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Introduction: Today the investigations of post-quantum cryptosystems secure against quantum computations is the area of great 
interest. An important direction here is code-based cryptography utilizing the mathematical problems from error-correcting coding theory. 
The improvement of existing code-based systems may be achieved both in practical part (reducing the key sizes) and theoretically by 
using more complicated mathematical code-based tasks. Purpose: The development of public-key code-based cryptosystem using low-
density parity-check codes with burst correction; the estimation of the parameters of the obtained system. Results: The variant of code-
based cryptosystem using random block permutation low-density parity-check codes is proposed. The cryptocomplexity of the system 
is supposed to be based on the complete decoding problem, which is believed to be a harder mathematical problem than those used in 
existing systems. With high probability, the analysis of the system by using decoding methods is not possible at all, which both increases the 
long-term cryptocomplexity of the system and allows to reduce the key size. The evaluation of the underlying code selection is performed, 
the approaches to the selection of the parameters of the proposed system on the basis of the required level of cryptocomplexity are 
considered. Practical relevance: The proposed system allows to reduce the public-key size as compared to the classical McEliece system, 
cryptocomplexity also comparable, with the underlying mathematical problem to be more stable against perspective attacks. 
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Introduction

The concept of public-key cryptography is usu-
ally connected with groundbreaking paper by 
W. Diffie, M. Hellman “New directions in cryptog-
raphy” published in 1976 [1]. According to this con-
cept each part has the pair of long-term keys: pub-
lic key and correspondent private (secret) key. In 
case of secrecy providing the recipient’s public key 
is used during encryption, while the correspond-
ent private key is used for decryption. Today the 
most widely spread public-key system is RSA whose 
strength is based on hardness of integer factoriza-
tion. However, this problem is not belongs to NP-
hard problems [2], besides, the quantum polyno-
mial-time Shor’s algorithm is known for this task, 
so in middle-term perspective the strength of RSA 
becomes under question both in terms of classical 
computation architectures and by using powerful 
enough quantum computers. It worth to mention 
that there are intensive arithmetic with big inte-
gers (order of thousands of bits) being used in RSA 
system, so practical implementations of this system 
are rather slow.

As the result in 2016 NIST initiated the competi-
tion on adoption the new post-quantum cryptogra-
phy standard [3]. One of the main directions within 
post-quantum cryptography is code-based cryptog-
raphy, utilizing the problems from error-correcting 
codes theory.

The first code-based cryptosystem was pro-
posed by R. McEliece in 1978. Being extremely 
computationally efficient, McEliece system, never-
theless, did not found wide practical usage, which 
is traditionally explained by relatively large key 
sizes, primarily for public key. Possible directions 
of McEliece system improvement are usage of er-
ror-correcting codes classes allowing decreasing 
the public key size, as well as selection of more 
complicated mathematical problems for system’s 
strengthening.

In this paper, the public-key system based on 
specific class of error-correcting low-density pari-
ty-check codes for bursts error correction is consid-
ered. The system uses the hard problem of complete 
decoding, which is NP-hard and potentially harder 
than the bounded-distance decoding problem used 
in McEliece cryptosystem.

Code-based hard problems

For investigating and understanding the details 
of different code-based cryptosystems the basics of 
underlying hard problems should be considered. 

Public-key cryptography is based on the concept 
of one-way trap-door functions. Briefly the construc-
tion of such functions may be described as follows:

— (P, S) — key pair, where P — public key, S — 
private (secret) key;
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— EP(m)c — polynomial-time function, map-
ping the message m into ciphertext c using P;

— DS(c)m — polynomial-time function, which 
is inverse to E, and uses S.

From the point of view of cryptographic strength 
the following should be provided:

— with knowledge of P, calculation of S should 
be computationally hard;

— with knowledge of c, and without knowledge 
of S, calculation of E–1(m)c should be computa-
tionally hard.

By computational hardness it is supposed the 
exponential-time complexity of the correspondent 
problem, however, the specificity of one-way trap-
door functions is that their inversion should be 
hard in general, but feasible (polynomial-time) with 
knowledge of secret S. 

In the complexity theory there are approaches 
for problems classification by so-called “feasible” 
and “hard”, one of the most widely used approach 
considers the following classes:

— class P (polynomial) — problems which may 
be solved by polynomial time on deterministic 
Turing machine;

— class NP (non-deterministic polynomial) — 
problems which may be solved by polynomial time on 
non-deterministic Turing machine (note P NP);

— class NPC (NP-complete) — problems which 
are in NP, and any other problem from NP can be 
reduced to them by polynomial time;

— class NP-hard — problems which may be not 
from NP, but any other NP-complete problem can be 
reduced to them by polynomial time.

