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Introduction: The RSK algorithm establishes an equivalence of finite sequences of elements of linearly ordered sets and pairs of
Young tableaux P and Q of the same shape. Of particular interest is the study of the asymptotic limit, i. e., the limit shape of the so-called
bumping routes formed by the boxes of tableau P affected in a single iteration of the RSK algorithm. The exact formulae for these limit
shapes were obtained by D. Romik and P. Sniady in 2016. However, the problem of investigating the dynamics of the approach of bumping
routes to their limit shapes remains insufficiently studied. Purpose: To study the dynamics of distances between the bumping routes and
their limit shapes in Young tableaux with the help of computer experiments. Results: We have obtained a large number of experimental
bumping routes through a series of computer experiments for Young tableaux P of sizes up to 4-105, filled with real numbers in the range
[0, 1] and sets of inserted values a  [0.1, 0.15, ..., 0.85]. We have compared these bumping routes in the L, metric with the corresponding
limit shapes and have calculated the average distances and variances of their deviations from the limit shapes. We refined the parameters
in the empirical formula for the rate of approach of discretized bumping routes to their limit shapes. Also, the experimental parameters
of the normal distributions of the deviations of the bumping routes are obtained for various input values.
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Introduction

The Robinson — Schensted — Knuth (RSK) al-
gorithm [1-3] appears in various contexts of mathe-
matics, physics, computer science and their applica-
tions [4, 5]. Despite its purely combinatorial nature,
RSK has many deep connections with algebra, er-
godic theory, and the theory of dynamical systems.
In these days, more and more papers appear in
which new and unexpected properties of this algo-
rithm are revealed.

The geometry and combinatorics of the bump-
ing routes of the RSK algorithm was studied [6-10]
both theoretically and with the help of computer ex-
periments. In [6], the asymptotic behaviour of the
convergence of bumping routes to their limit shapes
was studied, and exact equations describing such
limit shapes were also obtained. In this paper, we
study the dynamics of convergence of the generated
bumping routes to their limit shapes. Similar simu-
lations have already been performed in [9], but com-
pared to this work, the scheme of experiments was
significantly changed. In particular, the number
of Young tableaux involved in the simulation was
increased, and a larger number of limit shapes of

bumping routes, to which the experimental curves
tend, was considered. Here we chose another method
for comparing the experimentally obtained bump-
ing routes with their corresponding limit curves.
Since the end of the limit shape of a bumping route
may not coincide with the end of the experimentally
calculated bumping route, the projections of these
functions onto the x axis are generally defined on
different intervals. At the same time, in [9] to cal-
culate the deviation of a bumping route from the
theoretical limit shape, we scaled the experimental
bumping route by multiplying its domain of defini-
tion by some constant so that its end coincides with
the theoretical one. Finally, the L, distance between
the scaled experimental bumping route and the the-
oretical curve was calculated.

This approach led to a significant divergence of
the projections of the curves on the y axis and, as a
result, to an inaccurate estimation of the distance
between the curves. Therefore, we subsequent-
ly abandoned such a scheme. In this article, these
curves are compared on the common interval of
their definition, i. e., the maximum common value
of their projections on the x axis is chosen. Then the
distance between the theoretical and experimental
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curves in the L, metric is evaluated. This distance
is calculated at some fixed number of points on this
common definition interval.

RSK algorithm

The classical RSK algorithm and its generaliza-
tions [1-3] consist of mapping some input sequence
of elements of some linearly ordered set to a pair of
Young tableaux of the same shape: insertion tableau P
and recording tableau @. The entries of the input
sequence are processed one by one. If the next entry
is the maximum in the first column of the tableau P,
then a new box is added to the tableau on top of the
first column. Otherwise, the element is written to
the box of the first column with the closest greater
value, which is then bumped into the second column.
Likewise, the bumped value can either take the po-
sition at the top of the second column, or bump the
closest greater value to the third one. The iteration
of the algorithm ends when the next bumped value
turns out to be the maximum in column j and a box
with coordinates (i, ) is added to the tableau P. After
that, a box filled by the index of the current element
of the input sequence adds to tableau @ at the same
position (Z, j). Thus, the insertion tableau consists
of inserted values and is semi-standard Young tab-
leau (SSYT) [11, 12], i. e, its values strictly increase
along the columns and non-strictly along the rows.
The recording tableau is a standard Young tableau
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(SYT), i. e. the values in it are strictly ordered both
in rows and columns.

