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Introduction: The development of post-quantum standards on digital signature algorithms is one of the current challenges faced by 
the global cryptographic community. Recently, two types of algebraic signature schemes with a hidden group have been proposed, in 
which the finite non-commutative associative algebras set over the field GF(p) are used as an algebraic support. The design of that type 
of signature algorithms on the algebras set over the finite fields of Characteristic two represent significant interest for improving the 
performance and reducing the hardware implementation cost. Purpose: To develop post-quantum algebraic signature algorithms in which 
computations in a finite field of Characteristic two are used. Results: Several 4-dimensional finite non-commutative algebras set over 
the GF(2z) fields are proposed as algebraic support of the signature schemes with a hidden group. We suggest some recommendations 
for choosing the value of the extension degree z. In particular cases the value of z represents a Mersenne degree. Compared with the 
signature algorithms which are based on the hidden logarithm problem, the algebraic signature algorithms based on the computational 
complexity of solving systems of many quadratic equations with many variables are considered to be a preferable type of cryptoschemes 
with a hidden group. We have introduced new practical signature algorithms with a hidden group. In two of the developed algorithms the 
signature (e, S) represents an integer e and a 4-dimensional vector S and is verified with vector equations with three and four entries of 
the signature element S. Practical relevance: Like other known signature schemes with a hidden group, the proposed two schemes have 
sufficiently small size of signature and public key. Due to comparatively small hardware implementation cost and high performance, the 
introduced candidates for post-quantum signature algorithms represent practical interest and are attractive as a potential prototype of 
a post-quantum digital signature standard. 
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Introduction

The predicted emergence of quantum computers 
in practice in the near future and the availability 
of polynomial in time quantum algorithms for solv-
ing the discrete logarithm problem and the factor-
ization problem [1–3] determine the high degree of 
relevance of the development of post-quantum pub-
lic-key cryptographic schemes, which are resistant 
to quantum attacks (attacks with using ordinary 
and quantum computers). Post-quantum signature 
algorithms are to be based on hard problems differ-
ent from discrete logarithm and factorization prob-
lems. 

In particular, the quantum computer is not effec-
tive for finding solutions of systems of many quad-
ratic equations with many unknowns and computa-
tional difficulty of this problem underlies the resist-
ance of the multivariate signature algorithms [4–6]. 
There are known signature schemes on algebras [7, 
8], on algebraic lattices [9], on codes [10, 11], and on 
hash functions [12]. A certain disadvantage of the 
known post-quantum signature schemes is a large 
size of public key and signature. In order to reduce 
the total size of the signature and the key, the signa-

ture schemes with a hidden group are proposed, in 
which finite non-commutative associative algebras 
(FNAA) are used as an algebraic support [13, 14]. 
One can distinguish two types of algorithms with 
a hidden group, which differ in the type of the used 
computationally difficult problem: 

1) algorithms, security of which is based on the 
computational difficulty of the hidden discrete loga-
rithm problem (HDLP) [13, 15];

2) algorithms, security of which is based on the 
computational difficulty of finding a solution of a 
system of many quadratic equations with many un-
knowns [14, 16].

A hidden group represents a subset of elements 
of some m-dimensional FNAA, which composes a 
commutative group. In the algorithms of the both 
types, the elements of the public key are computed 
as a masked (secret) element H of the hidden group. 
The masking is performed, for example, as the left 
and the right multiplications of the m-dimensional 
invertible vector H by some secret invertible vec-
tors A and B which satisfy the following conditions 
BA  AB, HA  AH, HB  BH.

The FNAAs defined over a ground finite field 
GF(p) with prime p = 2q + 1, where q is also a 



ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ № 1, 202330

ЗАЩИТА ИНФОРМАЦИИ

prime, are used as algebraic supports of the known 
signature algorithms with a hidden group [7, 13]. To 
improve the performance and reduce the hardware 
implementation cost, development of the post-quan-
tum algebraic signature algorithms on FNAAs set 
over finite fields of characteristic two, i. e. over the 
fields GF(2z), represents significant interest. 

In this paper, three different 4-dimensional 
FNAAs, including the algebras defined by a sparse 
basis vector multiplication tables (BVMTs), set over 
the GF(2z) fields are used as algebraic support of 
the proposed three new algebraic signature algo-
rithms with a hidden group: i) one HDLP-based 
algorithm and ii) two algorithms with a hidden 
group, which are based on computational difficul-
ty of solving a system of many quadratic equations 
with many unknowns. Compared with the former 
one, the latter are considered as more preferable 
candidates for post-quantum signature schemes. 
Recommendations for choosing the value of the ex-
tension degree z of the GF(2z) field are suggested for 
each of two types of the signature algorithms with 
a hidden group.

Four-dimensional FNAA used as algebraic 
support

Brief explanation of the notion of FNAA is pro-
vided in [16]: “A vector space of dimension m, which 
is set over a finite field GF(p) or GF(2z), with addi-
tionally defined vector multiplication operation (that 
possesses the property of distributivity at the left 
and at the right relatively the addition operation) is 
called m-dimensional algebra [16]. A vector A can be 
represented in the following two forms: i) as an or-
dered set of its coordinates: A = (a0, a1, …, am1) and 
ii) as a sum of its components: A = a0e0 + a1e1 + 
+… + am1em1, where ei (i = 0, 1, …, m  1) are 
basis vectors. If the defined multiplication opera-
tion is non-commutative and associative, then one 
gets m-dimensional FNAA. Usually, the product of 

the vectors 1
0

m
i ii a

 A e  and 1
0

m
j jj b

 B e  is 

defined by the formula 1 1
0 0 ,m m

i j i ji j a b 
   AB e e

 
 

where the values ai and bi are multiplied as the field 
elements and every the product of two formal basis 
vectors is to be replaced by an one-component vec-
tor indicated in a cell at the intersection of the i-th 
row and j-th column of so called BVMT”.

