 multiplications in GF(2521)).

Correctness proof of the described signature
scheme is as follows (see formulas used at steps 4
and 6 of the signature generation algorithm):

R’ - (Uy“z(Uz)’ )S - (AG*HB'BG*

d S
xB-lBHA-l(AGxH“B—lBHA—l) j _
S

_ (AGx+€SHu+1A—1AGded(u+1)A—1)
- (AGx+es+deu+1+d(u+1)A_l )s _
_ Ast(o‘l+l)+es2 Hsd(u+1)+s(u+l)A_1 _
xss( t+1)+el(k—%j (ﬁ—s](u+1)+s(u+1)
- AG S el u+l/glu

xA1l-AG'H'A1-R=>
=f(M,R)=f(M,R)=¢ =e.

X

A critical point of the consideration of the HDLP-
based signature algorithms as candidates for
post-quantum cryptoschemes is potential possibility
of using algebraic methods to reduce the HDLP to or-
dinary DLP. Therefore, the second-type algebraic sig-
nature schemes with a hidden group, which are based
on computational difficulty of solving a system of
many quadratic equations with many unknowns (the
problem for solving of which the quantum computer
is not efficient), can be estimated as a more preferable
candidates for post-quantum signature schemes.

Signature schemes based on difficulty
of solving a system of many quadratic
equations

The second proposed signature scheme is de-
scribed as follows. Suppose the 4-dimensional FNAA
is set by Table 3 over the field GF(2?), where z = 257.
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Then, generating a random secret basis <G, H> of
a group of the I';-type one can generate a public key
in the form of six vectors (Y;, Z;, Yy, Zy, Y3, Z3, T)
as follows.

Public-key generation algorithm.

1. Using the invertibility condition (6), generate
at random invertible vectors A, B, D, and F satisfy-
ing the following non-equalities: AB = BA, AD = DA,
AF = FA, AG = GA, BD = DB, BF = FB, BG = GB,
DF = FD, DG = GD, and FG = GF.

2. Calculate the vectors AL, B-1, D1 and FL.

3. Generate non-negative integers x < ¢ and
w < q, where g = 2% — 1 is a 256-bit number that is
product of three primes having the size 49, 80, and
129 bits (see Table 6). Then compute the public key
(Y, Z,Y,, Zy, Y5, Zg, T) by formulas

Y, = AGB; Z, = DHA};
Y, = FH*B; Z, = DH*GF;

Y; = AG¥B; Z; = DHGF; T = DHG*B.  (9)

The secret key (with total size ~ 833 bytes) repre-
sents two integers x, w and six vectors G, H, A, B, D,
and F. The size of public key is equal to ~ 900 bytes.
Computation of a signature to some electronic docu-
ment M is performed, using the following algorithm.

Signature generation algorithm.

1. Generate at random two natural numbers %
(k <@ andt (t < g). Then calculate the vector

R = AG*H'F1, (10

2. Using a specified 2z-bit hash function f, cal-
culate the first signature element e as a hash-func-
tion value from the document M to which the vector
R is concatenated: e = e;||e, = f(M, R), where the
hash-value e is represented as concatenation of two
z-bit integers e; and e,

3. If the integers 2e; + e, + 1 and q are not mu-
tually prime, then go to step 1. Otherwise, calculate
the natural numbers n and d:

_k—ej—xe; —eg —w-1

n mod g; 1y

2e; +eg +1

_ t—2e) —xeg —weg —

d

1 modg. (12)

2e; +eg +1

4. Calculate the second signature element in the
form of the vector S:

S = B1G"HID1, (13)

Since the integer ¢ contains three factors of

sufficiently large size (>49 bits), the probability of

repeating the first step of the algorithm is negli-
gible. Therefore, the computational complexity of

7

this algorithm is determined mainly by 4 exponen-
tiations in the used FNAA (~ 48z 12 336 mul-
tiplications in GF(2?). The size of the signature
(e, S) is equal to 6z bits (~ 193 bytes). Verification
of the signature is performed, using the public key
(Yy,Z,,Y,,Z,,Y;5, Z3, T) and the following procedure.

Signature verification algorithm.