Figure 1 shows an example of the RSK corre-
spondence between a finite sequence of integers ®
and a pair of Young tableaux P, Q. The arrows con-
nect the boxes through which the values are bumped
during one iteration of the RSK algorithm when
processing the number 9. The sequence of such box-
es is called the bumping route.

In this work, we use the so-called French no-
tation for Young tableaux such as the boxes are
aligned along the x and y axes. Another notation of-
ten used in literature is known as Russian notation.
It is obtained from the French one by rotating the
coordinate axes by 45 degrees clockwise. In Fig. 1,
French notation corresponds to the x, y axes, and
Russian notation corresponds to the u, v axes.

One of important properties of the RSK algo-
rithm is the fact that when applied to a sequence of
random uniformly distributed numbers, the result-
ing tableaux P and @ have the so-called Plancherel
distribution [13]. When the size of the tableaux
grows, their profiles tend to some limit shape Q,
which is described by the Vershik — Kerov curve
[14], given in Russian notation as follows:

Qu) = E(u-arcsin%+\/4—u2 J
T

The limit shapes of the bumping routes are de-
termined by the following formulae [6]:

ey

o = 11,23, 4,2, 5,27, 25, 8, 20, 28, 1, 13, 21, 30, 16, 24, 31, 29, 3,9, 7, 14, 19, 16, 11, 6, 27, 21, 12, 19, 9
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B Fig. 1. RSK correspondence between an integer sequence and a pair of Young tableaux
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where o is the input value; ¢ is the intermediate
value on the bumping route; u (®), v (), x,®), y,@®)
are the projections of the coordinates of the position
where the value ¢ was bumped when the input value
o was processed onto the corresponding axes of the
Russian and French notation; k(o) is the projection
of the intersection point of the bumping route and
the Vershik — Kerov curve (1) onto the x axis; B (s)
is the projection of the position on the bumping
route onto the y axis.

The goal of this article is to study the deviations
of the experimental bumping routes from their limit
shapes. We consider sequences consisting of random
real numbers uniformly distributed in the interval
[0, 11.

Computer experiments

Let us describe the computational experiments
on modeling the bumping routes in the RSK algo-
rithm and studying their deviations from the lim-
it shapes. With the help of the RSK algorithm, we
generated a set of random pairs of SSYT P and
SYT @ of some fixed size n, distributed according
to the Plancherel measure [13]. Then, again using
the RSK algorithm, a certain value of o was insert-
ed into each of the tableaux P. The bumping route
corresponding to this value was calculated, i. e., the
sequence of normalized coordinates of the boxes
(x;, ¥;), bumped during the iteration_of the algo-
rithm. We divide the coordinates by Jn to normal-
ize the area under the profile of the tableau to make
it equal to one. Such a normalization is necessary
to compare these bumping routes with the limit
curves, which are defined by formulae (1)—(8).

As can be seen from formulae (3), (4), in order
to calculate a coordinate on the limit shape of a

bumping route, it is necessary to calculate the func-
tion inverse to F' from (2). To solve this problem, we
formed a table T';, in which each value v € [-2, ..., 2],
listed with the step 4-10-6, was associated with the
corresponding value of the function F. To calculate
u = F-1, the row with the closest value to F was se-
lected in T';. Similarly, for the calculation x&l(s)
from (8), a series of tables T\, were compiled, for the

values of a defined in the range [a, ..., 1] with the
step 10-6. So, each of T, specifies the correspond-
ence £(x,).