Usually, to perform one multiplication opera-
tion in some 4-dimensional algebra (see, for exam-
ple, Table 1 [8]) one need to execute 16 multiplica-
tions and 12 additions in the field GF(p) or GF(2z). 
However, computational complexity of this opera-
tion can be reduced, using sparse BVMTs (see, for 
example, Tables 2 [7] and 3 [16]). 

In addition to a faster multiplication operation, 
the 4-dimensional FNAAs defined by the sparse 
BVMTs are attractive to the fact that their detailed 
structure (in terms of decomposition into a set of 
commutative subalgebras) is known for the case 
of defining the algebras over the fields GF(p) with 
arbitrary odd characteristics p. Besides, using the 
technique by [7, 8], one can show that, in the case of 
defining the algebras over the fields GF(2z), where 
z > 0, the 4-dimensional FNAAs set by Tables 1 and 2, 
possess the following common properties:

1) the 4-dimensional FNAA contains 22z + 2z + 1 
of commutative subalgebras of the order 22z, every 
pair of which intersecting exactly in the set of scalar 
vectors {L: L = hE, h = 0, 1, …, 2z  1}, where E is 
the global two-sided unit;

2) the order of multiplicative group  of the alge-
bra is equal to

  = 2z(22z  1)(2z  1); (1)

3) the group  contains sufficiently large num-
ber (> 2z) of commutative subgroups 1 possessing 

  Table 1. Multiplication of basis vectors (  1,   0, and 
  0) in the 4-dimensional FNAA [8]

 e0 e1 e2 e3

e0 e0 e1 e0 e1

e1 e0 e1 e0 e1

e2 e2 e3 e2 e3

e3 e2 e3 e2 e3

  Table 2. Sparse BVMT (  0) defining the 4-dimensional 
FNAA with global two-sided unit E = (1, 1, 0, 0) [7]

 e0 e1 e2 e3

e0 e0 0 0 e3

e1 0 e1 e2 0

e2 e2 0 0 e1

e3 0 e3 e0 0

  Table 3. Sparse BVMT (  0) defining the 4-dimensional 
FNAA with global two-sided unit E = (0, 1, 1, 0) [16]

 e0 e1 e2 e3

e0 0 0 e0 e1

e1 e0 e1 0 0

e2 0 0 e2 e3

e3 e2 e3 0 0
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2-dimensional cyclicity (i. e., a minimum generator 
system of the subgroup 1 contains two vectors of 
the same order) and having order equal to

 1 = (2z  1)2;  (2)

4) the group  contains sufficiently large num-
ber (> 2z) of commutative cyclic subgroups 2 of the 
order 

 2 = 22z  1 = (2z  1)(2z + 1);  (3)

5) the group  contains commutative cyclic sub-
groups 3 of the order 

 3 = 2z(2z  1).  (4)

The condition of invertibility of some vector A in 
the FNAA set by Table 2 over a field GF(p) [7] is 
also valid in the cased of defining the FNAA over 
the GF(2z) fields:

 a0a1  a2a3. (5)

Similarly, we have the following invertibility con-
dition for the FNAA set by Table 3 over the GF(2z) 
fields [16]:

 a1a2  a0a3.  (6)

For the 4-dimensional FNAA set by Table 1 over 
the GF(2z) fields (commutative groups of the 1, 2, 
and 3 types are also contained in this algebra), 
from [8] one gets the invertibility condition 

 a1a2  a0a3  (7)

and the following formula for the two-sided global 
unit E depending on the structural constants  and 
 (that can be selected arbitrarily, but satisfying the 
conditions   1,   0, and   0):

 

1 1
   

1 1 1 1
, , , .            

E
 

(8)

To execute the exponentiation operation in 
FNAAs, i. e. for calculating the value R = Wk (W is 
a vector; k is a non-negative integer), we propose the 
follow ing modification of the fast-exponentiation al-
gorithm, which is free of using the E value: 

INPUT: W and k > 0.
1. Set V  W, and n  k. 
2. If n mod 2 = 1, then go to step 4.
3. V  V2, n  n div 2, and go to step 2.
4. R  V, V  V2, n  n div 2.
5. If n = 0, then STOP. 
6. If n mod 2 = 1, then go to step 8.
7. V  V2, n  n div 2, and go to step 6.

8. R  RV, V  V2, n  n div 2, and go to step 5.
OUTPUT: R = Wk.
Development of the algebraic signature algo-

rithms with a hidden group, which are based on com-
putational difficulty of the HDLP, is connected with 
the requirement of existence of a large-size prime 
factor of the order of the hidden group. Taking into 
account that the said algorithms use hidden groups 
which are subgroups of the commutative groups of 
the 1 and 2 types, one can recommend the values 
of z shown in Tables 4 and 5. The values z = 61, 89, 
107, 127, 521, and 607 are Mersenne degrees that 
define prime values of 2z  1. 

