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Introduction: The RSK algorithm establishes an equivalence of finite sequences of elements of linearly ordered sets and pairs of 
Young tableaux P and Q of the same shape. Of particular interest is the study of the asymptotic limit, i. e., the limit shape of the so-called 
bumping routes formed by the boxes of tableau P affected in a single iteration of the RSK algorithm. The exact formulae for these limit 
shapes were obtained by D. Romik and P. Śniady in 2016. However, the problem of investigating the dynamics of the approach of bumping 
routes to their limit shapes remains insufficiently studied. Purpose: To study the dynamics of distances between the bumping routes and 
their limit shapes in Young tableaux with the help of computer experiments. Results: We have obtained a large number of experimental 
bumping routes through a series of computer experiments for Young tableaux P of sizes up to 4·106, filled with real numbers in the range 
[0, 1] and sets of inserted values α  [0.1, 0.15, … , 0.85]. We have compared these bumping routes in the L2 metric with the corresponding 
limit shapes and have calculated the average distances and variances of their deviations from the limit shapes. We refined the parameters 
in the empirical formula for the rate of approach of discretized bumping routes to their limit shapes. Also, the experimental parameters 
of the normal distributions of the deviations of the bumping routes are obtained for various input values.
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Introduction

The Robinson — Schensted — Knuth (RSK) al-
gorithm [1–3] appears in various contexts of mathe-
matics, physics, computer science and their applica-
tions [4, 5]. Despite its purely combinatorial nature, 
RSK has many deep connections with algebra, er-
godic theory, and the theory of dynamical systems. 
In these days, more and more papers appear in 
which new and unexpected properties of this algo-
rithm are revealed.

The geometry and combinatorics of the bump-
ing routes of the RSK algorithm was studied [6–10] 
both theoretically and with the help of computer ex-
periments. In [6], the asymptotic behaviour of the 
convergence of bumping routes to their limit shapes 
was studied, and exact equations describing such 
limit shapes were also obtained. In this paper, we 
study the dynamics of convergence of the generated 
bumping routes to their limit shapes. Similar simu-
lations have already been performed in [9], but com-
pared to this work, the scheme of experiments was 
significantly changed. In particular, the number 
of Young tableaux involved in the simulation was 
increased, and a larger number of limit shapes of 

bumping routes, to which the experimental curves 
tend, was considered. Here we chose another method 
for comparing the experimentally obtained bump-
ing routes with their corresponding limit curves. 
Since the end of the limit shape of a bumping route 
may not coincide with the end of the experimentally 
calculated bumping route, the projections of these 
functions onto the x axis are generally defined on 
different intervals. At the same time, in [9] to cal-
culate the deviation of a bumping route from the 
theoretical limit shape, we scaled the experimental 
bumping route by multiplying its domain of defini-
tion by some constant so that its end coincides with 
the theoretical one. Finally, the L2 distance between 
the scaled experimental bumping route and the the-
oretical curve was calculated.

This approach led to a significant divergence of 
the projections of the curves on the y axis and, as a 
result, to an inaccurate estimation of the distance 
between the curves. Therefore, we subsequent-
ly abandoned such a scheme. In this article, these 
curves are compared on the common interval of 
their definition, i. e., the maximum common value 
of their projections on the x axis is chosen. Then the 
distance between the theoretical and experimental 
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curves in the L2 metric is evaluated. This distance 
is calculated at some fixed number of points on this 
common definition interval.

RSK algorithm

The classical RSK algorithm and its generaliza-
tions [1–3] consist of mapping some input sequence 
of elements of some linearly ordered set to a pair of 
Young tableaux of the same shape: insertion tableau P
and recording tableau Q. The entries of the input 
sequence are processed one by one. If the next entry 
is the maximum in the first column of the tableau P, 
then a new box is added to the tableau on top of the 
first column. Otherwise, the element is written to 
the box of the first column with the closest greater 
value, which is then bumped into the second column. 
Likewise, the bumped value can either take the po-
sition at the top of the second column, or bump the 
closest greater value to the third one. The iteration 
of the algorithm ends when the next bumped value 
turns out to be the maximum in column j and a box 
with coordinates (i, j) is added to the tableau P. After 
that, a box filled by the index of the current element 
of the input sequence adds to tableau Q at the same 
position (i, j). Thus, the insertion tableau consists 
of inserted values and is semi-standard Young tab-
leau (SSYT) [11, 12], i. e., its values strictly increase 
along the columns and non-strictly along the rows. 
The recording tableau is a standard Young tableau

(SYT), i. e. the values in it are strictly ordered both 
in rows and columns.

