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Introduction: Today the investigations of post-quantum cryptosystems secure against quantum computations is the area of great
interest. An important direction here is code-based cryptography utilizing the mathematical problems from error-correcting coding theory.
The improvement of existing code-based systems may be achieved both in practical part (reducing the key sizes) and theoretically by
using more complicated mathematical code-based tasks. Purpose: The development of public-key code-based cryptosystem using low-
density parity-check codes with burst correction; the estimation of the parameters of the obtained system. Results: The variant of code-
based cryptosystem using random block permutation low-density parity-check codes is proposed. The cryptocomplexity of the system
is supposed to be based on the complete decoding problem, which is believed to be a harder mathematical problem than those used in
existing systems. With high probability, the analysis of the system by using decoding methods is not possible at all, which both increases the
long-term cryptocomplexity of the system and allows to reduce the key size. The evaluation of the underlying code selection is performed,
the approaches to the selection of the parameters of the proposed system on the basis of the required level of cryptocomplexity are
considered. Practical relevance: The proposed system allows to reduce the public-key size as compared to the classical McEliece system,
cryptocomplexity also comparable, with the underlying mathematical problem to be more stable against perspective attacks.
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Introduction

The concept of public-key cryptography is usu-
ally connected with groundbreaking paper by
W. Diffie, M. Hellman “New directions in cryptog-
raphy” published in 1976 [1]. According to this con-
cept each part has the pair of long-term keys: pub-
lic key and correspondent private (secret) key. In
case of secrecy providing the recipient’s public key
is used during encryption, while the correspond-
ent private key is used for decryption. Today the
most widely spread public-key system is RSA whose
strength is based on hardness of integer factoriza-
tion. However, this problem is not belongs to NP-
hard problems [2], besides, the quantum polyno-
mial-time Shor’s algorithm is known for this task,
so in middle-term perspective the strength of RSA
becomes under question both in terms of classical
computation architectures and by using powerful
enough quantum computers. It worth to mention
that there are intensive arithmetic with big inte-
gers (order of thousands of bits) being used in RSA
system, so practical implementations of this system
are rather slow.

As theresultin 2016 NIST initiated the competi-
tion on adoption the new post-quantum cryptogra-
phy standard [3]. One of the main directions within
post-quantum cryptography is code-based cryptog-
raphy, utilizing the problems from error-correcting
codes theory.

The first code-based cryptosystem was pro-
posed by R. McEliece in 1978. Being extremely
computationally efficient, McEliece system, never-
theless, did not found wide practical usage, which
is traditionally explained by relatively large key
sizes, primarily for public key. Possible directions
of McEliece system improvement are usage of er-
ror-correcting codes classes allowing decreasing
the public key size, as well as selection of more
complicated mathematical problems for system’s
strengthening.

In this paper, the public-key system based on
specific class of error-correcting low-density pari-
ty-check codes for bursts error correction is consid-
ered. The system uses the hard problem of complete
decoding, which is NP-hard and potentially harder
than the bounded-distance decoding problem used
in McEliece cryptosystem.

Code-based hard problems

For investigating and understanding the details
of different code-based cryptosystems the basics of
underlying hard problems should be considered.

Public-key cryptography is based on the concept
of one-way trap-door functions. Briefly the construc-
tion of such functions may be described as follows:

— (P, S) — key pair, where P — public key, S —
private (secret) key;
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— Ep(m)=c — polynomial-time function, map-
ping the message m into ciphertext ¢ using P;

— Dg(c) = m — polynomial-time function, which
isinverse to E, and uses S.

From the point of view of cryptographic strength
the following should be provided:

— with knowledge of P, calculation of S should
be computationally hard;

— with knowledge of ¢, and without knowledge
of S, calculation of E-1(m)=c should be computa-
tionally hard.

By computational hardness it is supposed the
exponential-time complexity of the correspondent
problem, however, the specificity of one-way trap-
door functions is that their inversion should be
hard in general, but feasible (polynomial-time) with
knowledge of secret S.

In the complexity theory there are approaches
for problems classification by so-called “feasible”
and “hard”, one of the most widely used approach
considers the following classes:

— class P (polynomial) — problems which may
be solved by polynomial time on deterministic
Turing machine;

— class NP (non-deterministic polynomial) —
problems which may be solved by polynomial time on
non-deterministic Turing machine (note P < NP);

— class NPC (NP-complete) — problems which
are in NP, and any other problem from NP can be
reduced to them by polynomial time;

— class NP-hard — problems which may be not
from NP, but any other NP-complete problem can be
reduced to them by polynomial time.

More formal and accurate mathematical defi-
nitions are out of the scope of this paper, in cryp-
tography the NP-hard problems are usually consid-
ered, but we will not make distinction between NP-
complete and NP-hard problems.