Development of the algorithms with a hidden 
group, which are based on computational difficul-
ty of solving a system of many quadratic equations 
with many unknowns, is free of the requirement of 
existence of a large-size prime factor of the order of 
the hidden group. Security of the algorithms of this 
type depends on the size of the order of the hidden 
group and is not dependent on the factorization of 
the order. However, to provide a higher performance 
the hidden group order should be free of small-size 
factors (for example, less than 20 bits). If the order 
of a group of the 1-type is free of the said factors, 

  Table 4. The case of using the 1-type and 2-type 
commutative groups (or their subgroups) as a hidden group 
in the HDLP-based signature algorithms

Degree
z

Number of prime 
factors of the value 

2z  1 
(their size in bits)

Degree
z

Number of prime 
factors of the value 

2z  1 
(their size in bits)

61 1 (61) 281 2 (17 and 265)

89 1 (89) 373 2 (25 and 349)

107 1 (107) 421 2 (50 and 372)

127 1 (127) 457 2 (28 and 430)

131 2 (9 and 123) 521 1 (521)

197 2 (13 and 185) 607 1 (607)

  Table 5. Additional values of z for the case of using the 
2-type commutative groups (or their subgroups) as a hidden 
group in the HDLP-based signature algorithms

Degree
z

Number of prime 
factors of the value 

2z + 1 
(their size in bits)

Degree
z

Number of prime 
factors of the value 

2z + 1 
(their size in bits)

101 1 (100) 311 2 (16 and 294)

127 1 (126) 313 1 (312)

179 2 (36 and 142) 347 1 (346)

199 1 (198) 433 2 (22 and 410)

229 2 (25 and 204) – –
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then each of them can be used as the hidden group 
of the designed signature scheme. 

The order 2 of the 2 group contains factor 3 [see 
formula (3)]. If no other small-size factors are con-
tained in 2 = (2z  1)(2z + 1), then the subgroup of 
the order 2/3 can be used as a hidden group. The 
values of z suitable for development of signature algo-
rithms with a hidden group of the 1-type, based on 
difficulty of solving a system of quadratic equations, 

are shown in Table 6 [17] (2-type – in Table 7). In the 
case of the hidden group of the 2-type, one should 
use the z values that determine the absence of short 
divisors for the values 2z  1 and 2z + 1 (except the 
two-bit divisor 3 for the second value).

When developing the signature schemes with a 
hidden group, it is assumed to use algorithms for 
generating a basis (minimum generator system) of 
the hidden group. For example, you can use the fol-
lowing algorithms.

Algorithm 1: generating a basis of the 1-type 
group.

1. Using the invertibility condition [see formulas 
(5)–(7)], generate a random invertible vector V of 
the order q = 2z  1.

2. If the vector V is contained in the set of scalar 
vectors, i. e., if V = E for some value   GF(2z), 
then go to step 1. 

3. Generate a random integer k (0 < k < q) and 
a random binary polynomial   GF(2z) of the order 
2z  1.

4. Compute the vector H = Vk.
5. Output the pair of vectors H and G = V as a 

basis <G, H> of a random 1-type group.
This algorithm works correctly, since the vectors 

of the order 2z  1 in the groups of the 2 and 3-
types are scalar vectors.

Algorithm 2: generating a basis of the 2-type 
group.

1. Using the invertibility condition [see formulas 
(5)–(7)], generate a random invertible vector V of or-
der the q = (2z  1)(2z + 1).

2. Output the vector V as a generator (basis 
<V>) of a random 2-type group.

This algorithm works correctly, since the 1-type 
and 3-type groups do not contain vectors of the or-
der (2z  1)(2z + 1). Evidently, the vector J = V3 is 
a generator of a commutative cyclic group 2of the 
order q/3, which is a subgroup of the 2-type group 
generated by the vector V.

The described 4-dimensional FNAAs are used as 
algebraic carrier of three new signature algorithms 
with a hidden group. Evidently the said FNAAs (set 
over GF(2z)) could be used to update the known al-
gorithms of such type, for example, described in [7, 
13] (for the first type of the signature algorithms 
with a hidden group) and in [15] (for the second type 
of the signature algorithms with a hidden group). 
However, the authors prefer to illustrate existence 
of variety of possibilities, when designing algo-
rithms with a hidden group. 

A signature scheme based on HDLP

In this section it is introduced a HDLP-based 
signature algorithm (the first signature scheme) 
that illustrates the first type of the algebraic signa-

  Table 6. The case of using a hidden group of the 1-type 

Degree
z

Number of -bit 
prime (  30) factors 

of the value 2z  1 
(their size in bits)

Degree
z

Number of -bit 
prime (  26) factors 

of the value 2z  1 
(their size in bits)

89 Mersenne degree 257 3 (49, 80, and 129) 
[17]

101 2 (43 and 59) [17] 271 2 (34 and 238)  
[17]

103 2 (39 and 63) [17] 293 2 (86 and 208) [17]

107 Mersenne degree 307 4 (31, 42, 68, and 
166)

109 2 (30 and 80) [17] 331 3 (44, 50, and 238)    
[17]

127 Mersenne degree 347 2 (74 and 274) [17]

137 2 (65 and 73) [17] 379 2 (38 and 342) [17]

139 2 (43 and 97) [17] 389 3 (26, 33, and 332) 
[17]

149 2 (67 and 83) [17] 421 2 (50 and 372)

173 3 (41, 56, and 78) 
[17] 433 4 (65, 80, 83, and 

208)

199 2 (38 and 162) [17] 503 4 (52, 64, 71, and 
318)

  Table 7. The case of using a hidden group of the 2-type 

Degree
z

Number of -bit 
prime (  36) factors 

of the value 2z + 1 
(their size in bits)

Degree
z

Number of -bit 
prime (  22) factors 

of the value 2z + 1 
(their size in bits)

101 1 (100) 307 4 (31, 42, 68, and 
166)

127 1 (126) 347 1 (346)

179 2 (36 and 142) 379 3 (44, 100, and 
235)

199 1 (198) 389 4 (40, 51, 52, and 
246)

257 3 (46, 69, and 142) 433 2 (22 and 410)

271 2 (45 and 231) 503 4 (52, 64, 71, and 
318)
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ture schemes with a hidden group. The development 
of various types of HDLP-based algorithms and 
methods for setting a hidden group formed the pre-
requisites on the basis of which the second type of 
signature algorithms with a hidden group was born. 
The reader can easily see the similar construction 
elements in the two types of the algorithms intro-
duced in this paper (see also the next section).