Figure 1 shows an example of the RSK corre-
spondence between a finite sequence of integers 
and a pair of Young tableaux P, Q. The arrows con-
nect the boxes through which the values are bumped 
during one iteration of the RSK algorithm when 
processing the number 9. The sequence of such box-
es is called the bumping route. 

In this work, we use the so-called French no-
tation for Young tableaux such as the boxes are 
aligned along the x and y axes. Another notation of-
ten used in literature is known as Russian notation. 
It is obtained from the French one by rotating the 
coordinate axes by 45 degrees clockwise. In Fig. 1, 
French notation corresponds to the x, y axes, and 
Russian notation corresponds to the u, v axes.

One of important properties of the RSK algo-
rithm is the fact that when applied to a sequence of 
random uniformly distributed numbers, the result-
ing tableaux P and Q have the so-called Plancherel 
distribution [13]. When the size of the tableaux 
grows, their profiles tend to some limit shape , 
which is described by the Vershik — Kerov curve 
[14], given in Russian notation as follows:

22
4

2
( ) arcsin .u
u u u        

  (1) 

The limit shapes of the bumping routes are de-
termined by the following formulae [6]: 

 Fig. 1. RSK correspondence between an integer sequence and a pair of Young tableaux
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where  is the input value; t is the intermediate 
value on the bumping route; u(t), v(t), x(t), y(t) 
are the projections of the coordinates of the position 
where the value t was bumped when the input value 
 was processed onto the corresponding axes of the 
Russian and French notation; () is the projection 
of the intersection point of the bumping route and 
the Vershik — Kerov curve (1) onto the x axis; (s) 
is the projection of the position on the bumping 
route onto the y axis.

The goal of this article is to study the deviations 
of the experimental bumping routes from their limit 
shapes. We consider sequences consisting of random 
real numbers uniformly distributed in the interval 
[0, 1].

Computer experiments

Let us describe the computational experiments 
on modeling the bumping routes in the RSK algo-
rithm and studying their deviations from the lim-
it shapes. With the help of the RSK algorithm, we 
generated a set of random pairs of SSYT P and 
SYT Q of some fixed size n, distributed according 
to the Plancherel measure [13]. Then, again using 
the RSK algorithm, a certain value of  was insert-
ed into each of the tableaux P. The bumping route 
corresponding to this value was calculated, i. e., the 
sequence of normalized coordinates of the boxes 
(xi, yi), bumped during the iteration of the algo-
rithm. We divide the coordinates by n  to normal-
ize the area under the profile of the tableau to make 
it equal to one. Such a normalization is necessary 
to compare these bumping routes with the limit 
curves, which are defined by formulae (1)–(8). 

As can be seen from formulae (3), (4), in order 
to calculate a coordinate on the limit shape of a 

bumping route, it is necessary to calculate the func-
tion inverse to F from (2). To solve this problem, we 
formed a table T1, in which each value u  [–2, …, 2], 
listed with the step 4 · 10–6, was associated with the 
corresponding value of the function F. To calculate 
u = F–1, the row with the closest value to F was se-
lected in T1. Similarly, for the calculation 1( )x s

  
from (8), a series of tables T were compiled, for the 
values of  defined in the range [, …, 1] with the 
step 10–6. So, each of T specifies the correspond-
ence t(x).

Let us describe how we calculated the coordi-
nates (x*, y*) on the limit shape of a bumping route 
corresponding to the pair of coordinates (x, y) on an 
experimental path. Firstly, it is necessary to calcu-
late 1( )x s

  from (8). To do this, we find in T the 
value x* closest to x, which corresponds to some val-
ue t. To calculate y* = y(t), t is substituted into (5). 
To calculate u(t) and v(t), we find in table T1 the 

value of F closest to 
t


 which corresponds to F–1. 