More formal and accurate mathematical defi-
nitions are out of the scope of this paper, in cryp-
tography the NP-hard problems are usually consid-
ered, but we will not make distinction between NP-
complete and NP-hard problems.

Within this classification the problems from P 
are considered as feasible, while NPC or NP-hard 
contain hard problems (for which only exponen-
tial-time solutions are known in general case), how-
ever, polynomial-time specific cases are possible. 
We should also mention the existence of problems 
(denote them as “< NPC”, which means “hard prob-
lems but simpler than NPC”), for which the polyno-
mial-time solution in general case is unknown, but 
these problems are simpler than NPC in the sense 
that if their polynomial solution would be found 
this will not help to solve the problems from NPC. 
For example, such problems are integer factoriza-
tion or discrete logarithm problem that are used in 
most practically spread number-theoretic crypto-
systems.

Consequently, the following classes may be used 
to construct the one-way trap-door functions: 

— < NPC — widely used in cryptography for to-
day, but it is believed that there are the possibility 

of finding the polynomial-time solutions for these 
problems, besides, number-theoretic problems from 
this class have quantum polynomial complexity 
(may be solved by polynomial time using quantum 
computer);

— NPC — it is believed that polynomial solution 
for this class do not exist at all (though this is not 
proved mathematically), there are no polynomial 
time quantum algorithms known for this class.

From the classification given above it follows 
that NP-complete (or NP-hard) problems are prefer-
able for usage in cryptography, but the distinction 
should be made between the cryptosystem (i.e. trap-
door function) and underlying hard mathemati-
cal problem — it may be turned out that trap-door 
function does not belong to the same class as corre-
spondent hard problem, for example the Merkle — 
Hellman system was broken by A. Shamir by poly-
nomial time [1], though correspondent subset-sum 
problem is NP-hard.

Next we describe several hard problems from the 
coding theory, for this goal some definitions and 
terms should be given.

Linear (n, k)-code is k-dimension subspace of n-di-
mension linear vector space over the field F (in this 
paper only binary codes over GF(2) are considered) 
[4, 5]. We assume k < n, then k is the number of infor-
mation symbols, n is codelength, the value rn – k 
defines the number of redundant symbols, Rk/n 
is code rate. Since linear code is linear vector space, 
it may be defined by its basis G, which is (k  n)-ma-
trix called the generator matrix of the code. 
Basis of the orthogonal space is (r  n)-matrix H, 
which is called the parity-check matrix of the code, 
and GHT 0. If m is k-bit information vector, then 
a mG is codeword of length n, the vector S bHT 
is called the syndrome for arbitrary vector b of 
length n, and S 0 iff b is codeword. 

Let C is the set of codewords, aC — any code-
word of length n, b is arbitrary vector of length n. 
The difference between b and a may be described by 
the so-called error vector eb – a (we assume bina-
ry arithmetic which uses XOR), or ba + e.

The problem of minimal distance decoding is an 
optimizatio n problem 

 
ˆ argmin ( , ),

C
d




a
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where d(a, b) is Hamming distance between a and b.
The problem of bounded-distance decoding, or 

decoding in sphere with radius t is an optimization 
problem (1) with additional constraints:
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Note that the solution of (2) is not always ex-
ists, and d(a,b)W(b – a)W(e), where W(e) is 
Hamming weight of e.
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The minimal distance d0 of the code is the min-
imal pairwise Hamming distance between code-
words. Then the code can correct any combination 
of t errors or less, where d02t + 1, this means 
that if no more than t symbols are incorrect in code-
word a, i.e. ba + e, W(e)  t, then the problem 
(2) of bounded-distance decoding in sphere with ra-
dius t always has exactly one solution, which is 
ˆ .a a

Linear (n, k)-code split the overall n-dimensional 
vector space into 2r disjoint sets, one of them is the 
set of codewords and others are cosets. All vectors 
from the coset has the same syndrome (which is zero 
vector for the set of codewords). From any coset one 
representative may be chosen which is called the co-
set leader (zero codeword for the set of codewords). 
Since there are 2r leaders and also 2r different syn-
dromes, the one-to-one mapping may be set between 
them, allowing to define the syndrome decoding 
procedure as calculation the syndrome SbHT 
for the vector b, then the leader of the coset with 
correspondent S is considered as error vector e, 
and the decoded codeword is ˆ . a b e  If the coset 
leader is chosen as the vector with minimal weight 
from the coset, then syndrome decoding coincides 
with minimal distance decoding [4–6].