Suppose a 4-dimensional FNAA is set by Table 2 
over the field GF(2z), where z = 521 and q = 2z  1 is 
a prime number. Using a group of the 1-type (set by 
some basis <G, H>), you can generate a public key 
in the form of three vectors U, Y, and Z as follows: 

1. Generate two random invertible vectors A and 
B of the order   p  1, satisfying the conditions 
AB  BA, AG  GA, BG  GB.

2. Generate two random integers x < q and u < q. 
Then calculate the first element U of the public key: 
U = AGxHuB1. 

3. Calculate the second element Y of the public 
key: Y = BGB1.

4. Calculate the third element Z of the public 
key: Z = BHA1. 

The pair of numbers (x, u) and the vectors G, 
H, A, and B compose a secret key (having size 
1173 bytes) and are used for generating a signa-
ture to some electronic document M. The size of 
the public key represented by the triple of vectors 
(U, Y, Z) is equal to 782 bytes.

Algorithm for generating a signature.
1. Generate a random natural integer k < q and 

calculate the vector K = Gk. 
2. Generate a random natural integer t < q and 

calculate the vector R = AKHtA1.
3. Using a specified 521-bit hash function f, cal-

culate the first signature element e as a hash-func-
tion value from the document M to which the vector 
R is concatenated: e = f(M, R). 

4. Compute the second signature element s: 

1
1

mod .tx
s k q

e u
    

5. If the value under the root is a quadratic 
non-residue modulo q, then go to step 2.

6. Compute the third signature element d: 

 
1

1
mod .t

d q
s u

 
    

This algorithm outputs a 196-byte signature 
in the form of a triple of 521-bit integers (e, s, d). 
Computational difficulty of the signature genera-
tion algorithm is defined mainly by exponentiation 
operations performed at steps 1 and 2. It is easy to 
see that on the average three exponentiations in the 
FNAA used as algebraic support (18 432 multipli-

cations in GF(2521)) are executed to generate one 
signature. 

Algorithm for verifying a signature.
1. Calculate the vector 

   .
sdes R UY Z UZ

2. Calculate the hash-function value from the 
document M to which the vector R is concatenated: 
e = f(M, R).

3. If e = e, then the signature is accepted as a 
genuine one. Otherwise the signature is rejected. 

Computational difficulty of the signature verifi-
cation procedure can be estimate as three exponen-
tiations in the 4-dimensional FNAA used as alge-
braic support (18 432 multiplications in GF(2521)). 

Correctness proof of the described signature 
scheme is as follows (see formulas used at steps 4 
and 6 of the signature generation algorithm):

   

 
  

  
     

   

2

1

1 1 1 1

11 1 1

1 1 1

1 1 1 1

1
1 1

1 1 1

1 1

( )

sdes x u es

sdx u

sd ux es u xd

su d ux es xd

xs d es sd u s u

t tx t
xs e k s u s u

s u e u u

k t



   

   

    

     

                

 

   


 



 

 

 

 

   

R UY Z UZ AG H B BG

B BHA AG H B BHA

AG H A AG H A

AG H A

AG H A

AG H

A AG H A R

     , , .f M f M e e    R R

A critical point of the consideration of the HDLP-
based signature algorithms as candidates for 
post-quantum cryptoschemes is potential possibility 
of using algebraic methods to reduce the HDLP to or-
dinary DLP. Therefore, the second-type algebraic sig-
nature schemes with a hidden group, which are based 
on computational difficulty of solving a system of 
many quadratic equations with many unknowns (the 
problem for solving of which the quantum computer 
is not efficient), can be estimated as a more preferable 
candidates for post-quantum signature schemes.

Signature schemes based on difficulty 
of solving a system of many quadratic 
equations

The second proposed signature scheme is de-
scribed as follows. Suppose the 4-dimensional FNAA 
is set by Table 3 over the field GF(2z), where z = 257. 
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Then, generating a random secret basis <G, H> of 
a group of the 1-type one can generate a public key 
in the form of six vectors (Y1, Z1, Y2, Z2, Y3, Z3, T) 
as follows.

Public-key generation algorithm.
1. Using the invertibility condition (6), generate 

at random invertible vectors A, B, D, and F satisfy-
ing the following non-equalities: AB  BA, AD  DA, 
AF  FA, AG  GA, BD  DB, BF  FB, BG  GB, 
DF  FD, DG  GD, and FG  GF.

2. Calculate the vectors A1, B1, D1, and F1. 
3. Generate non-negative integers x < q and 

w < q, where q = 2z  1 is a 256-bit number that is 
product of three primes having the size 49, 80, and 
129 bits (see Table 6). Then compute the public key 
(Y1, Z1, Y2, Z2, Y3, Z3, T) by formulas 

Y1 = AGB; Z1 = DHA1; 

Y2 = FHxB; Z2 = DHwGF1;

 Y3 = AGwB; Z3 = DHGF1; T = DHGxB.  (9)

The secret key (with total size 833 bytes) repre-
sents two integers x, w and six vectors G, H, A, B, D, 
and F. The size of public key is equal to 900 bytes. 
Computation of a signature to some electronic docu-
ment M is performed, using the following algorithm.

Signature generation algorithm.
1. Generate at random two natural numbers k 

(k < q) and t (t < q). Then calculate the vector 

 R = AGkHtF1. (10)

2. Using a specified 2z-bit hash function f, cal-
culate the first signature element e as a hash-func-
tion value from the document M to which the vector 
R is concatenated: e = e1||e2 = f(M, R), where the 
hash-value e is represented as concatenation of two 
z-bit integers e1 and e2.