1. Compute the vector R’ by the following formu-
la with four entries of the signature element S:

R' = (Y,STSZ, )" Y38Z5(Y,SZ,)?.  (14)

2. Calculate the hash-value e’ from the document
to which the vector R’ is concatenated: e’ = f(M, R’).

3.If ¢ e, then the signature is genuine.
Otherwise the signature is rejected.

The computational complexity of the signature
verification algorithm is determined mainly by 2 ex-
ponentiations in the used FNAA (~ 24z = 6168 mul-
tiplications in GF'(2?)).

Correctness of the signature scheme is proven as
follows.

Signature scheme correctness proof.

Compute the vectors

J; =(Y,STSZ, )" ~(AGBB'G"H'D " x
y DGxHBB‘lGanD‘lDHA‘l)eI _
- (AGG"H/G*HG"HIHA | =

_ ( AG2ntatlp2d+2 A,l)el _

_ AG2n61+xe1+elH2del+2e1A—1,
Jy = Y;8Z; = AGYBB1G"HD 'DHGF ! -

:AGn+w+1Hd+1F—1,
Js =(Y,8Z,)% =
- (FH*BB'G"H'D 'DH"GF )" -
_ (FGn+1Hd+x+wF—1 )62 _

— FG"e2te Hde2+xez+we2 F!

Then compute the vector R':

R! — J1J2J3 _ AG2n€1+x€1+€1 H2d€1+2€1 A—]_ %
% AGn+w+1Hd+1F—1 XFGne2+e2HdeZ+xe2+w22 F—l _

_ AG2ne1+xel+el+n+w+1+neQ+e2 %
% H2d31+2el+d+1+d32+xez+we2 Fl-
_ AGn(Zel+e2+1)+e1+xe1+ez+w+1 %

y I_Id(2e1 +eg+1)+2e; +xey+wey +1F_1 )
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Taking into account the formulas (11) and (12)
we get:

R -AG'H'F1-R=>
S f(MIR)=f(M||R)=¢ =e.

The final equality means validity of the input
signature.

Security of the described signature scheme is based
on computational difficulty of solving the system of 13
vector quadratic equations with the following 11 un-
knowns: A,B,D, F,G,H, H = H*, H' = H*G, G' = G,
G” = GH, and G = G*H, which are determined by
the formulas (9) and the pair-wise permutability of
the unknowns G, H, H', H", G, G”, and G": GH = HG,
GH =HG,GH" = H'G, GG’ = G'G, GG" = G'G, and
GG" = G"'G. Using Table 3, the latter system reduc-
es to a system of 52 quadratic equations (with 44 un-
knowns) in the field GF'(2?).

A remarkable feature of the algebraic algorithms
with a hidden group is the multiple entries of the
signature element S in the vector verification equa-
tion set over a non-commutative algebra. This pro-
vides resistance to forging signature attacks base
on using the value S as a fitting parameter. In the
algorithm describe above we have four entries of the
vector S. The number n of entries should satisfy the
condition n > 2. The next digital signature scheme
uses the value n = 3.

The third developed signature scheme is de-
scribed as follows. Suppose the 4-dimensional
FNAA is set by Table 1 over the field GF(2?), where
z = 199 (see Tables 6 and 7). Then, generating a
random secret basis <G> of a cyclic group of the
[y-type (subgroup of a I',-type group), which has or-
der ¢ = Qy/3 = 371(2% — 1)(2% + 1), one can generate
a public key in the form of seven vectors (Y;, Z;, Uj,
Y,, Z,, Uy, V) as follows.

Public-key generation algorithm.

1. Using the invertibility condition (8), generate
at random invertible vectors A, B, D, and F satisfy-
ing the following non-equalities: AB = BA, AD = DA,
AF = FA, AG = GA, BD = DB, BF = FB, BG = GB,
FD = DF, and GF = FG.

2. Calculate the vectors A1, B-1, D1 and FL.

-1
221
3. Calculate the vector J = Gq( ) of the or-

B 3q(22+1)f1
der ¢’ = 371(22 + 1) and the vector I=G of
the order ¢” = 27— 1.