Within this classification the problems from P
are considered as feasible, while NPC or NP-hard
contain hard problems (for which only exponen-
tial-time solutions are known in general case), how-
ever, polynomial-time specific cases are possible.
We should also mention the existence of problems
(denote them as “< NPC”, which means “hard prob-
lems but simpler than NPC”), for which the polyno-
mial-time solution in general case is unknown, but
these problems are simpler than NPC in the sense
that if their polynomial solution would be found
this will not help to solve the problems from NPC.
For example, such problems are integer factoriza-
tion or discrete logarithm problem that are used in
most practically spread number-theoretic crypto-
systems.

Consequently, the following classes may be used
to construct the one-way trap-door functions:

— < NPC — widely used in cryptography for to-
day, but it is believed that there are the possibility

of finding the polynomial-time solutions for these
problems, besides, number-theoretic problems from
this class have quantum polynomial complexity
(may be solved by polynomial time using quantum
computer);

— NPC — it is believed that polynomial solution
for this class do not exist at all (though this is not
proved mathematically), there are no polynomial
time quantum algorithms known for this class.

From the classification given above it follows
that NP-complete (or NP-hard) problems are prefer-
able for usage in cryptography, but the distinction
should be made between the cryptosystem (i.e. trap-
door function) and underlying hard mathemati-
cal problem — it may be turned out that trap-door
function does not belong to the same class as corre-
spondent hard problem, for example the Merkle —
Hellman system was broken by A. Shamir by poly-
nomial time [1], though correspondent subset-sum
problem is NP-hard.

Next we describe several hard problems from the
coding theory, for this goal some definitions and
terms should be given.

Linear (n, k)-codeis k-dimension subspace of n-di-
mension linear vector space over the field F (in this
paper only binary codes over GF(2) are considered)
[4,5]. Weassumek < n, then kisthe number of infor-
mation symbols, 7 is codelength, the valuer=n -k
defines the number of redundant symbols, R=Fk/n
is code rate. Since linear code is linear vector space,
it may be defined by its basis G, which is (¢ x n)-ma-
trix called the generator matrix of the code.
Basis of the orthogonal space is (r x n)-matrix H,
which is called the parity-check matrix of the code,
and GHT = 0. If m is k-bit information vector, then
a =mG is codeword of length n, the vector S = bHT
is called the syndrome for arbitrary vector b of
length n, and S = 0 iff b is codeword.

Let C is the set of codewords, a € C — any code-
word of length n, b is arbitrary vector of length n.
The difference between b and a may be described by
the so-called error vector e =b — a (we assume bina-
ry arithmetic which uses XOR), orb=a + e.

The problem of minimal distance decoding is an
optimization problem

a=argmind(a,b), 1)

aeC

where d(a, b) is Hamming distance between a and b.

The problem of bounded-distance decoding, or
decoding in sphere with radius ¢ is an optimization
problem (1) with additional constraints:

a=arg min d(a,b). 2)

aeC,d(a,b)<t

Note that the solution of (2) is not always ex-
ists, and d(a,b)=W(b — a)= W(e), where W(e) is
Hamming weight of e.
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The minimal distance d, of the code is the min-
imal pairwise Hamming distance between code-
words. Then the code can correct any combination
of ¢ errors or less, where dj=2t+ 1, this means
that if no more than ¢ symbols are incorrect in code-
word a’, i.e. b=a’' + e, W(e) < ¢, then the problem
(2) of bounded-distance decoding in sphere with ra-
dius ¢t always has exactly one solution, which is
a=a'.

Linear (n, k)-code split the overall n-dimensional
vector space into 27 disjoint sets, one of them is the
set of codewords and others are cosets. All vectors
from the coset has the same syndrome (which is zero
vector for the set of codewords). From any coset one
representative may be chosen which is called the co-
set leader (zero codeword for the set of codewords).
Since there are 2" leaders and also 27 different syn-
dromes, the one-to-one mapping may be set between
them, allowing to define the syndrome decoding
procedure as calculation the syndrome S =DbHT
for the vector b, then the leader of the coset with
correspondent S is considered as error vector e,
and the decoded codeword is a=b—e. If the coset
leader is chosen as the vector with minimal weight
from the coset, then syndrome decoding coincides
with minimal distance decoding [4—6].

Note that in fact the list of coset leaders coin-
cides with the set of errors correctable by the code.
We will call the decoding, allowing correction of
any coset leader, as complete decoding. Clearly,
bounded-distance decoding is incomplete: only the
subset of leaders with weight of no more than ¢ may
be corrected.

For the random linear code it is proved that the
following problems are NP-hard:

— minimal distance decoding;

— complete decoding;

— calculation of the code’s minimal distance;

— calculation of the non-zero codeword of min-
imal weight.