3. If the integers 2e1 + e2 + 1 and q are not mu-
tually prime, then go to step 1. Otherwise, calculate 
the natural numbers n and d:

 

1 1 2

1 2

1
2 1

mod ;k e xe e w
n q

e e
    


 

   (11)

 

1 2 2

1 2

2 1
2 1

mod .t e xe we
d q

e e
   


 

   (12)

4. Calculate the second signature element in the 
form of the vector S:

 S = B1GnHdD1.  (13)

Since the integer q contains three factors of 
sufficiently large size (49 bits), the probability of 
repeating the first step of the algorithm is negli-
gible. Therefore, the computational complexity of 

this algorithm is determined mainly by 4 exponen-
tiations in the used FNAA (48z = 12 336 mul-
tiplications in GF(2z)). The size of the signature 
(e, S) is equal to 6z bits (193 bytes). Verification 
of the signature is performed, using the public key 
(Y1, Z1, Y2, Z2, Y3, Z3, T) and the following procedure.

Signature verification algorithm.
1. Compute the vector R by the following formu-

la with four entries of the signature element S:

    1 2
1 1 3 3 2 2 .e e R Y STSZ Y SZ Y SZ   (14)

2. Calculate the hash-value e from the document 
to which the vector R is concatenated: e = f(M, R). 

3. If e = e, then the signature is genuine. 
Otherwise the signature is rejected.

The computational complexity of the signature 
verification algorithm is determined mainly by 2 ex-
ponentiations in the used FNAA (24z = 6168 mul-
tiplications in GF(2z)).

Correctness of the signature scheme is proven as 
follows.

Signature scheme correctness proof.
Compute the vectors

  


 
 

1

1

1

1

1 1 1 1 1

1 1
1 1 1

1 1 1

1

2 1 2 2 1

2 2 2 1;

e n d

ex n d

en d x n d

en x d

ne xe e de e

 

  



   

   

  

 

 

 



J Y STSZ AGBB G H D

DG HBB G H D DHA

AGG H G HG H HA

AG H A

AG H A
1 1 1

2 3 3
1 1 1;

w n d

n w d

  

   

  



J Y SZ AG BB G H D DHGF

AG H F

 

 
 

2

2

2

2 2 2 2 2

3 2 2

1 1 1

1 1

1.

e

ex n d w

en d x w

ne e de xe we

  

   

   

 

 

 



J Y SZ

FH BB G H D DH GF

FG H F

FG H F

Then compute the vector R:

 

 

1 1 1 1 1

2 2 2 2 2

1 1 1 2 2

1 1 2 2 2

1 2 1 1 2

1 2 1 2 2

2 2 2 1
1 2 3
1 1 1 1

2 1

2 2 1 1

2 1 1

2 1 2 1 1.

ne xe e de e

ne e de xe wen w d

ne xe e n w ne e

de e d de xe we

n e e e xe e w

d e e e xe we

   

      

      

      

      

      

   

  

 

 

 



R J J J AG H A

AG H F FG H F

AG

H F

AG

H F
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Taking into account the formulas (11) and (12) 
we get: 

   
1

.

k t

f M f M e e

   
    

R AG H F R

R R 

The final equality means validity of the input 
signature.

Security of the described signature scheme is based 
on computational difficulty of solving the system of 13 
vector quadratic equations with the following 11 un-
knowns: A, B, D, F, G, H, H = Hx, H = HwG, G = Gw, 
G = GH, and G = GxH, which are determined by 
the formulas (9) and the pair-wise permutability of 
the unknowns G, H, H, H, G, G, and G: GH = HG, 
GH = HG, GH = HG, GG = GG, GG = GG, and 
GG = GG. Using Table 3, the latter system reduc-
es to a system of 52 quadratic equations (with 44 un-
knowns) in the field GF(2z). 

A remarkable feature of the algebraic algorithms 
with a hidden group is the multiple entries of the 
signature element S in the vector verification equa-
tion set over a non-commutative algebra. This pro-
vides resistance to forging signature attacks base 
on using the value S as a fitting parameter. In the 
algorithm describe above we have four entries of the 
vector S. The number  of entries should satisfy the 
condition   2. The next digital signature scheme 
uses the value  = 3.

The third developed signature scheme is de-
scribed as follows. Suppose the 4-dimensional 
FNAA is set by Table 1 over the field GF(2z), where 
z = 199 (see Tables 6 and 7). Then, generating a 
random secret basis <G> of a cyclic group of the 
2-type (subgroup of a 2-type group), which has or-
der q = 2/3 = 31(2z  1)(2z + 1), one can generate 
a public key in the form of seven vectors (Y1, Z1, U1, 
Y2, Z2, U2, V) as follows. 

Public-key generation algorithm.
1. Using the invertibility condition (8), generate 

at random invertible vectors A, B, D, and F satisfy-
ing the following non-equalities: AB  BA, AD  DA, 
AF  FA, AG  GA, BD  DB, BF  FB, BG  GB, 
FD  DF, and GF  FG.

2. Calculate the vectors A1, B1, D1, and F1. 

3. Calculate the vector   1
2 1zq




J G  of the or-

der q = 31(2z + 1) and the vector   1
3 2 1zq




I G  of 
the order q = 2z  1.

4. Generate at random non-negative integers x 
(x < q) and w (w < q), where q is a 198-bit prime 
number and q is a product of two primes having 
the size 38 and 162 bits (see Tables 6 and 7). Then 
compute the public key (Y1, Z1, U1, Y2, Z2, U2, V) by 
formulas 

Y1 = B1JA1; Z1 = B1IB; U1 = B1JxF1;

Y2 = DJIA1; Z2 = FJwI D1; 

 U2 = DJIxA1; V = B1IwD1.  (15)

The secret key (with total size 650 bytes) repre-
sents two integers x, w and six vectors J, I, A, B, D, 
and F. The size of public key is equal to 700 bytes. 
Computation of a signature to some electronic docu-
ment M is performed, using the following algorithm.