Then, the root-mean-square distance S between 
the coordinates (x, y) of the boxes of the constructed 
bumping route and the corresponding coordinates 
(x*, y*) of the limit curve was calculated. Thus, we 
calculated the distance in the L2 metric between a 
stepwise bumping route and the limit shape corre-
sponding to the given insertion value.

To estimate the number k of generated Young 
tableaux of size n = 106 required to reliably calcu-
late the standard deviation of distances S for a given 
value of the input parameter , a series of random 
sets of Young tableaux was constructed. For   [0.1, 
…, 0.85], with the step 0.05, the S values of the cor-
responding bumping route were calculated for each 
tableau in generated sets. Then, we calculate the 
averages and variances of S for the first k = 100, 
200, …, 104 tableaux. Figure 2, a shows the depend-
ence curves of the average value of S on the num-
ber of bumping routes considered. We constructed 
10 random sets of 104 Young tableaux of size 106 for 
 = 0.1, 0.3, 0.5, 0.7 and 0.9.

It could be concluded that the spread in the val-
ues of standard deviations decreases significant-
ly with an increase in the number of experiments. 
Moreover, even if we take 1000 tableaux of size 106, 
the spread can be considered quite acceptable. This 
conclusion is also confirmed by the variance plot 
of S values (Fig. 2, b) obtained during this experi-
ment — the variance decreases with an increase in 
the number of tableaux considered, which is in line 
with our expectations.

Note that Fig. 2, b shows only a segment of the 
graph for the number of tableaux from 1000 to 
5000, since the variance curves are difficult to dis-
tinguish in a larger scale. For the number of tab-
leaux up to 104, the variances still decrease mono-
tonically.
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Dependence of the distance between 
the experimental and limit curves on the size 
of Young tableaux

In this numerical experiment, the dynamics 
of convergence of bumping routes to limit curves 
with increasing size of Young tableaux was studied. 
The size of considered tableaux varied in the range 
n  [105, …, 4 · 106] with the step 105. For each size, 
a fixed number of k pairs of tableaux P and Q were 
generated: k = 104 tableaux of sizes from 105 to 
106 and k = 1000 tableaux of sizes from 11 · 105 to 
4 · 106. Then, using the RSK algorithm, input values 
  [0.1, …, 0.85] were inserted into each of the ob-
tained tableaux P with the step 0.05. 

For each of the k const ructed bumping routes 
of size n, the mean and variance of the root-mean-
square distance S were calculated. For a set of fixed 
values of , the behaviour of the calculated mean 
values and variances was studied depending on oth-
er parameters. 

It is obvious that an experimentally obtained 
bumping route do not coincide with the correspond-
ing limit shape. Moreover, both their domains of 
definition and their shapes differ. It was decided to 
calculate the values of S only on those intervals on 
which both the experimental bumping routes and 
their limit shapes were determined. The sections of 
the bumping routes given by the computer experi-
ment, which go beyond the intervals of existence of 
the limit shapes, did not participate in the calcula-
tion of S.

It was shown in [9] that the deviations of the 
bumping routes from the limit shapes for large val-
ues of n are well approximated by an empirically ob-
tained function of the form

 

1 1
4 2( ) .f n a n b n

 
      (9) 

Thus, the convergence turns out to be quite 
slow. The results of calculating the deviations ob-
tained in the framework of computer experiments 
were approximated using the function (9) with free 

parameters a and b. The table below shows the 
values of the obtained parameters for some input 
numbers , as well as the maximum deviations  
of the approximation curves from the experimental 
bumping routes. The values of  show that the ap-
proximation accuracy of the empirical formula (9) 
is quite high.

Figure 3, a, b shows approximation curves 
for input values   [0.1, ..., 0.85] with the step 
0.05. It is easy to see that the largest deviations 
of the bumping routes from the limit shapes are 
achieved at  = 0.4 and 0.45, and the smallest at 
0.1 and 0.85.