Note that the bounded-distance decoding prob-
lem is not in the list, though there are different
points of view concerning NP-hardness of this
problem, however, to the author’s knowledge, for-
mal proof of any correspondent hypothesis is un-
known. It should be mentioned that the listed prob-
lems are hard for random linear codes, while for
some specific code constructions simple solutions
are known, this allows usage of coding problems in
construction of public-key cryptosystems.

Classical code-based public-key
cryptosystems

The idea of the McEliece system [1, 7, 8] is to se-
lect the error-correcting code, for which effective
(polynomial-time) decoding algorithm is known,

and to hide the structure of this code in linear code
of random structure. This idea is realized as fol-
lows.

1. Key generation.

Each entity U performs the following.

— Select generator (k x n)-matrix G of line-
ar code, which can correct ¢ errors (has minimal
distance d, > 2t + 1), and for which the polynomi-
al-time bounded-distance decoding procedure v is
known (in the sphere of radius #).

— Compute G’ = MGP, where M — non-singular
(B x k)-matrix, P — (n x n)-permutation matrix.

— Public key is Py=(G, t), private key is
Sy=M, G, P).

2. Encryption.

Entity A encrypts k-bit message m, using au-
thentic public key Py of entity B.

— A computes ¢ = mG’ + e, where e is random bi-
nary vector of length n and weight ¢.

3. Decryption.

Entity B decrypts c, using his private key Sg.

— Compute x = cP 1.

— Compute y(x) = m.

McEliece proposed to use Goppa codes as private
code. This codes are cyclic and can be decoded in
polynomial time by decoders constructed using al-
gebra for polynomials [4, 5]. Public key here is the
code equivalent to private code (i.e. obtained by the
coordinates permutation). It is supposed that the
code equivalent to Goppa code can not be distin-
guished from the random code, though it is known
that this is not true in some cases [7]. Additional re-
quirement to private code is that code construction
should allow exponentially large key space for given
parameters of the code.

Analysis of McEliece cryptosystem may be per-
formed in two directions. First, this is the recover-
ing of the private code’s structure from the public
code. In fact this is the analysis of masking trans-
formation, which is permutation in case of McEliece
cryptosystem. In worst case this requires consider-
ing all permutations of length n, which is clearly
infeasible.

Second, and this is counted as the main attack on
McEliece system, is an attempt to correct ¢ errors
in ciphertext ¢ and find the codeword in code G/,
i.e. solving the decoding problem in the sphere of
radius ¢ for the code which considered as random.
Best known approach to solve this task for today is
information set decoding [8—11]. Note that equiva-
lent code has the same minimal distance as initial
code, so bounded-distance decoding will find the
correct codeword with probability 1, so the attack is
limited only by computational complexity.

In the first variant of the system McEliece pro-
posed to use (1024, 524)-code correcting 50 errors.
Comparatively up-to-date review of decoding meth-
ods given in [8] mentioned that this parameters are
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correspondent to cryptocomplexity equal to 293,
to achieve level of 294 the matrix size should be
1036 x 2048 (correcting 92 errors), and matrix size
2056 x 4096 (correcting 170 errors) provide system
strength of 2171, In general the key sizes of this sys-
tem have the order of hundreds of thousands bits.
In many situations this is not excessive require-
ment, but traditional point of view is that this is the
main drawback of the McEliece system.

The following directions of McEliece system im-
provement may be formulated:

1) reducing the key sizes by usage of special
classes of Goppa codes, or alternative error-correc-
tion codes;

2)increasing of system’s strength, first of all
by strengthening the masking transformation be-
tween public and private keys.

In 1986 H. Niederreiter proposed the code-based
system, for which later its equivalence to McEliece
system was proven [8], but having some practical
advantages. In this paper we do not consider this
approach.

In the last decade the significant direction of
McEliece system evolution is usage of block-circu-
lant matrices for public and private codes, such ma-
trices define the so called quasi-cyclic (QC) codes and
allow significant reduction of key sizes during stor-
age and transportation by means of circulant struc-
ture. To provide the polynomial-time decoding pro-
cedure, the private key is selected as sparse matrix,
in this keys the decoding algorithms for low-density
parity-check (LDPC) codes may be used [8, 12, 13]. In
some cases of such systems the masking transforma-
tion is no longer the permutation matrix and selected
in a special way (however, this transformation matri-
ces should also be sparse to avoid large increasing of
the number of errors corrected during decryption),
however, in all such systems the underlying problem
is bounded-distance decoding.

Public-key cryprosystems based on complete
decoding problem

As it was mentioned in the previous section,
there are modifications of McEliece system con-
sidering other classes of codes, and in some cases
the special transformation matrices are considered
instead of permutation matrix to hide the secret
key in the public key. However, the fundamentally
qualitative modification would be consideration to-
tally random matrix for masking operation instead
of permutation matrix or its analogues. In this
case not only the public key is no longer defines the
equivalent codes, but the number of qualitative new
properties of the system are appeared.