Note that in fact the list of coset leaders coin-
cides with the set of errors correctable by the code. 
We will call the decoding, allowing correction of 
any coset leader, as complete decoding. Clearly, 
bounded-distance decoding is incomplete: only the 
subset of leaders with weight of no more than t may 
be corrected.

For the random linear code it is proved that the 
following problems are NP-hard:

— minimal distance decoding;
— complete decoding;
— calculation of the code’s minimal distance;
— calculation of the non-zero codeword of min-

imal weight.
Note that the bounded-distance decoding prob-

lem is not in the list, though there are different 
points of view concerning NP-hardness of this 
problem, however, to the author’s knowledge, for-
mal proof of any correspondent hypothesis is un-
known. It should be mentioned that the listed prob-
lems are hard for random linear codes, while for 
some specific code constructions simple solutions 
are known, this allows usage of coding problems in 
construction of public-key cryptosystems. 

Classical code-based public-key 
cryptosystems

The idea of the McEliece system [1, 7, 8] is to se-
lect the error-correcting code, for which effective 
(polynomial-time) decoding algorithm is known, 

and to hide the structure of this code in linear code 
of random structure. This idea is realized as fol-
lows.

1. Key generation.
Each entity U performs the following.
— Select generator (k  n)-matrix G of line-

ar code, which can correct t errors (has minimal 
distance d0  2t + 1), and for which the polynomi-
al-time bounded-distance decoding procedure  is 
known (in the sphere of radius t).

— Compute GMGP, where M — non-singular 
(k  k)-matrix, P — (n  n)-permutation matrix.

— Public key is PU(G, t), private key is 
SU(M, G, P).

2. Encryption.
Entity A encrypts k-bit message m, using au-

thentic public key PB of entity B.
— A computes cmG+ e, where e is random bi-

nary vector of length n and weight t.
3. Decryption. 
Entity B decrypts c, using his private key SB.
— Compute xcP–1.
— Compute (x)m.
McEliece proposed to use Goppa codes as private 

code. This codes are cyclic and can be decoded in 
polynomial time by decoders constructed using al-
gebra for polynomials [4, 5]. Public key here is the 
code equivalent to private code (i.e. obtained by the 
coordinates permutation). It is supposed that the 
code equivalent to Goppa code can not be distin-
guished from the random code, though it is known 
that this is not true in some cases [7]. Additional re-
quirement to private code is that code construction 
should allow exponentially large key space for given 
parameters of the code.

Analysis of McEliece cryptosystem may be per-
formed in two directions. First, this is the recover-
ing of the private code’s structure from the public 
code. In fact this is the analysis of masking trans-
formation, which is permutation in case of McEliece 
cryptosystem. In worst case this requires consider-
ing all permutations of length n, which is clearly 
infeasible.

Second, and this is counted as the main attack on 
McEliece system, is an attempt to correct t errors 
in ciphertext c and find the codeword in code G, 
i.e. solving the decoding problem in the sphere of 
radius t for the code which considered as random. 
Best known approach to solve this task for today is 
information set decoding [8–11]. Note that equiva-
lent code has the same minimal distance as initial 
code, so bounded-distance decoding will find the 
correct codeword with probability 1, so the attack is 
limited only by computational complexity. 

In the first variant of the system McEliece pro-
posed to use (1024, 524)-code correcting 50 errors. 
Comparatively up-to-date review of decoding meth-
ods given in [8] mentioned that this parameters are 
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correspondent to cryptocomplexity equal to 253, 
to achieve level of 294 the matrix size should be 
1036  2048 (correcting 92 errors), and matrix size 
2056  4096 (correcting 170 errors) provide system 
strength of 2171. In general the key sizes of this sys-
tem have the order of hundreds of thousands bits. 
In many situations this is not excessive require-
ment, but traditional point of view is that this is the 
main drawback of the McEliece system.

The following directions of McEliece system im-
provement may be formulated:

1) reducing the key sizes by usage of special 
classes of Goppa codes, or alternative error-correc-
tion codes;

2) increasing of system’s strength, first of all 
by strengthening the masking transformation be-
tween public and private keys.