  Fig. 2. Dependence of means of S (a) and variances of S (b) on the number of considered Young tableaux of size 106 for 
input values  = 0.1 (▬), 0.3 (▬), 0.5 (▬), 0.7 (▬), 0.9 (▬)

×

×

  Values of the coefficients a and b depending on inserted 
values of  and the maximum deviations  of the approxima-
tion curves from the experimental bumping routes

 a b 

0.1 0.244 0.191 0.000217

0.15 0.270 0.184 0.000239

0.2 0.285 0.213 0.000349

0.25 0.296 0.236 0.000301

0.3 0.302 0.264 0.000209

0.35 0.303 0.325 0.000249

0.4 0.305 0.319 0.000202

0.45 0.304 0.331 0.000298

0.5 0.296 0.475 0.000230

0.55 0.289 0.597 0.000211

0.6 0.281 0.622 0.000233

0.65 0.266 0.826 0.000294

0.7 0.253 0.914 0.000216

0.75 0.233 1.136 0.000270

0.8 0.210 1.457 0.000228

0.85 0.179 1.925 0.000167
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The corresponding variances of the distances be-
tween the experimental curves and the limit shapes 
are shown in Fig. 4. As can be seen, the variances 
decrease for all considered input values, although 
not monotonically. Also note that as n increases, the 
spread of variances for different  decreases.

The coordinates distributions of the ends 
of the bumping routes obtained in the experiment

Within the framework of our computer experi-
ments, we have studied the coordinates distribu-
tions of the ends of the bumping routes. Also we es-
timated the values of the parameters of the function 
approximating these distributions. This experiment 
actually uses only end points of bumping routes in-
stead of their entire trajectories as the previous one.

In these calculations, we fixed the input value 
, the number of considered tableaux k and the size 
of the tableaux n. Fig. 5, a demonstrates 20 bump-
ing routes for each input value  = 0.1, 0.3, 0.5, 0.7, 
0.9 inserted into a tableau of size 106, as well as the 
Vershik — Kerov limit shape (1). The correspond-
ing limit curves are dashed. Examples of individual 
bumping routes for the same set of  are shown in 
Fig. 5, b. Figure 5, c shows some final parts of the 
bumping routes in a high zoom level for the case 
 = 0.5. The ends of the bumping routes are marked 
with red circles.

To study the distribution of the values of the end 
points, we calculated the number of coordinates be-
longing to one or another range in x. As a result, we 

  Fig. 3. Approximation curves of average distances between bumping routes in Young tableaux with sizes from n = 105 
to 4·105 and limit curves corresponding to input values   [0.1(▬), ..., 0.4(▬)] (a); α [0.45(▬), ..., 0.85(▬)] (b) with the 
step 0.05

× ×

× ×

  Fig. 4. Variances of distances between bumping routes 
in Young tableaux with sizes from n = 105 to 4·106 and 
limit curves corresponding to input values   [0.1, ..., 
0.85] with the step 0.05 

×

×

  Fig. 5. The spread of the coordinates of the ends of bumping routes for the input values  = 0.1 (▬), 0.3 (▬), 0.5 (▬), 
0.7 (▬), 0.9 (▬), the limit shapes of bumping routes (–  ––  –), and the Vershik— Kerov limit shape (▬) for 20 (a), 1 (b) bumping 
routes, and 100 zoomed final parts of the bumping routes for  = 0.5 (c)
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obtained a series of frequency histograms that dis-
play how these projections are distributed. An exam-
ple of one of such histograms is shown in Fig. 6. It 
is constructed for 105 bumping routes in tableaux of 
size 106, when processing an input number  = 0.5.

As can be seen from the figure, the distribu-
tion of the projection coordinates of the ends of 
the bumping routes is in good agreement with the 
normal distribution with the parameters   0.63, 
  0.023. Figure 7, a, b shows the distribution pa-
rameters given by approximating the frequencies of 
the coordinates of the end points. We considered in-
put values of   [0.1, ..., 0.85].

As can be seen from the presented graphs, the 
dependence of the parameter  of the normal dis-
tribution is close to linear on the studied interval 
of input values. The parameter  is estimated less 
reliably than the amplitude , and the results do not 
allow us to draw a conclusion about the form of such 
a dependence.