Initially this approach was proposed by E. Krouk
in 1993 [14] and later considered in the number of

publications [15]. Let us describe the general struc-
ture of the system.

1. Key generation.

Each entity U performs the following.

— Select generator (& x n)-matrix G of linear
codes, for which the polynomial-time decoding pro-
cedure y is known, which corrects errors from the
set E.

— Compute G' = GM, rme M — (n x n) non-singu-
lar matrix.

— Define the set E' ={e’: ¢’ =eM, e € E}.

— Public key is Py=(G', E'), private key is
Sy = (G, M).

2. Encryption.

Entity A encrypts k-bit message m, using au-
thentic public key Py of entity B.

— A computes ¢ = mG’ + e/, wheree' € E'.

3. Decryption.

Entity B decrypts ¢, using his private key Sy.

— Compute x = cML,

— Compute y(x) = m.

The problem with implementation of described
system is that there are two generalized sets of er-
rors: the set E of errors, which should be corrected
during decryption and the set E’ of errors used dur-
ing encryption (in McEliece system both sets con-
sist of error vectors of weight ¢). Both sets should
be exponentially large to avoid brute force, and at
the same time they should have compact representa-
tion.

In described variant the vectors from these sets
are connected with help of multiplication by M, but
this matrix is the part of private key, while vectors
from E’ should be generated by the party possess-
ing only the public key.

From the other hand, suppose that this problem
is somehow solved. Then, if we consider for exam-
ple that E is the set of vectors of weight ¢, as in
McEliece system, vector e’ = eM, where M is ran-
dom, has random weight, which is more probable
close to n/2. Besides, the matrix G’ = GM defines
the code with minimal distance which is more
probable less than in private code G. Thus, if the
system is analyzed through decoding (to recon-
struct m from ¢), one should correct approximately
n/2 errors in the code with probably small minimal
distance, instead of solving the problem (2). This
may lead to the situation when error vector is not
within coset leaders at all, thus even solving the
minimum distance decoding problem (1), which is
complete decoding problem, will not give the cor-
rect codeword. In this case the problem of break-
ing the system is at least not simpler than complete
decoding (though one should take in mind the pos-
sibility of breaking the system through analysis of
the structure of public codes and matrix M), thus
we will call such system as based on the problem of
complete decoding.
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Next we describe more practical variant of the
system based on the problem of complete decoding,
giving an example of defining E and E’ [15].

1. Key generation.

Each entity U performs the following.

— Select (& x n)-generator matrix G of linear (n,
k)-code, for which polynomial-time algorithm for
correcting errors from some set E is known.

— Select random non-singular (n x n)-matrix M,.

— Define the set E and matrix M; such that for
any é< E the vector éM; belongs to E (note that M;
may be singular).

— Compute M = M;M, (note that M singular if
M, is singular).

— Compute (£ x n)-matrix G' = GM,.

— Public key is Py =(G', M, E), private key is
Sy = (G, M;, M,).

2. Encryption.

Entity A encrypts k-bit message m, using au-
thentic public key Py of entity B.

— A computes ¢=mG’ + ¢, where e'=éM for
random eéc E .

3. Decryption.

Entity B decrypts ¢, using his private key Sg.

— Compute x = cMgl.

— Compute y(x) = m.

In this variant of the system the set E’ is defined
by vectors éM, which in turn requires effective de-
scription of E. Besides, the matrix M should be de-
termined, mapping vectors from E into E.

In particular, the set E itself may be selected as
E, for example, consisting of all vectors of fixed
weight, as in classical McEliece system. In this paper
we consider the variant of the system which based on
error-correcting codes which correct error bursts.

The effect of grouping errors in bursts (or packets)
is typical for the most real communication channels,
however, the codes that can correct such erroneous
combinations are less investigated, and in practice
the data transmitted via the channel is decorrelated
using the interleaving procedure, and then the codes
for independent errors correction are applied. In the
case of cryptosystem development the errors in bursts
may be formed artificially, in this case the positions
and lengths of the bursts may be controlled.

The term of error burst itself may be defined in
different ways. In this paper we define the burst of
length b as binary error vector e = (e, ..., €,_), in
which the last non-zero element is placed no more
than in b positions from the first. That is, if i is the
minimal index for which e, = 1, and jis maximal such
index, then e forms the (single) error burst of length
b=j— i+ 1 at position i (thus two adjacent non-ze-
ro element form the packet of length 2). We will as-
sume that positions of e from index i to j are filled
by 1 and 0 with probability 1/2. Note that under the
term “burst” one may consider not only the overall
sequence e, but its erroneous subsequence (e;, ..., ej)

A
x l ;
) 4

b=1+x—-1_

A

B Matrix M;

without leading and ending zeros, the concrete sense
of this term will be clear from the context.