In 1986 H. Niederreiter proposed the code-based 
system, for which later its equivalence to McEliece 
system was proven [8], but having some practical 
advantages. In this paper we do not consider this 
approach.

In the last decade the significant direction of 
McEliece system evolution is usage of block-circu-
lant matrices for public and private codes, such ma-
trices define the so called quasi-cyclic (QC) codes and 
allow significant reduction of key sizes during stor-
age and transportation by means of circulant struc-
ture. To provide the polynomial-time decoding pro-
cedure, the private key is selected as sparse matrix, 
in this keys the decoding algorithms for low-density 
parity-check (LDPC) codes may be used [8, 12, 13]. In 
some cases of such systems the masking transforma-
tion is no longer the permutation matrix and selected 
in a special way (however, this transformation matri-
ces should also be sparse to avoid large increasing of 
the number of errors corrected during decryption), 
however, in all such systems the underlying problem 
is bounded-distance decoding.

Public-key cryprosystems based on complete 
decoding problem

As it was mentioned in the previous section, 
there are modifications of McEliece system con-
sidering other classes of codes, and in some cases 
the special transformation matrices are considered 
instead of permutation matrix to hide the secret 
key in the public key. However, the fundamentally 
qualitative modification would be consideration to-
tally random matrix for masking operation instead 
of permutation matrix or its analogues. In this 
case not only the public key is no longer defines the 
equivalent codes, but the number of qualitative new 
properties of the system are appeared. 

Initially this approach was proposed by E. Krouk 
in 1993 [14] and later considered in the number of 

publications [15]. Let us describe the general struc-
ture of the system. 

1. Key generation.
Each entity U performs the following.
— Select generator (k  n)-matrix G of linear 

codes, for which the polynomial-time decoding pro-
cedure  is known, which corrects errors from the 
set E.

— Compute GGM, где M — (n  n) non-singu-
lar matrix.

— Define the set E{e: eeM, eE}.
— Public key is PU(G, E), private key is 

SU(G, M).
2. Encryption.
Entity A encrypts k-bit message m, using au-

thentic public key PB of entity B.
— A computes cmG+ e, where eE.
3. Decryption. 
Entity B decrypts c, using his private key SB.
— Compute xcM–1.
— Compute (x)m.
The problem with implementation of described 

system is that there are two generalized sets of er-
rors: the set E of errors, which should be corrected 
during decryption and the set E of errors used dur-
ing encryption (in McEliece system both sets con-
sist of error vectors of weight t). Both sets should 
be exponentially large to avoid brute force, and at 
the same time they should have compact representa-
tion. 

In described variant the vectors from these sets 
are connected with help of multiplication by M, but 
this matrix is the part of private key, while vectors 
from E should be generated by the party possess-
ing only the public key. 

From the other hand, suppose that this problem 
is somehow solved. Then, if we consider for exam-
ple that E is the set of vectors of weight t, as in 
McEliece system, vector eeM, where M is ran-
dom, has random weight, which is more probable 
close to n/2. Besides, the matrix GGM defines 
the code with minimal distance which is more 
probable less than in private code G. Thus, if the 
system is analyzed through decoding (to recon-
struct m from c), one should correct approximately 
n/2 errors in the code with probably small minimal 
distance, instead of solving the problem (2). This 
may lead to the situation when error vector is not 
within coset leaders at all, thus even solving the 
minimum distance decoding problem (1), which is 
complete decoding problem, will not give the cor-
rect codeword. In this case the problem of break-
ing the system is at least not simpler than complete 
decoding (though one should take in mind the pos-
sibility of breaking the system through analysis of 
the structure of public codes and matrix M), thus 
we will call such system as based on the problem of 
complete decoding.
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Next we describe more practical variant of the 
system based on the problem of complete decoding, 
giving an example of defining E and E [15].

1. Key generation.
Each entity U performs the following.
— Select (k  n)-generator matrix G of linear (n, 

k)-code, for which polynomial-time algorithm for 
correcting errors from some set E is known.

— Select random non-singular (n  n)-matrix M2.
— Define the set E  and matrix M1 such that for 

any Ee   the vector 1eM  belongs to E (note that M1 
may be singular).

— Compute MM1M2 (note that M singular if 
M1 is singular).