4. Generate at random non-negative integers x
(x < qg)and w w < q"), where ¢’ is a 198-bit prime
number and ¢” is a product of two primes having
the size 38 and 162 bits (see Tables 6 and 7). Then
compute the public key (Y;, Z;, U;, Yy, Zy, Uy, V) by
formulas

Y, = B-1JA}; Z, = B-IB; U, = B1J*F;

\ SAWLWMTA UHOOPMALIUA AN

Y, = DJIA L Z, = FJ*I DY,
U, = DJI*A; V = B-II*D, (15)

The secret key (with total size ~ 650 bytes) repre-
sents two integers x, w and six vectors J, I, A, B, D,
and F. The size of public key is equal to ~ 700 bytes.
Computation of a signature to some electronic docu-
ment M is performed, using the following algorithm.

Signature generation algorithm.

1. Generate at random two natural numbers %
(k < q")andt (t < q"). Then calculate the vector

R = FJ*I'F-L. (16)

2. Using a specified 3z-bit hash function f, calcu-
late the first signature element e as a hash-function
value from the document M to which the vector R
is concatenated: e = e,||ey||es = f(M, R), where the
hash-value e is represented as concatenation of tree
z-bit integers e}, ey, and es.

3. If the integer eeqe; + eje; + egis not mu-
tually prime with ¢’ or with ¢”, then go to step 1.
Otherwise, calculate the natural numbers n and d:

b we. —
n= Wes ~ X% 1 |mod q’; amn
ejegeg +egeg +eg
t— -
d= W23 ~ %3 1 |modgq". (18)
€1€9€e3 +egeg +eg

4. Calculate the second signature element in the
form of the vector S:

S = AJ"IB. (19)

Since the integer ¢’ is prime and g” contains two
factors of sufficiently large size (38 and 162 bits), the
probability of repeating the first step of the algorithm
is negligible. Therefore, the computational complexi-
ty of this algorithm is determined mainly by 4 expo-
nentiations in the used FNAA (~ 96z = 19 104 mul-
tiplications in GF(2?). The size of the signature
(e, S) is equal to ~ 7z bits (= 175 bytes). Verification
of the signature is performed, using the public key
(Y,Z,,U0,,Y,,Z,,U,, V) and the following procedure.

Signature verification algorithm.

1. Compute the vector R’ by the following formu-
la with three entries of the signature element S:

€3

e.
R = {z2 (st(Ylsz1 o v) ’ UZSUl} . (20)

2. Calculate the hash-value e’ from the document
to which the vector R’ is concatenated: ¢’ = f(M, R).

3.If ¢/ = e, then the signature is genuine.
Otherwise the signature is rejected.
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The computational complexity of the signature
verification algorithm is determined mainly by
3 exponentiations in the used FNAA (= 72z
= 14 328 multiplications in GF(2?)).

Correctness of the latter signature scheme is
proven as follows.

Signature scheme correctness proof.

Calculate the values X; and X,,:

X; =(Y;,SZ, )" Z(B_IJA_IAJnIdBB_llB)eI -
_ p-lgentapadiep,
X, = (Y,SX; V) =
- (D JIA L AJ IYBBLgan e adta gg-livpL )ez _

€

_ (DJn(el +1)+e; +IId(e1 +1)+e1+w+1D_1)

-D. Jn(ele2 +eg )+ejeg+ey Id (e1eg+eq J+ejeg+wey+ey D!

Then compute the vector R’

R, = I:Z2X2U2SU1 :|€3 =

FJYID 'DJ n(ejey+ey)+e ey +ey 9 €3
= « Id(elez+ez)+ele2+w32+e2 y _
« DIDJI* A1 AJ"IYBB1J*F!
€3

FJn(e1e2+e2+1)+ele2 +eg+w+x+1 y
d(ejeqteq+1)+e e, +wey+eq+x+1ga—
< I (erepteg+1)tesey+wey tey F!
_F Jn(e1‘3263 +egeg+eg J+e eges +egeg +eg +xeg+eg y

y Id(e1e2e3 +egeg ey Je egeg Heges +eges+reg+eg Fl

Taking into account the formulas (17) and (18)
we get:

R =AJ'TAT =R= f(M,R)=f(M,R)=>¢ =e¢,

where the latter equality proves the correct
performance of the signature scheme.