Similar to the fact that the minimal distance d,
defines the maximal number ¢ of independent er-
rors, which can be corrected in any combination by
minimal distance decoding, for each linear code the
maximal correctable burst length b may be deter-
mined — this means that all possible error bursts
of length no more than b are in different cosets and
may be chosen as leaders. However, as it was men-
tioned earlier, finding the minimal distance of the
random code is NP-hard, while maximal correcta-
ble burst length may be found in polynomial-time,
using procedure from [16] (though the degree of the
polynomial is rather large).

Let the set E consists of vectors which form er-
ror bursts of length no more than b. As theset E we
will also consider the set of bursts, but their length
may differ from b and is defined by M,.

Consider M; as (n x n)-matrix in Figure. Here
positions filled by random binary digits are marked
in grey, other positions are zero. Clearly, such ma-
trix through multiplication by it defines the map-
ping from bursts of length x into bursts of length b.

Then the above system may be additionally de-
termined as follows:

— the set E: set of error bursts of length no more
than b;

— matrix G defines the code, for which the pol-
ynomial-time procedure of correcting the error
bursts of length b is known;

— the set E: set of error bursts of length no
more than x. Clearly, public key is Py; = (G', M, x).

In the next sections we will consider the selec-
tion of the code for the proposed system and estima-
tion of its parameters.

Selection of the code for the system

Estimation of the quantitative parameters of the
system considered in the previous section: burst
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lengths x and b, cardinalities of sets E' and E, and
finally selection of % and n, defining the key sizes,
depends on the selection of class of burst-error-cor-
rection code. This class should contain exponential
number of codes for given b, k, n, and admit poly-
nomial-time procedure of correcting the bursts of
length b. One of the variant of such a class is the
class of low-density parity-check codes.

Low-density parity-check codes (LDPC codes)
were proposed by R. Gallager in early 60-s [8, 12].
LDPC-code is defined by its parity-check matrix H,
containing low number of nonzero elements. The
term “low number” is not formally defined, more-
over, in the number of works on modified McEliece
systems based on such codes the term “middle den-
sity” (MDPC) is used [7, 17, 18], but in both cases we
may admit that we consider the codes with relatively
sparse parity-check matrix, for which the decoders
utilizing its sparseness show rather high correcting
capability (low error probability). In general, LDPC
codes are usually defined and analyzed as probabil-
istic ensembles of random codes with specific pa-
rameters, which is additional advantage for their
usage as secret keys in code-based systems.

One of the most often used construction of LDPC
codes is block-permutation construction, where the
parity-check matrix has the form

Hl,l H1,2 v Hl,p
H H ... H

Ho| 2t a2 2,p ’
Hy,l Hy,z e Hy,p

where H; jare sub-blocks of some structure. Usually
some degree of (m x m)-matrix of cyclic permutation
is used as sub-blocks:

(000 0 .. 0 1]
100 .00
C={0 1 0 .. 0 0,
00 0 .. 1 0

then the parity-check matrix of LDPC codes has the
form

¢ ch: . Che
i i iy

H_|C® CEoC | @
cn ¢z . ch

It is known that some specific combinations of
non-zero elements in the parity-check matrix may
degrade the LDPC code decoder’s performance, the

simplest restriction to avoid some “bad” combina-
tions is absence of two rows or two columns in the
parity-check matrix having more than one common
non-zero positions. If this is holds and we consider
the matrix as incidence matrix of bipartite graph
(the so called Tanner graph) there are no cycles of
length 4 in the graph (for simplicity we will say that
there are no cycles of length 4 in the matrix).

Traditionally LDPC codes are used to correct
independent errors, however, in [16, 19, 20] the ca-
pability of these codes (in particular, block-permu-
tation constructions) to correct bursts of errors was
analyzed. In [16] both the procedure of determining
the maximal length of correctable burst and decod-
ing procedure for block-permutation LDPC code are
described.

For the system described in the previous section
we will use the ensemble of codes defined by (3). The
ensemble is defined by the values of y, p and m. As
the additional requirement we demand the absence
of 4-cycles in matrix (3).

As follows, for the fixed values of y, p and m,
which are selected mainly from the cryptocomplex-
ity point of view, the probability of random selec-
tion of matrix with no cycles of length 4 should be
estimated, as well as expected correctable burst
lengths.

The software for determining the correctable
burst length was implemented in Microsoft Visual
Studio Enterprise 2017 using C++, Release x64.
Experiments were hold using the computer with
Windows 10 Pro, 16 Gb RAM, CPU Intel Core i7-
4770K@3,50 GHz.

The matrices are considered with 3 x4, 4 x6,
4 x 8 blocks, with block sizes m = 20, 31, 50, 61, 110,
127. The distribution of correctable burst lengths,
as well as the average time of determining the burst
length are given in Table 1. For each set of param-
eters 100 random matrices were generated without
cycles of length 4. One may note that for the block
sizes which are prime numbers the lengths of cor-
rectable burst in all experiments are b = m — 1 [this
is the maximal possible length of correctable burst
for the block-permutation codes with parity-check
matrix (3) with block size m]. In other cases it was
found that for considered values of y and p the burst
lengths correctable by random codes is not signifi-
cantly less than block size m, i.e. b~ m.