— Compute (k  n)-matrix GGM2.
— Public key is U   ( , , ),P E G M   private key is 

SU(G, M1, M2).
2. Encryption.
Entity A encrypts k-bit message m, using au-

thentic public key PB of entity B.
— A computes cmG+ e, where  e eM  for 

random Ee  .
3. Decryption. 
Entity B decrypts c, using his private key SB.
— Compute 1

2 .x cM
— Compute (x) m.
In this variant of the system the set E is defined 

by vectors ,eM  which in turn requires effective de-
scription of .E  Besides, the matrix M1 should be de-
termined, mapping vectors from E  into E.

In particular, the set E itself may be selected as 
,E  for example, consisting of all vectors of fixed 

weight, as in classical McEliece system. In this paper 
we consider the variant of the system which based on 
error-correcting codes which correct error bursts.

The effect of grouping errors in bursts (or packets) 
is typical for the most real communication channels, 
however, the codes that can correct such erroneous 
combinations are less investigated, and in practice 
the data transmitted via the channel is decorrelated 
using the interleaving procedure, and then the codes 
for independent errors correction are applied. In the 
case of cryptosystem development the errors in bursts 
may be formed artificially, in this case the positions 
and lengths of the bursts may be controlled.

The term of error burst itself may be defined in 
different ways. In this paper we define the burst of 
length b as binary error vector e(e0, …, en–1), in 
which the last non-zero element is placed no more 
than in b positions from the first. That is, if i is the 
minimal index for which ei1, and j is maximal such 
index, then e forms the (single) error burst of length 
bj – i + 1 at position i (thus two adjacent non-ze-
ro element form the packet of length 2). We will as-
sume that positions of e from index i to j are filled 
by 1 and 0 with probability 1/2. Note that under the 
term “burst” one may consider not only the overall 
sequence e, but its erroneous subsequence (ei, …, ej) 

without leading and ending zeros, the concrete sense 
of this term will be clear from the context.

Similar to the fact that the minimal distance d0 
defines the maximal number t of independent er-
rors, which can be corrected in any combination by 
minimal distance decoding, for each linear code the 
maximal correctable burst length b may be deter-
mined — this means that all possible error bursts 
of length no more than b are in different cosets and 
may be chosen as leaders. However, as it was men-
tioned earlier, finding the minimal distance of the 
random code is NP-hard, while maximal correcta-
ble burst length may be found in polynomial-time, 
using procedure from [16] (though the degree of the 
polynomial is rather large).

Let the set E consists of vectors which form er-
ror bursts of length no more than b. As the set E  we 
will also consider the set of bursts, but their length 
may differ from b and is defined by M1.

Consider M1 as (n  n)-matrix in Figure. Here 
positions filled by random binary digits are marked 
in grey, other positions are zero. Clearly, such ma-
trix through multiplication by it defines the map-
ping from bursts of length x into bursts of length b.

Then the above system may be additionally de-
termined as follows:

— the set E: set of error bursts of length no more 
than b;

— matrix G defines the code, for which the pol-
ynomial-time procedure of correcting the error 
bursts of length b is known;

— the set :E  set of error bursts of length no 
more than x. Clearly, public key is PU(G, M, x).

In the next sections we will consider the selec-
tion of the code for the proposed system and estima-
tion of its parameters. 

Selection of the code for the system 

Estimation of the quantitative parameters of the 
system considered in the previous section: burst 

x

b = l + x – 1 

l

n×n

  Matrix M1
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lengths x and b, cardinalities of sets E and ,E  and 
finally selection of k and n, defining the key sizes, 
depends on the selection of class of burst-error-cor-
rection code. This class should contain exponential 
number of codes for given b, k, n, and admit poly-
nomial-time procedure of correcting the bursts of 
length b. One of the variant of such a class is the 
class of low-density parity-check codes.

Low-density parity-check codes (LDPC codes) 
were proposed by R. Gallager in early 60-s [8, 12]. 
LDPC-code is defined by its parity-check matrix H, 
containing low number of nonzero elements. The 
term “low number” is not formally defined, more-
over, in the number of works on modified McEliece 
systems based on such codes the term “middle den-
sity” (MDPC) is used [7, 17, 18], but in both cases we 
may admit that we consider the codes with relatively 
sparse parity-check matrix, for which the decoders 
utilizing its sparseness show rather high correcting 
capability (low error probability). In general, LDPC 
codes are usually defined and analyzed as probabil-
istic ensembles of random codes with specific pa-
rameters, which is additional advantage for their 
usage as secret keys in code-based systems.