Signature generation algorithm.
1. Generate at random two natural numbers k 

(k < q) and t (t < q). Then calculate the vector 

 R = FJkItF1.   (16)

2. Using a specified 3z-bit hash function f, calcu-
late the first signature element e as a hash-function 
value from the document M to which the vector R 
is concatenated: e = e1||e2||e3 = f(M, R), where the 
hash-value e is represented as concatenation of tree 
z-bit integers e1, e2, and e3. 

3. If the integer e1e2e3 + e2e3 + e3 is not mu-
tually prime with q or with q, then go to step 1. 
Otherwise, calculate the natural numbers n and d:

 

3 3

1 2 3 2 3 3
1 mod ;k we xe

n q
e e e e e e

  
  

  
   (17)

 

2 3 3

1 2 3 2 3 3
1 mod .t we e xe

d q
e e e e e e

  
  

  
  (18)

4. Calculate the second signature element in the 
form of the vector S:

 S = AJnIdB.  (19)

Since the integer q is prime and q contains two 
factors of sufficiently large size (38 and 162 bits), the 
probability of repeating the first step of the algorithm 
is negligible. Therefore, the computational complexi-
ty of this algorithm is determined mainly by 4 expo-
nentiations in the used FNAA (96z = 19 104 mul-
tiplications in GF(2z)). The size of the signature 
(e, S) is equal to 7z bits (175 bytes). Verification 
of the signature is performed, using the public key 
(Y1, Z1, U1, Y2, Z2, U2, V) and the following procedure.

Signature verification algorithm.
1. Compute the vector R by the following formu-

la with three entries of the signature element S:

 
  

3
2

1
2 2 1 1 2 1 .

eee 
   

 
R Z Y S Y SZ V U SU    (20)

2. Calculate the hash-value e from the document 
to which the vector R is concatenated: e = f(M, R). 

3. If e = e, then the signature is genuine. 
Otherwise the signature is rejected. 
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The computational complexity of the signature 
verification algorithm is determined mainly by 
3 exponentiations in the used FNAA (72z =
= 14 328 multiplications in GF(2z)). 

Correctness of the latter signature scheme is 
proven as follows. 

Signature scheme correctness proof.
Calculate the values X1 and X2:

    11

1 1 1 1

1 1 1
1 1 1

1 ;

ee n d

e n e e d e

  

 

  



X Y SZ B JA AJ I BB IB

B J I B

 

 
    

   

2

2
1 1 1 1

2
1 1 1 1

1 2 2 1 2 2 1 2 2 1 2 2 2

2 2 1

1 1 1 1

1 1 1 1 1

1.

e

ee n e e d en d w

en e e d e e w

n e e e e e e d e e e e e we e

    

       

       

 

 

 



X Y SX V

DJIA AJ I BB J I BB I D

DJ I D

DJ I D

Then compute the vector R: 

 

 

 

 

 

3

3
1 2 2 1 2 2

1 2 2 1 2 2 2

3
1 2 2 1 2 2

1 2 2 1 2 2 2

1 2 3 2 3 3

2 2 2 1

1

1 1 1 1

1 1

1 1 1

e

en e e e e e ew

d e e e e e we e

x n d x

en e e e e e e w x

d e e e e e we e x

n e e e e e e

  

   

   

      

       

  

    

  
     
  
 

   
  



R Z X U SU

FJ ID DJ

I

D DJI A AJ I BB J F

FJ

I F

FJ
 

1 2 3 2 3 3 3 3

1 2 3 2 3 3 1 2 3 2 3 2 3 3 3 1.

e e e e e we xe e

d e e e e e e e e e we e e e xe e

   

       



 I F

Taking into account the formulas (17) and (18) 
we get: 

   1   , , ,k t f M f M e e       R AJ I A R R R

where the latter equality proves the correct 
performance of the signature scheme.

Discussion

In this paper, the first developed signature al-
gorithm, based on HDLP, is considered as an illus-
tration of signature schemes attributed to the first 
type of the algebraic signature algorithms with a 
hidden group. Comparison with the second-type al-
gorithms shows that in the both cases the main op-
erations used to generate the public key, to generate 
a signature, and to verify the signature are expo-

nentiation operations. However, the signature algo-
rithms of the second type have principal difference, 
namely, they are based on computational complexity 
of finding a solution of a system of many quadratic 
equations with many unknowns. To solve the latter 
problem, the quantum computer is not efficient [18]. 
This fact is used in the area of multivariate cryp-
tography that is one of the directions in the devel-
opment of post-quantum public-key cryptographic 
algorithms. The multivariate cryptography was ini-
tiated by the paper [19] in 1988.

Over the past 30 years of the research in the field 
of multivariate cryptography many multivariate 
signature algorithms are currently known. A merit 
of the multivariate signature schemes is small size 
of the signature. Unfortunately, their significant 
drawback is a very large size of the public key. The 
latter is associated with a specific method for de-
veloping the multivariate signature algorithms, in-
cluding generation of the public key as a set of quad-
ratic (or cubic) polynomials that describe a trapdoor 
one-way mapping of vectors of large dimensions 
(from 30 to 200), given over a finite field of suffi-
ciently small order (from 22 to 216). 

At present the cryptographic community has 
well worked out the basic methods for cryptanalysis 
of the multivariate-cryptography algorithms. The 
following two types of attacks are distinguished 
[18]: i) direct attacks based on the algorithms for 
solving systems of many power (quadratic in many 
cases) equations with many unknowns and ii) struc-
tural attacks that use the structural features of the 
cryptoscheme design.