The estimation of probability P of selecting the
matrix containing cycles of length 4 in the Tanner
graph was also performed, the results are given in
Table 2. As can be seen from the table, when the
block sizes are small, the probability of selecting
the matrix with cycles of length 4 is rather high.
But this probability decreases with block sizes
growth, besides, determination of cycle existence
in all considered cases takes less than microsecond,
thus even if the probability of matrix without cycles
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number of blocks in the parity-check matrix

Block size m
YXxp Parameter
20 31 50 61 110 127
Length b 19 — 10% 30 — 100% 49 — 9% 60 — 100% 109 — 8% 127 — 100%
18 — 64% 48 — 5% 108 — 70%
16 — 19% 45 — 12% 105 — 14%
3 x4 15— 7% 40 — 4% 100 — 6%
99 — 2%
Time, s 0.01 0.04 0.38 0.63 11.64 12.43
Length b 19 — 21% 30 — 100% 49 — 13% 60 — 100% 109 — 11% 126 — 100%
18 — 71% 48 — 80% 108 — 81%
4%6 16 — 4% 45— T% 105 — 7%
15— 4% 100 — 1%
Time, s 0.04 0.18 2.68 2.86 50.92 80
Length b 19 — 2% 30 — 100% 49 — 1% 60 — 100% 109 — 1% 126 — 100%
18 — 83% 48 — 88% 108 — 84%
4%8 16 — 12% 45 — 11% 105 — 12%
15— 3% 100 — 3%
Time, s 0.10 0.44 6.26 6.75 80 171
B Table 2. Probability of existence of cycle of length 4
Block size m
Yxp Parameter
20 31 50 61 110 127
3 x4 Probability P 0.62 0.46 0.31 0.26 0.15 0.13
X
Time, ps 0.25 0.28 0.23 0.26 0.26 0.28
Ax6 Probability P 0.99 0.96 0.85 0.78 0.57 0.51
X
Time, ns 0.55 0.58 0.61 0.52 0.57 0.59
ixs Probability P 0.999 0.997 0.97 0.95 0.8 0.75
X
Time, ps 0.58 0.85 0.93 0.71 0.83 0.8

of length 4 is rather small, this matrix may be gen-
erated expectably fast by the sequence of random
guesses (total number of such matrices is exponen-
tially high). For example, for y =4, p =8, m = 20 the
probability of absence of 4-cycles is less than 0.001,
but total number of matrices is 2032 ~ 2138, and ap-
propriate random matrix is easy to find.

Summarizing, the results show that for small
values of y and p it takes not a lot of time to find
the random matrix (3) without 4-cycles and with
b=m- 1.

Estimation of system’s parameters

In this section we estimate the parameters of the
cryptosystem, basing on required security level. We
will consider the following attacks, which complexi-
ty should be exponential of order not less than 2128:

— search on private matrices;

— search within the set E’;

— search within the set E.

Let us consider the search on private matrices.
There are m matrices (3) of yx p blocks, where
each block is defined by integer from the set {0, ...,
m — 1}. For example we will take matrices with 3 x 6
and 4 x 8 blocks. From m18 = 2128 and m32 = 2128 we
have the correspondent block sizes m ~ 27 =128 and
m = 24 =16. To increase the probability of selecting
the code with maximal correctable burst length
we set m as prime number, i.e. m =127 and m = 17.
Particular selection of block size should be addition-
ally agreed with the length b of correctable burst,
which should be provided, so given estimations may
be considered as lowest possible values for m.

Let us now consider brute-force search with-
in the set E'. It consists of vectors e'=éM, where
M = M;M,. Despite the special construction of ma-
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trix M, (see Figure), M, is random matrix, thus even
though € is error burst of length x, e’ is random
vector with expected weight n/2, which makes im-
possible both enumerating these vectors and break-
ing the system by decoding — any code including G’
is not able to correct error vectors of such weight.

Finally, consider the set E. It consists of vectors
which are bursts of length x. If starting position of
the burst is fixed, there are about 2* such vectors (in
fact we should fill the positions within burst by ran-
dom bits with probability 1/2 and obtain the bursts of
weight near, so the number of such vectors is slightly
less than 2%). The number of burst locations (start-
ing positions) within the error vector € isn— x+ 1.
This number is not very large, but we take it into
account. Thus the complexity of brute force search
of é is given by (n — x + 1)2% = 2128 (this equation is
approximate, we do not take into account the weight
of bursts, starting and ending 1’s and so on).