One of the most often used construction of LDPC 
codes is block-permutation construction, where the 
parity-check matrix has the form 

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

,





   

 
       
 

  

H H H
H H H

H

H H H

where Hi,j are sub-blocks of some structure. Usually 
some degree of (m  m)-matrix of cyclic permutation 
is used as sub-blocks:

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0

,

 
  
 
 
      
  

C

then the parity-check matrix of LDPC codes has the 
form

 

111 12

221 22

1 2

.

ii i

ii i

i i i





  

  
   
    

 
  

C C C

C C CH

C C C

  (3)

It is known that some specific combinations of 
non-zero elements in the parity-check matrix may 
degrade the LDPC code decoder’s performance, the 

simplest restriction to avoid some “bad” combina-
tions is absence of two rows or two columns in the 
parity-check matrix having more than one common 
non-zero positions. If this is holds and we consider 
the matrix as incidence matrix of bipartite graph 
(the so called Tanner graph) there are no cycles of 
length 4 in the graph (for simplicity we will say that 
there are no cycles of length 4 in the matrix).

Traditionally LDPC codes are used to correct 
independent errors, however, in [16, 19, 20] the ca-
pability of these codes (in particular, block-permu-
tation constructions) to correct bursts of errors was 
analyzed. In [16] both the procedure of determining 
the maximal length of correctable burst and decod-
ing procedure for block-permutation LDPC code are 
described.

For the system described in the previous section 
we will use the ensemble of codes defined by (3). The 
ensemble is defined by the values of ,  and m. As 
the additional requirement we demand the absence 
of 4-cycles in matrix (3).

As follows, for the fixed values of ,  and m, 
which are selected mainly from the cryptocomplex-
ity point of view, the probability of random selec-
tion of matrix with no cycles of length 4 should be 
estimated, as well as expected correctable burst 
lengths.

The software for determining the correctable 
burst length was implemented in Microsoft Visual 
Studio Enterprise 2017 using С++, Release x64. 
Experiments were hold using the computer with 
Windows 10 Pro, 16 Gb RAM, CPU Intel Core i7-
4770K@3,50 GHz.

The matrices are considered with 34, 46, 
48 blocks, with block sizes m20, 31, 50, 61, 110, 
127. The distribution of correctable burst lengths, 
as well as the average time of determining the burst 
length are given in Table 1. For each set of param-
eters 100 random matrices were generated without 
cycles of length 4. One may note that for the block 
sizes which are prime numbers the lengths of cor-
rectable burst in all experiments are bm – 1 [this 
is the maximal possible length of correctable burst 
for the block-permutation codes with parity-check 
matrix (3) with block size m]. In other cases it was 
found that for considered values of  and  the burst 
lengths correctable by random codes is not signifi-
cantly less than block size m, i.e. b m.

The estimation of probability P of selecting the 
matrix containing cycles of length 4 in the Tanner 
graph was also performed, the results are given in 
Table 2. As can be seen from the table, when the 
block sizes are small, the probability of selecting 
the matrix with cycles of length 4 is rather high. 
But this probability decreases with block sizes 
growth, besides, determination of cycle existence 
in all considered cases takes less than microsecond, 
thus even if the probability of matrix without cycles 
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of length 4 is rather small, this matrix may be gen-
erated expectably fast by the sequence of random 
guesses (total number of such matrices is exponen-
tially high). For example, for 4, 8, m20 the 
probability of absence of 4-cycles is less than 0.001, 
but total number of matrices is 2032 2138, and ap-
propriate random matrix is easy to find. 

Summarizing, the results show that for small 
values of  and  it takes not a lot of time to find 
the random matrix (3) without 4-cycles and with 
bm – 1.

Estimation of system’s parameters

In this section we estimate the parameters of the 
cryptosystem, basing on required security level. We 
will consider the following attacks, which complexi-
ty should be exponential of order not less than 2128:

— search on private matrices;
— search within the set E;
— search within the set .E
Let us consider the search on private matrices. 

There are m matrices (3) of  blocks, where 
each block is defined by integer from the set {0, …, 
m – 1}. For example we will take matrices with 36 
and 48 blocks. From m182128 and m322128 we 
have the correspondent block sizes m 27128 and 
m2416. To increase the probability of selecting 
the code with maximal correctable burst length 
we set m as prime number, i.e. m127 and m17. 
Particular selection of block size should be addition-
ally agreed with the length b of correctable burst, 
which should be provided, so given estimations may 
be considered as lowest possible values for m.