The software package developed to perform the 
experiments is implemented in C++ with the aid 
of OpenMP. Experiments use significant computer 
resources both in terms of memory and time cost. 
Our calculations were carried out for more than 
two weeks of continuous computations on the server 
Ubuntu 20.04.2 LTS, 240Gb RAM, Xeon Gold 5218.

Conclusion

Here we have described the results of our com-
puter simulation of the bumping routes in the RSK 
algorithm obtained on a very large dataset consist-
ing of extra large Young tableaux. We have studied 
the deviation of these bumping routes from the cor-
responding theoretical limit shapes.

Our computer experiments show good agree-
ment with the theoretical results obtained in [6] and 
confirm the empirical asymptotics of the approxi-
mation of the bumping routes to their limit shapes. 
Convergence turns out to be rather slow with the 

principal term proportional to 
1
4 .n


 As in many 

problems of asymptotic combinatorics, such exper-
iments require the involvement of a huge number 
of large Young tableaux. A similar problem and the 
RSK algorithm itself, are also defined for the case 
of strict Young tableaux and the Plancherel process 
on the Schur graph [15–17]. These two Plancherel 
processes have a close relationship. The limit shapes 
of the bumping routes for the strict Plancherel tab-
leaux can be derived from ones in the standard case.
But, it should be noted that it is possible to construct 
much larger Young tableaux on the Schur graph. As 
a result, it could be possible to obtain much more 
accurate determination of the parameters of the 
obtained distributions. So, in the future we plan to 
extend our research to the strict case. For this, it 
is also planned to expand the functionality of our 
specialized software.
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Моделирование путей выталкиваний в алгоритме RSK и анализ их приближения к предельной форме

Н. Н. Васильева,б, канд. физ.-мат. наук, старший научный сотрудник, orcid.org/0000-0002-0841-1168 
В. С. Дужинб, канд. физ.-мат. наук, старший преподаватель, orcid.org/0000-0001-8399-284X, vsduzhin@etu.ru
А. Д. Кузьминб, магистрант, orcid.org/0000-0001-9975-4686
аСанкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, наб. р. Фонтанки, 27, 
Санкт-Петербург, 191023, РФ
бСанкт-Петербургский государственный электротехнический университет «ЛЭТИ», Санкт-Петербург, 
ул. Профессора Попова, 5, Санкт-Петербург, 197376, РФ

Введение: алгоритм RSK устанавливает эквивалентность последовательностей элементов линейно упорядоченных множеств и 
пар таблиц Юнга P и Q одинаковой формы. Отдельный интерес представляет исследование асимптотического предела, т. е. предель-
ной формы так называемых путей выталкиваний, образуемых выталкиваемыми алгоритмом клетками таблицы P. Точные формулы 
для этих предельных форм были ранее получены Д. Ромиком и П. Сняды в 2016. Однако проблема изучения динамики стремления 
путей выталкиваний к их предельным формам остается недостаточно исследованной. Цель: исследовать динамику отклонения пу-
тей выталкиваний от их предельных форм в таблицах Юнга с помощью компьютерных экспериментов. Результаты: в проведенной 
серии компьютерных экспериментов для таблиц Юнга P размеров до 4·106, заполненных вещественными числами в диапазоне [0, 1], 
и наборов вставляемых значений   [0.1, 0.15, … , 0.85] получено большое количество экспериментальных путей выталкиваний, 
которые сравнивались в метрике L2 с соответствующими предельными формами. Вычислены средние расстояния и дисперсии их 
отклонений от предельных кривых. Уточнены параметры в эмпирической формуле для скорости приближения дискретизированных 
путей выталкиваний к их предельной форме. Получены экспериментальные параметры нормальных распределений отклонения 
путей выталкиваний для различных входных значений. 

Ключевые слова — алгоритм RSK, соответствие RSK, таблица Юнга, мера Планшереля, кривая Вершика — Керова, путь вы-
талкиваний, предельная форма, линейно упорядоченное множество, численный эксперимент, асимптотическая комбинаторика.
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