Consider example with y=3, p=6. Select
m =127, then the correctable burst length is
b=126=1+ x— 1, where [ is the width of diago-
nal in matrix M, in Figure. For such parameters
we have n=mp =762, and (763 — x)2* = 2128 and
x ~ 119, hence [ = 8.

For such parameters M; is matrix 762 x 762,
containing diagonal of width [ = 8. Analysis of how
the structure of M; affects the system’s strength
is important question, but it does not considered
in this paper since it requires more thorough and
sophisticated analysis. Nevertheless, it seems that
usage of rather large matrix with relatively thin di-
agonal of random elements while other elements are
zero may be not secure. Thus consider the possibili-
ty of increasing the width of diagonal in M.

Let us take, for example, [ =30. Then, having
x =119, the length of the burst correctable by the
secret code should be b =149 and hence the block
size m > 150. We obtain the following parameters:
v=38,p=6,1=30,b=149, m = 150, n = 900, x = 119,
then the number of bursts of length x is estimated
as 2128.6 which corresponds to the required securi-
ty level. To define the matrix H (3) it is enough to

store only degrees of correspondent matrices C, for
our parameters we get 3-6-(10g2 150-|=144 bits.
The size of G’ (public key, which is more important
from the point of view of key size), is 450 x 900 bits
(which is less than initial parameters of McEliece
system with key size 450 x 900 and cryptocomplex-
ity 293). Note that we should also count the size of
matrix M since it’s the part of public key.

Similarly consider the case y=4, p=8, with
m =17, which was defined earlier, and b=16,
n=136. Then x=~125, and taking into account
b=10+ x— 1 it is impossible to have b = 16. Hence,
the block size m should be significantly increased,
as well as the burst length b.

Set x =125 and [ = 30, then we have b =155 and
m > 156, this gives parameters: y=4, p=8, [ =30,
b=155, m =156, n=1248, x =125, then the num-
ber of bursts of length x is 2135, The size of private
key is 256, public matrix G' — 624 x 1248 bit.

As can be seen from the estimations, the crypto-
complexity of proposed system depends on the num-
ber of bursts of length x, which defines the com-
plexity of brute force search within the set E, and
also on possibility of attacking the structure of M;,
which depends on the value of I. These parameters
define the values of b and m, such that enumerating
the matrices H should be infeasible.

In Table 3 the key sizes, number of errors that
should be decoded by adversary to break the sys-
tem, cryptocomplexity of McEliece system, system
based on quasi-cyclic LDPC codes (QC-LDPC) de-
scribed in [8], and proposed system are collected.

Note that the public key size is defined by the size
of (k x n)-matrix G, however in proposed system the
(n x n)-matrix M is also the part of the public key,
at the same time in QC-LDPC system significantly
larger codes are used, but using the block-circulant
structure of the matrix (including public matrix) the
required storage for the keys may be significantly
reduced. From the other hand, one should make the
distinction between storage needs and memory which
is used during encryption and especially decryption
processes, when the decoding procedure should be

B Table 3. Comparison of code-based cryptosystems

. Public key size, Private key
System k n t Complexity Attack Kbyte size, Kbyte
524 1024 50 253 67 67
McEliece 1036 2048 92 294 Bounded-distance decoding 265 265
2056 4096 170 2171 (¢ errors) 1052 1052
QC-LDPC 9857 19 714 134 2128 1.2 1.2
450 900 450 2128 152 0.144
Bursts Complete decoding (n/2 errgrs)
(proposed) or brute force search on E
624 1248 624 2135 291 0.25
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used. With increasing of matric sizes the required
memory is also increases, but estimations depend on
particular implementations and their optimizations.

At the same time, further development of the
proposed system in the direction of using quasi-cy-
clic codes is of interest.

Conclusion

In the paper the code-based cryptosystem is pro-
posed which uses burst-correction codes. The un-
derlying hard mathematical problem is complete de-
coding problem. It is supposed that systems based

on this problem can achieve better cryptocomplexi-
ty than code-based McEliece cryptosystem based on
bounded-distance decoding.