Let us now consider brute-force search with-
in the set E. It consists of vectors , e eM  where 
MM1M2. Despite the special construction of ma-

  Table 1. Examples of estimations of correctable burst lengths distributions and average processing time for different 
number of blocks in the parity-check matrix 

 Parameter
Block size m

20 31 50 61 110 127

3  4

Length b 19 — 10%

18 — 64%

16 — 19%

15 — 7%

30 — 100% 49 — 9%

48 — 75%

45 — 12%

40 — 4%

60 — 100% 109 — 8%

108 — 70%

105 — 14%

100 — 6%

99 — 2%

127 — 100%

Time, s 0.01 0.04 0.38 0.63 11.64 12.43

4  6

Length b 19 — 21%

18 — 71%

16 — 4%

15 — 4%

30 — 100% 49 — 13%

48 — 80%

45 — 7%

60 — 100% 109 — 11%

108 — 81%

105 — 7%

100 — 1%

126 — 100%

Time, s 0.04 0.18 2.68 2.86 50.92 80

4  8

Length b 19 — 2%

18 — 83%

16 — 12%

15 — 3%

30 — 100% 49 — 1%

48 — 88%

45 — 11%

60 — 100% 109 — 1%

108 — 84%

105 — 12%

100 — 3%

126 — 100%

Time, s 0.10 0.44 6.26 6.75 80 171

  Table 2. Probability of existence of cycle of length 4 

 Parameter
Block size m

20 31 50 61 110 127

3  4
Probability P 0.62 0.46 0.31 0.26 0.15 0.13

Time, μs 0.25 0.28 0.23 0.26 0.26 0.28

4  6
Probability P 0.99 0.96 0.85 0.78 0.57 0.51

Time, μs 0.55 0.58 0.61 0.52 0.57 0.59

4  8
Probability P 0.999 0.997 0.97 0.95 0.8 0.75

Time, μs 0.58 0.85 0.93 0.71 0.83 0.8
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trix M1 (see Figure), M2 is random matrix, thus even 
though e  is error burst of length x, e is random 
vector with expected weight n/2, which makes im-
possible both enumerating these vectors and break-
ing the system by decoding — any code including G 
is not able to correct error vectors of such weight.

Finally, consider the set .E  It consists of vectors 
which are bursts of length x. If starting position of 
the burst is fixed, there are about 2x such vectors (in 
fact we should fill the positions within burst by ran-
dom bits with probability 1/2 and obtain the bursts of 
weight near, so the number of such vectors is slightly 
less than 2x). The number of burst locations (start-
ing positions) within the error vector e  is n – x + 1. 
This number is not very large, but we take it into 
account. Thus the complexity of brute force search 
of e  is given by (n – x + 1)2x2128 (this equation is 
approximate, we do not take into account the weight 
of bursts, starting and ending 1’s and so on).

Consider example with 3, 6. Select 
m127, then the correctable burst length is 
b126l + x – 1, where l is the width of diago-
nal in matrix M1 in Figure. For such parameters 
we have nm762, and (763 – x)2x2128 and 
x 119, hence l8.

For such parameters M1 is matrix 762762, 
containing diagonal of width l8. Analysis of how 
the structure of M1 affects the system’s strength 
is important question, but it does not considered 
in this paper since it requires more thorough and 
sophisticated analysis. Nevertheless, it seems that 
usage of rather large matrix with relatively thin di-
agonal of random elements while other elements are 
zero may be not secure. Thus consider the possibili-
ty of increasing the width of diagonal in M1.

Let us take, for example, l30. Then, having 
x119, the length of the burst correctable by the 
secret code should be b149 and hence the block 
size m 150. We obtain the following parameters: 
3, 6, l30, b149, m150, n900, x119, 
then the number of bursts of length x is estimated 
as 2128.6, which corresponds to the required securi-
ty level. To define the matrix H (3) it is enough to 

store only degrees of correspondent matrices C, for 
our parameters we get 23 15 406 14log      bits. 
The size of G (public key, which is more important 
from the point of view of key size), is 450900 bits 
(which is less than initial parameters of McEliece 
system with key size 450900 and cryptocomplex-
ity 253). Note that we should also count the size of 
matrix M since it’s the part of public key.