Because of significantly different design of the 
signature algorithms with a hidden group and the 
multivariate-cryptography algorithms the structur-
al attacks developed for cryptanalysis of the latter 
are hardly applicably to the former and novel types 
of structural attacks are to be developed. Therefore, 
for preliminary security estimation of the second 
and third proposed algebraic signature algorithms 
the known direct attacks can be considered. The 
most effective direct attack is the use of algorithms 
for solving systems of many power equations, based 
on the calculation of the Gröbner basis [20, 21].
Table 8 computed on the base of the results of the 
papers [20, 21] can be used to estimate security W of 
the introduced algebraic algorithms with a hidden 
group to the direct attack.

Security of the second introduced signature 
scheme (algorithm with the value  = 4) is based 
on difficulty of solving the system of 12 vector 
quadratic equations with 11 unknowns A, B, D, F, 
G, H, G = Gw, H = Hx, H = Hw, G = GH, and 
G = GwH, which are determined by the formulas 
(9) and the pair-wise permutability of the unknowns 
G, H, G, H, H, G, and G: GH = HG, GG = GG, 
GH = HG, GH = HG, and GG = GG. Using 
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Table 3, the latter system reduces to a system of 
 = 48 quadratic equations (with  = 44 unknowns) 
in the field GF(2257). 

Security of the third developed signature scheme 
(algorithm with the value  = 3) is based on difficul-
ty of solving the system of 13 vector quadratic equa-
tions with the unknowns A, B, J, I, J = Jx, I = Iw, 
which are determined by the formulas (15) and 
the pair-wise permutability of the following 11 un-
knowns J, I, J, and H: JI = IJ, JI = IJ, JJ = JJ. 
Using Table 1, the latter system reduces to a system 
of 52 quadratic equations (with 44 unknowns) in the 
field GF(2199). 

Thus, one can take the number of equations  
equal to the number of the unknowns , and use 
the recommended minimum values of  presented 
in the Table 8 for different values of the order of the 
field GF(n) in which the system of quadratic equa-
tion is given. Since the system of quadratic equa-
tions related to the proposed signature algorithms 
is set in the fields GF(2z), where 2z  256, one can 
use the values that relates to the case n = 256. 
In this case, we get overstated requirements for the 
minimum value, however, this overestimation can 
be considered insignificant due to relatively weak 
dependence on the value n. For the second and third 
proposed signature algorithms we get the value 
W > 2128.

Since the value  is proportional to the FNAA 
dimension, one can propose an evident way to im-
prove the value W that is using six-dimensional and 
eight-dimensional FNAAs (set over the fields GF(2z) 
with smaller values of z) as algebraic support of the 
proposed signature algorithms, however, this way 
is connected with the study of the decomposition of 
the said FNAAs into the set of commutative subal-
gebras or to provide another method for justifying 
existence of sufficiently large number of commuta-
tive groups of a certain type. Potentially, using the 
8-dimensional FNAAs as algebraic support of the 
second and third proposed signature algorithms for 
each of latter one gets the values  = 104,  = 88 
and W > 2192.

In the developed signature scheme with  = 4 
the vectors G, H, H, G, and G are comput-
ed as G = Gw, H = Hx, H = Hw, G = GwH, and 

G = GH, correspondingly. This technique im-
proves the performance of the signature generation 
algorithm. Actually, when generating a signature, 
you can select at random the vectors G, H, H, G, 
and G from the hidden group and use an alterna-
tive signature generation algorithm with many ad-
ditional exponentiation operations (the reader can 
easily compose such algorithm), while the signature 
verification algorithm retains its original form. 
The analogous remark is valid for the algorithm 
with  = 4 entries of the S signature element in the 
signature verification equation. The noted remark 
clearly shows that the exponentiation operations are 
used as a part of the mechanism for calculating the 
signature element S that satisfies the verification 
equation with its multiple occurrences (entries) in 
the latter.

Table 9 shows a rough comparison of the devel-
oped post-quantum signature algorithms with the 
algorithms selected as finalists of the NIST world 
competition on the development of the post-quan-
tum public-key algorithms [22]. Table 10 (where 
W denotes security to direct attack, which is es-
timated using Table 8) shows a rough compari-
son of the introduced signature algorithms based 
on computational difficulty of solving a system of 
quadratic equations with some known multivari-
ate signature algorithms. The post-quantum al-
gorithms introduced in this article have a signif-
icant advantage in the sizes of the signature and 

  Table 8. Minimum number of equations providing a 
given security level to the direct attack for different values of 
the order of the field GF(n) in the case  =  [18]

n
W

280 2100 2128 2192 2256

16 30 39 51 80 110

31 28 36 48 75 103

256 26 33 43 68 93

  Table 9. Comparison with some known digital signature 
algorithms

Signature 
scheme

Signa-
ture 
size, 
bytes

Public key 
size, bytes

Signature 
genera-

tion rate, 
arb. un.

Signature 
verifica-
tion rate, 
arb. un.

Falcon [23] 1280 1793 50 25

CRYS-
TALS-Dilithi-
um [24]

2701 1472 15 2

Rainbow [25]
(3 different 
versions)

66…
204

> 150 000 
…

> 1 900 000
– –

The first 
proposed
(HDLP-based)

196 782 25 25

The second 
proposed 
( = 4)

193 900 150 300

The third 
proposed
( = 3)

175 700 150 200
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public key. Besides, the developed algebraic algo-
rithms based on computational difficulty of solving 
a system of quadratic equations have significantly 
higher performance than finalists Falcon [23] and 
CRYSTALS-Dilithium [24]. However, a detailed 
security estimation of the introduced signature al-
gorithms are to be performed as an independent 
research work.