Discussion

In this paper, the first developed signature al-
gorithm, based on HDLP, is considered as an illus-
tration of signature schemes attributed to the first
type of the algebraic signature algorithms with a
hidden group. Comparison with the second-type al-
gorithms shows that in the both cases the main op-
erations used to generate the public key, to generate
a signature, and to verify the signature are expo-

7

nentiation operations. However, the signature algo-
rithms of the second type have principal difference,
namely, they are based on computational complexity
of finding a solution of a system of many quadratic
equations with many unknowns. To solve the latter
problem, the quantum computer is not efficient [18].
This fact is used in the area of multivariate cryp-
tography that is one of the directions in the devel-
opment of post-quantum public-key cryptographic
algorithms. The multivariate cryptography was ini-
tiated by the paper [19] in 1988.

Over the past 30 years of the research in the field
of multivariate cryptography many multivariate
signature algorithms are currently known. A merit
of the multivariate signature schemes is small size
of the signature. Unfortunately, their significant
drawback is a very large size of the public key. The
latter is associated with a specific method for de-
veloping the multivariate signature algorithms, in-
cluding generation of the public key as a set of quad-
ratic (or cubic) polynomials that describe a trapdoor
one-way mapping of vectors of large dimensions
(from 30 to 200), given over a finite field of suffi-
ciently small order (from 22 to 216).

At present the cryptographic community has
well worked out the basic methods for cryptanalysis
of the multivariate-cryptography algorithms. The
following two types of attacks are distinguished
[18]: 1) direct attacks based on the algorithms for
solving systems of many power (quadratic in many
cases) equations with many unknowns and ii) struc-
tural attacks that use the structural features of the
cryptoscheme design.

Because of significantly different design of the
signature algorithms with a hidden group and the
multivariate-cryptography algorithms the structur-
al attacks developed for cryptanalysis of the latter
are hardly applicably to the former and novel types
of structural attacks are to be developed. Therefore,
for preliminary security estimation of the second
and third proposed algebraic signature algorithms
the known direct attacks can be considered. The
most effective direct attack is the use of algorithms
for solving systems of many power equations, based
on the calculation of the Grébner basis [20, 21].
Table 8 computed on the base of the results of the
papers [20, 21] can be used to estimate security W of
the introduced algebraic algorithms with a hidden
group to the direct attack.

Security of the second introduced signature
scheme (algorithm with the value n = 4) is based
on difficulty of solving the system of 12 vector
quadratic equations with 11 unknowns A, B, D, F,
G, H G =Gv, H = H*, H' = H*, G = GH, and
G"” = G*H, which are determined by the formulas
(9) and the pair-wise permutability of the unknowns
G, H,G,H,H" G, and G": GH = HG, GG’ = GG,
GH' = HG, GH" = H'G, and GG" = G"G. Using
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Table 3, the latter system reduces to a system of
p = 48 quadratic equations (with § = 44 unknowns)
in the field GF(2257),

Security of the third developed signature scheme
(algorithm with the value n = 3) is based on difficul-
ty of solving the system of 13 vector quadratic equa-
tions with the unknowns A, B, J, I, J' = J*, I' = I¥,
which are determined by the formulas (15) and
the pair-wise permutability of the following 11 un-
knowns J, I, J', and H: JI = LIJ, JI' = I, JJ’ = JJ.
Using Table 1, the latter system reduces to a system
of 52 quadratic equations (with 44 unknowns) in the
field GF(2199).