Similarly consider the case 4, 8, with 
m17, which was defined earlier, and b16, 
n136. Then x 125, and taking into account 
bl + x – 1 it is impossible to have b16. Hence, 
the block size m should be significantly increased, 
as well as the burst length b. 

Set x125 and l30, then we have b155 and 
m 156, this gives parameters: 4, 8, l30, 
b155, m156, n1248, x125, then the num-
ber of bursts of length x is 2135. The size of private 
key is 256, public matrix G — 6241248 bit.

As can be seen from the estimations, the crypto-
complexity of proposed system depends on the num-
ber of bursts of length x, which defines the com-
plexity of brute force search within the set ,E  and 
also on possibility of attacking the structure of M1, 
which depends on the value of l. These parameters 
define the values of b and m, such that enumerating 
the matrices H should be infeasible.

In Table 3 the key sizes, number of errors that 
should be decoded by adversary to break the sys-
tem, cryptocomplexity of McEliece system, system 
based on quasi-cyclic LDPC codes (QC-LDPC) de-
scribed in [8], and proposed system are collected. 

Note that the public key size is defined by the size 
of (kn)-matrix G, however in proposed system the 
(nn)-matrix M is also the part of the public key, 
at the same time in QC-LDPC system significantly 
larger codes are used, but using the block-circulant 
structure of the matrix (including public matrix) the 
required storage for the keys may be significantly 
reduced. From the other hand, one should make the 
distinction between storage needs and memory which 
is used during encryption and especially decryption 
processes, when the decoding procedure should be 

  Table 3. Comparison of code-based cryptosystems

System k n t Complexity Attack
Public key size, 

Kbyte

Private key 

size, Kbyte

McEliece

524 1024 50 253

Bounded-distance decoding 

(t errors)

67 67

1036 2048 92 294 265 265

2056 4096 170 2171 1052 1052

QC-LDPC 9857 19 714 134 2128 1.2 1.2

Bursts 

(proposed)

450 900 450 2128

Complete decoding (n/2 errors) 

or brute force search on E

152 0.144

624 1248 624 2135 291 0.25
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used. With increasing of matric sizes the required 
memory is also increases, but estimations depend on 
particular implementations and their optimizations. 

At the same time, further development of the 
proposed system in the direction of using quasi-cy-
clic codes is of interest.

Conclusion

In the paper the code-based cryptosystem is pro-
posed which uses burst-correction codes. The un-
derlying hard mathematical problem is complete de-
coding problem. It is supposed that systems based 

on this problem can achieve better cryptocomplexi-
ty than code-based McEliece cryptosystem based on 
bounded-distance decoding.

The future investigations and development can 
be made in using quasi-cyclic codes and considering 
the version of the system in Niederreiter mode. 
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Вариант постквантовой системы на основе кодов, исправляющих пакеты ошибок, и задачи полного 
декодирования
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Введение: важным направлением в исследовании постквантовых систем, устойчивых к квантовым вычислениям, является 
кодовая криптография на основе задач теории помехоустойчивого кодирования. Улучшение существующих кодовых систем мо-
жет вестись как в практической части (уменьшение размеров ключей), так и с точки зрения использования более трудных мате-
матических кодовых задач. Цель: построение кодовой системы с открытым ключом на основе низкоплотностных кодов, исправ-
ляющих пакеты ошибок; оценка параметров полученной системы. Результаты: предложен вариант кодовой системы на основе 
случайных блочно-перестановочных низкоплотностных кодов. Стойкость системы предполагается основанной на задаче полного 
декодирования, что является более сложной математической задачей по сравнению с существующими системами. При этом с вы-
сокой вероятностью анализ системы на основе методов декодирования вообще не представляется возможным, что как повышает 
перспективную стойкость системы, так и позволяет уменьшить размеры ключей. Проведена оценка выбора кодов с требуемыми 
характеристиками, рассматриваются подходы к выбору параметров предложенной системы на основе требуемого уровня стойко-
сти. Практическая значимость: предложенная система позволяет уменьшить размеры открытых ключей по сравнению с клас-
сической системой МакЭлиса при сравнимой стойкости, при этом используемая трудная математическая задача представляется 
более устойчивой к перспективным атакам.

Ключевые слова — постквантовая криптография, кодовые системы, коды с малой плотностью проверок на четность, исправ-
ление пакетов ошибок.
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