The signature schemes with a hidden group, 
which are based on computational difficulty of solv-
ing a system of many quadratic equations, suite 
well for using the 6-dimensional and 8-dimension-
al FNAAs as algebraic support. The latter allows 
to define the FNAAs over the fields GF(2z) with 
comparatively small values of z. For composing the 
BVMTs defining the FNAAs of such dimensions, 
you can use the unified methods by [27, 28]. Using 
the FNAAs with a large set of global single-sided 
units (see, for example, [29]) as algebraic support of 
the signature algorithms with a hidden group also 
represent an item of a future study.

It should be noted that in passing to using 
FNAAs with a higher dimension value m (in order 
to get a higher security to the direct attack) as 
an algebraic support, we have the possibility to 
define algebras over the fields GF(2z) with lower 
degrees of z (for example, z = 101 and z = 128; see 
Tables 6 and 7). For a fixed value m, a decrease in 
the value of z has little effect on the resistance to 
direct attacks, however, we assume that this will 
lead to a significant decrease in the resistance 
to potential structural attacks. For this reason, 
sufficiently large values of z are used in the de-
veloped signature algorithms on the four-dimen-
sional FNAAs.

The results of this study complement the results 
of the papers [14, 16] and give grounds to consider 
signature algorithms with a hidden group as can-
didates for practical post-quantum cryptoschemes 
with small signature size. The latter is a motive for 
the cryptographic community to pay attention to 
the issue of considering structural attacks on signa-
ture algorithms of the type considered. 

Conclusion

Within the framework of the methods [13, 16], 
new post-quantum algebraic signature algorithms 
with a hidden group has been developed, using 4-di-
mensional FNAAs, defined over finite fields of char-
acteristic two, as algebraic support. It is shown that 
there are quite ample opportunities to choose suit-
able fields GF(2z) with different degrees of exten-
sion. The use of FNAAs, set over the fields GF(2z), 
as algebraic support of post-quantum signature al-
gorithms with a hidden group is an essential mo-
ment for improving the performance and reducing 
the hardware implementation cost compared to the 
case of using FNAAs defined over the ground finite 
fields GF(p).

An additional increase in performance can be 
achieved by using 6-dimensional and 8-dimensional 
FNAAs defined over the fields GF(2z) with the value 
of z from 80 to 150 as an algebraic support, includ-
ing the case of defining FNAAs by sparse BVMTs. 
However, this is the subject of an independent study, 
which includes the study of the structure of such 
FNAAs and developing new forms of the signature 
verification equations.

  Table 10. Comparison with some known digital signature algorithms

Signature algorithm
Signature 
size, bytes

Public key size, 
bytes

# quadratic equations 
 (unknowns )

Order of the field over 
which the quadratic 

equations are set 
W

[5] – – 27 (27) 216 280

Rainbow [26] 33 16 065 27 (33) 28 280

QUARTZ [6] 16 72 704 100 (107) 24 > 2192

Rainbow [25]
(3 different versions)

66…
204

> 150 000 …
> 1 900 000

64 (96)…
128 (204)

24, 31,
28 2128… 2256

With a hidden group [16]
 = 2 160 512 28 (28) > 2256 280

The second proposed
( = 4) 193 900 52 (44) 2257 > 2128

The third proposed
( = 3) 175 700 52 (44) 2199 > 2128
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Постквантовые алгебраические алгоритмы цифровой подписи со скрытой группой
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РФ

Введение: разработка постквантовых стандартов на алгоритмы цифровой подписи является одним из современных вызовов для 
мирового криптографического сообщества. Недавно предложены два типа алгебраических схем подписи со скрытой группой, в кото-
рых конечные некоммутативные ассоциативные алгебры над полем GF(p) используются в качестве алгебраического носителя. По-
строение алгоритмов этого типа на алгебрах, заданных над конечными полями характеристики два, представляет значительный ин-
терес для повышения производительности и снижения схемотехнической сложности аппаратной реализации. Цель: разработать пос-
тквантовые алгоритмы цифровой подписи, в которых выполняются вычисления в конечных полях характеристики два. Результаты: 
предложены несколько четырехмерных конечных некоммутативных алгебр, заданных над полем GF(2z), в качестве алгебраических 
носителей схем цифровой подписи со скрытой группой. Разработаны рекомендации по выбору значения степени расширения z. 
В частных случаях значение z является степенью Мерсенна. По сравнению со схемами подписи, основанными на скрытой задаче дис-
кретного логарифмирования, алгебраические алгоритмы подписи со скрытой группой, основанные на вычислительной сложности 
решения систем многих квадратных уравнений с многими неизвестными, рассматриваются как предпочтительные кандидаты на 
постквантовые криптосхемы. Предложены новые практичные алгоритмы подписи со скрытой группой. В двух алгоритмах подпись 
(e, S) представляет собой целое число e и четырехмерный вектор S. Верификация подписи выполняется по векторным уравнениям с 
тремя и четырьмя вхождениями элемента подписи S. Практическая значимость: как и другие известные схемы подписи со скрытой 
группой, предложенные две схемы имеют достаточно малый размер подписи и открытого ключа. Благодаря сравнительно малой 
схемотехнической сложности аппаратной реализации и высокой производительности разработанные алгоритмы цифровой подписи 
представляют практический интерес и привлекательны как потенциальный прототип стандарта на постквантовые алгоритмы циф-
ровой подписи.

Ключевые слова — постквантовые криптосхемы, компьютерная безопасность, электронная цифровая подпись, многомерная 
криптография, задача дискретного логарифмирования, конечные некоммутативные алгебры, ассоциативные алгебры, циклические 
группы, многомерная цикличность.
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