Thus, one can take the number of equations p
equal to the number of the unknowns 5, and use
the recommended minimum values of p presented
in the Table 8 for different values of the order of the
field GF(n) in which the system of quadratic equa-
tion is given. Since the system of quadratic equa-
tions related to the proposed signature algorithms
is set in the fields GF'(2?), where 27 >> 256, one can
use the values p that relates to the case n = 256.
In this case, we get overstated requirements for the
minimum value, however, this overestimation can
be considered insignificant due to relatively weak
dependence on the value n. For the second and third
proposed signature algorithms we get the value
W > 2128,

Since the value p is proportional to the FNAA
dimension, one can propose an evident way to im-
prove the value W that is using six-dimensional and
eight-dimensional FNAAs (set over the fields GF(2?)
with smaller values of z) as algebraic support of the
proposed signature algorithms, however, this way
is connected with the study of the decomposition of
the said FNAAs into the set of commutative subal-
gebras or to provide another method for justifying
existence of sufficiently large number of commuta-
tive groups of a certain type. Potentially, using the
8-dimensional FNAAs as algebraic support of the
second and third proposed signature algorithms for
each of latter one gets the values p = 104, 5 = 88
and W > 2192,

In the developed signature scheme with n = 4
the vectors G, H, H", G”, and G"” are comput-
edas G’ = G¥, H = H*, H' = H¥, G” = G*¥H, and
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G"” = GH, correspondingly. This technique im-
proves the performance of the signature generation
algorithm. Actually, when generating a signature,
you can select at random the vectors G', H', H", G",
and G” from the hidden group and use an alterna-
tive signature generation algorithm with many ad-
ditional exponentiation operations (the reader can
easily compose such algorithm), while the signature
verification algorithm retains its original form.
The analogous remark is valid for the algorithm
with n = 4 entries of the S signature element in the
signature verification equation. The noted remark
clearly shows that the exponentiation operations are
used as a part of the mechanism for calculating the
signature element S that satisfies the verification
equation with its multiple occurrences (entries) in
the latter.

Table 9 shows a rough comparison of the devel-
oped post-quantum signature algorithms with the
algorithms selected as finalists of the NIST world
competition on the development of the post-quan-
tum public-key algorithms [22]. Table 10 (where
W denotes security to direct attack, which is es-
timated using Table 8) shows a rough compari-
son of the introduced signature algorithms based
on computational difficulty of solving a system of
quadratic equations with some known multivari-
ate signature algorithms. The post-quantum al-
gorithms introduced in this article have a signif-
icant advantage in the sizes of the signature and

B Table 8. Minimum number of equations providing a
given security level to the direct attack for different values of
the order of the field GF(n) in the case p = § [18]

w
" 980 9100 9128 9192 9256
16 30 39 51 80 110
31 28 36 48 75 103
256 26 33 43 68 93

B Table 9. Comparison with some known digital signature
algorithms

Signa- Signature | Signature
Signature ture Public key genera- | verifica-
scheme size, size, bytes | tion rate, | tion rate,
bytes arb.un. | arb.un.

Falcon [23] 1280 1793 50 25
CRYS-
TALS-Dilithi- | 2701 1472 15 2
um [24]
Rainbow [25] > 150 000

. 66...
(3 different 204 - -
versions) > 1900000
The first
proposed 196 782 25 25
(HDLP-based)
The second
proposed 193 900 150 300
n=4)
The third
proposed 175 700 150 200
m=23)
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7

B Table 10. Comparison with some known digital signature algorithms

Signature Public key size, | # quadratic equations Order of the field over
Signature algorithm . Y 8128, q q which the quadratic w

size, bytes bytes p (unknowns &) .

equations are set

[5] - - 27 (27) 216 ~ 280
Rainbow [26] 33 16 065 27 (33) 28 ~ 280
QUARTYZ [6] 16 72 704 100 (107) 24 > 2192
Rainbow [25] 66... > 150 000 ... 64 (96)... 24, 31, 9128 9256
(3 different versions) 204 > 1900 000 128 (204) 28
zvi“hza hidden group [16] 160 512 28 (28) > 9256 ~ 280
E]hi Sf)cond proposed 193 900 52 (44) 2267 > 2128
ahi {ird proposed 175 700 52 (44) 2199 > 9128

public key. Besides, the developed algebraic algo-
rithms based on computational difficulty of solving
a system of quadratic equations have significantly
higher performance than finalists Falcon [23] and
CRYSTALS-Dilithium [24]. However, a detailed
security estimation of the introduced signature al-
gorithms are to be performed as an independent
research work.