The future investigations and development can
be made in using quasi-cyclic codes and considering
the version of the system in Niederreiter mode.
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BapnaHT IIOCTKBAHTOBOM CHCTEMBI HA OCHOBE KOJ0B, MCIIPABJAIOIINX ITaAKeThI OIIIMGOE, U 3aJa4YHy IIOJITHOTIO
AeKOOUPOBAHUA
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BBeuel-me: BaJXKHBIM HaIIpaBJIEHHEM B HCCJIeIOBAaHNU IIOCTKBAHTOBBIX CHCTEM, yCTOfI‘{HBI)IX K KBaHTOBBIM BBIUNCJIEHUAM, ABJIAETCA
KOZoBasi KpunrorpaQus Ha OCHOBe 3a7a4 TEOPUY IOMEX0YCTONYNBOrO KOJAUPOBAHNU. YIIYUIlIeHNEe CYI[ECTBYIOIINX KOLOBBIX CHCTEM MO-
JKEeT BeCTHUCh KaK B IIPAKTUYECKON uacTu (yMeHbIIIeHNe Pa3MePOB KJIUeil), TaK U ¢ TOUKY 3PEHUS UCIIOIb30BaHUS 00jiee TPYAHBIX MaTe-
MaTHUYEeCKUX KOZOBBIX 3ajad. Ilesas: mocTpoeHme KOLOBOI CUCTEMBI C OTKPBITHIM KJII0UOM Ha OCHOBE HM3KOIIOTHOCTHBIX KOZOB, UCIPAB-
JISFOIIMX HAKEeTHI OIIMOOK; OIeHKA IapaMeTPOB IIOJIyYeHHOU cuCcTeMbl. Pe3yabTaTsl: IPeIosKeH BapUaHT KOJOBON CHCTEMBI Ha OCHOBE
CIIyYaiiHbIX GJIOUHO-II€PECTAHOBOUHBIX HU3KOIJIOTHOCTHBIX KOO0B. CTOMKOCTD CHCTEMBI IPEAIIOJIAaraeTesl OCHOBAHHOM Ha 3a/[aue IIOJIHOTO
IeKOIMPOBAHUSA, UTO ABJIAETCA 60JIee CIOKHOM MaTeMaTUUeCKOH 3aZjaueil 10 CPaBHEHUIO C CYIEeCTBYONIMMY cucTeMamMu. IIpu sToM ¢ BbI-
COKOI BEPOATHOCTBHIO AHAJINS CHCTEMBI HA OCHOBE METO/0B IeKOAMPOBAHNS BOOOIIe He IPEICTABIAETCA BOSMOYKHBIM, UTO KAK IIOBBIIIIAET
[EePCIEKTUBHYIO CTOMKOCTh CUCTEMBI, TAK U II03BOJISIET YMEHbBIINTE Pa3dMepsl Kiaoueil. [IpoBeneHa oneHka BbI6OpPa KOZOB ¢ TPeGyeMbIMU
XapaKTepUCTUKAaMU, PACCMATPUBAIOTCA IIOAXOABI K BBIOOPY IIapaMeTPOB IPe/I0KeHHON CHCTeMbI Ha OCHOBE TPeOyeMOro YPOBHSA CTOMNKO-
cru. [IpakTuyeckass 3HAYUMMOCTB: IIPEJIOKEHHAs CHCTEMA I03BOJISIET YMEHBIINTh Pa3MePhl OTKPBITHIX KJOYEH 110 CPaBHEHUIO C KJac-
cruuecKo cucremoir Makdiuca Ipu CPaBHUMOM CTOMKOCTH, DU HTOM UCIOJb3yeMas TPyAHAsS MaTeMaTUUecKasi 3a/[aua [Pe/ICTaBISeTCs
0oJiee yCTOMUMBOM K IEPCIIEKTUBHBIM aTaKaM.

KuiroueBsie ciioBa — IIOCTKBaHTOBasA KpUnTorpadus, KOJOBbIE CUCTEMBI, KOJbI C MAJIOW IIJIOTHOCTHIO IPOBEPOK HA YETHOCTD, MCIIPAB-
JIeHVe IaKeTOB OIINGOK.
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YBA)XXAEMbIE ABTOPbI!

Hayunasa snekTponHas 6ubamorexa (HOB) mpomoskaer paboTy mo peasmsanum IPOEKTa
SCIENCE INDEX. Ilocie Toro kax Bel saperucrpupyerech Ha caiite HIB (http://elibrary.ru/
defaultx.asp), Oyzer cosmana Barma inunasi cTpaHUYKA, COIEPIKAHNE KOTOPOM COCTABSAT HE TOJIBKO
Baru mepcoHabHBIE JaHHBIE, HO U IIEPEUEHDb BCeX BaIllnx IIeuaTHLIX TPY/A0B, IMEIOIIUXC B 6ase
nauueix HOB, BKIIouas guccepTaliii, IIaTeHThl U Te3UChl K KOH(PEPEeHIIUIM, a TaKiKe CPABHUTEIb-
Hble nHAeKCH rurtupoauus: PUHIL (Poccuiickuil MHAEKC HAYYHOrO IUTUPOBAHUs), h (MHIEKC
Xwupira) or Web of Science u h ot Scopus. ITocie cosmauust 6azoBoro BapuanTa Barieir mepcoHasb-
HOM cTpaHUIILI BEI MOJIyYnTe KO HJOCTYIIA, KOTOPBLIXA IIO3BOJIUT BaM pemakTupoBaTh HHGOPMAIILIO,
moMorasi co3aBaTh MaKCUMaJbHO 00bEeKTUBHYIO KapTuHy Baleil HayYHOH aKTUBHOCTU U ITUTHU-
poBaHusa Bamux TpynoB.
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