The signature schemes with a hidden group,
which are based on computational difficulty of solv-
ing a system of many quadratic equations, suite
well for using the 6-dimensional and 8-dimension-
al FNAAs as algebraic support. The latter allows
to define the FNAAs over the fields GF(2?) with
comparatively small values of z. For composing the
BVMTs defining the FNAAs of such dimensions,
you can use the unified methods by [27, 28]. Using
the FNAAs with a large set of global single-sided
units (see, for example, [29]) as algebraic support of
the signature algorithms with a hidden group also
represent an item of a future study.

It should be noted that in passing to using
FNAAs with a higher dimension value m (in order
to get a higher security to the direct attack) as
an algebraic support, we have the possibility to
define algebras over the fields GF(2%) with lower
degrees of z (for example, z = 101 and z = 128; see
Tables 6 and 7). For a fixed value m, a decrease in
the value of z has little effect on the resistance to
direct attacks, however, we assume that this will
lead to a significant decrease in the resistance
to potential structural attacks. For this reason,
sufficiently large values of z are used in the de-
veloped signature algorithms on the four-dimen-
sional FNAAs.

The results of this study complement the results
of the papers [14, 16] and give grounds to consider
signature algorithms with a hidden group as can-
didates for practical post-quantum cryptoschemes
with small signature size. The latter is a motive for
the cryptographic community to pay attention to
the issue of considering structural attacks on signa-
ture algorithms of the type considered.

Conclusion

Within the framework of the methods [13, 16],
new post-quantum algebraic signature algorithms
with a hidden group has been developed, using 4-di-
mensional FNAAs, defined over finite fields of char-
acteristic two, as algebraic support. It is shown that
there are quite ample opportunities to choose suit-
able fields GF(2?) with different degrees of exten-
sion. The use of FNAAs, set over the fields GF(2?),
as algebraic support of post-quantum signature al-
gorithms with a hidden group is an essential mo-
ment for improving the performance and reducing
the hardware implementation cost compared to the
case of using FNAAs defined over the ground finite
fields GF(p).

An additional increase in performance can be
achieved by using 6-dimensional and 8-dimensional
FNAAs defined over the fields GF(2?) with the value
of z from 80 to 150 as an algebraic support, includ-
ing the case of defining FNAAs by sparse BVMTs.
However, this is the subject of an independent study,
which includes the study of the structure of such
FNAAs and developing new forms of the signature
verification equations.
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IlocTKBaHTOBBIE ajdreGpamdecKne AIrOPUTMEI (P POBOI MOAIKACH CO CKPBITOM IPyNIoi

A. A. MonoBaH?, MOKTOP TeXH. HAYK, IJIABHBIN HAYYHBINH COTPYAHUK, orcid.org/0000-0001-5480-6016

H. A. MongoBau?, ZOKTOP TeXH. HAYK, [NIABHBIH HAYYHBIH COTPYAHUE, orcid.org/0000-0002-4483-5048, nmold@mail.ru
aCauxr-Ilerepbypreruit Pemepanbublii ucenenoparenbeknii reutp PAH, 14-a muaua B. O., 39, Cauxr-Ilerepbypr, 199178,
PO

BBenenune: paspaboTka II0CTKBAHTOBBIX CTAHAAPTOB HA AJITOPUTMBI IH(POBOY IOANINCH ABJIAETCA OJHUM U3 COBPEMEHHBIX BHI30BOB /I
MHPOBOTO KPHIITOrpadueckoro coobirecrsa. HemasHo mpeioxkeHs! 1Ba THIA alnrebpandeckux CXeM HOAIKUCH CO CKPBITON IPYIIION, B KOTO-
PBIX KOHEYHbIE HEKOMMYTATHBHBIE ACCOLMATUBHBIEe anrebps! Hax monem GF(p) ucmons3yiores B KadecTBe anrebpaudeckoro Hocuresns. 1lo-
CTPOEHHE aJITOPUTMOB 3TOr0 THUIIA HA anre6pax, 3alaHHbIX HA/l KOHEYHBIMH IT0JIAMU XapaKTePUCTHUEKH Ba, IPEeACTaBIAET SHa‘II/ITeIIbeIﬁ HH-
Tepec [7Is MOBBIIIEHNS IPOU3BOJUTEIFHOCTH ¥ CHIKEHHA CXEMOTEXHUIECKOH CII0KHOCTH anmnaparsoi peanusanuu. [leas: paspaborars moc-
TKBAHTOBBIE AJITOPUTMbI IU(IPOBOIA IIOAIUCH, B KOTOPBIX BBIOIHIIOTCS BEIUUCICHUS B KOHEUHBIX IIOJIIX XapaKTepUCTUKHY 18a. Pesyabrarsi:
MIPEJJIOKEeHbI HECKOJILKO YeThIpEXMEPHBIX KOHEYHbBIX HEKOMMYTATUBHBIX arebp, 3aganubix Haj noisem GF(2?), B kauecTBe anrebpandeckux
HOCHUTENIeH CcXeM ITU(POBOM IIOAIICH CO CKPBITOM rpymnmoi. PaspaboraHsl peKOMeHIAIUY 110 BHIOOPY 3HAYEHUS CTEIEHH PACIINPEHUT Z.
B uacTHbIX ciyyasx 3HaueHue z siBisercs crenensio Mepcenna. [1o cpaBHeHM0 o cxeMaMu MMO/IIUCH, OCHOBAaHHBIMU HA CKPBITOM 3a1a4e AUC-
KPETHOTrO JI0rapuhMUpPOBAHUs, aarefpandecKue ajarOpUTMbl IOJIUCH CO CKPBITON IPYIIION, OCHOBAHHbBIE HA BBIMHCIUTEIBHOU CIOKHOCTH
pelleHus CUCTEM MHOIMX KBaJPAaTHBIX YPABHEHUIN C MHOTMMU HEM3BECTHBIMH, PACCMATPUBAIOTCA KaK IIPEJIIOYTUTENbHbIE KAHIAUJATHI Ha
[IOCTKBAHTOBbIE KPUIITOCXeMbI. [Ipe/io;KeHbl HOBbIEe IPAKTHYHBIE AJITOPUTMBI MIOJIIMCH CO CKPBITOM Irpynmnoil. B nByx anxropurMax moamnuck
(e, S) mpencrassieT co60i I[eJI0e YUCIIO € ¥ YeThIpeXMEPHbIN BeKTop S. Bepuukanus moamnucy BoINOMHAETCA 110 BEKTOPHBIM YPABHEHUIM C
TpeMs U YeThIPbMS BXOMAeHuAMY sneMenTa noanucy S. IlpakTudeckad 3HAYUMOCTb: KaK U IPyryie H3BeCTHBIE CXeMBbI IIOJIIUCH CO CKPBITON
IPYIIIOH, PEAJIOKEeHHbBIE JBe CXeMbI UMEIOT JOCTATOUYHO MAJBIM pasMep MOAIKCH U OTKPBLITOro Kioua. Biarogaps cpaBHUTENIBHO MAaION
CXEMOTEXHUYECKOU CIIO}KHOCTH alllapaTHOH peaanu3alliil U BICOKOH IPOU3BOUTENIBHOCTH pa3paboTaHHbIe aJIrOPUTMbI IU(POBOM IOAIIHCH
[IPE/ICTABIAT IPAKTUYECKUN HHTEPEC U IPUBJIEKATEIbHbI KAK I0TEHIIMAIbHBIN IPOTOTHII CTAHAAPTA Ha IIOCTKBAHTOBBIE AJITOPUTMBI I11(-
POBO ITOAIINCH.

KiaroueBbie ciioBa — MIOCTKBAHTOBBIE KPHUIITOCXEMBI, KOMIIBIOTEPHAA 0E30IIaCHOCTD, HJIEKTPOHHASA [[U(pPOBAA MOANNUCH, MHOTOMEPHAAL
kpunrorpadus, 3asa4a JUCKPETHOTO JIOTapU(MUPOBAHNA, KOHEYHbIE HEKOMMYTATHBHbBIE alre0phl, aCCOIMATUBHBIE AIre6phl, IUKINIeCKHe
IPYIIIbI, MHOTOMEPHAS I[UKINIHOCTS.
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