Let us describe how we calculated the coordi-
nates (x*, ¥*) on the limit shape of a bumping route
corresponding to the pair of coordinates (x, y) on an
experimental path. Firstly, it is necessary to calcu-
late x(_ll(s) from (8). To do this, we find in T, the
value x” closest to x, which corresponds to some val-
ue ¢. To calculate y* =y, (9), ¢ is substituted into (5).
To calculate u (t) and v, (#), we find in table T'; the

value of F closest to % which corresponds to F-1.

Then, the root-mean-square distance S between
the coordinates (x, y) of the boxes of the constructed
bumping route and the corresponding coordinates
(x", ¥") of the limit curve was calculated. Thus, we
calculated the distance in the L, metric between a
stepwise bumping route and the limit shape corre-
sponding to the given insertion value.

To estimate the number % of generated Young
tableaux of size n = 108 required to reliably calcu-
late the standard deviation of distances S for a given
value of the input parameter a, a series of random
sets of Young tableaux was constructed. For a € [0.1,
..., 0.85], with the step 0.05, the S values of the cor-
responding bumping route were calculated for each
tableau in generated sets. Then, we calculate the
averages and variances of S for the first £ = 100,
200, ..., 104 tableaux. Figure 2, a shows the depend-
ence curves of the average value of S on the num-
ber of bumping routes considered. We constructed
10 random sets of 104 Young tableaux of size 106 for
o =0.1,0.3,0.5, 0.7 and 0.9.

It could be concluded that the spread in the val-
ues of standard deviations decreases significant-
ly with an increase in the number of experiments.
Moreover, even if we take 1000 tableaux of size 106,
the spread can be considered quite acceptable. This
conclusion is also confirmed by the variance plot
of S values (Fig. 2, b) obtained during this experi-
ment — the variance decreases with an increase in
the number of tableaux considered, which is in line
with our expectations.

Note that Fig. 2, b shows only a segment of the
graph for the number of tableaux from 1000 to
5000, since the variance curves are difficult to dis-
tinguish in a larger scale. For the number of tab-
leaux up to 104, the variances still decrease mono-
tonically.
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B Fig. 2. Dependence of means of S (a) and variances of S (b) on the number of considered Young tableaux of size 106 for

input values o = 0.1 (=), 0.3 (=), 0.5 (=), 0.7 (=), 0.9 (—)

Dependence of the distance between
the experimental and limit curves on the size
of Young tableaux

In this numerical experiment, the dynamics
of convergence of bumping routes to limit curves
with increasing size of Young tableaux was studied.
The size of considered tableaux varied in the range
n e [105, ..., 4-106] with the step 105. For each size,
a fixed number of % pairs of tableaux P and @ were
generated: & = 104 tableaux of sizes from 10° to
108 and £ = 1000 tableaux of sizes from 11-10° to
4-108. Then, using the RSK algorithm, input values
a € [0.1, ..., 0.85] were inserted into each of the ob-
tained tableaux P with the step 0.05.

For each of the £ constructed bumping routes
of size n, the mean and variance of the root-mean-
square distance S were calculated. For a set of fixed
values of o, the behaviour of the calculated mean
values and variances was studied depending on oth-
er parameters.

It is obvious that an experimentally obtained
bumping route do not coincide with the correspond-
ing limit shape. Moreover, both their domains of
definition and their shapes differ. It was decided to
calculate the values of S only on those intervals on
which both the experimental bumping routes and
their limit shapes were determined. The sections of
the bumping routes given by the computer experi-
ment, which go beyond the intervals of existence of
the limit shapes, did not participate in the calcula-
tion of S.

It was shown in [9] that the deviations of the
bumping routes from the limit shapes for large val-
ues of n are well approximated by an empirically ob-
tained function of the form

1 1
fm)=a-n 4+b-n 2. 9

Thus, the convergence turns out to be quite
slow. The results of calculating the deviations ob-
tained in the framework of computer experiments
were approximated using the function (9) with free

parameters a and b. The table below shows the
values of the obtained parameters for some input
numbers o, as well as the maximum deviations A
of the approximation curves from the experimental
bumping routes. The values of A show that the ap-
proximation accuracy of the empirical formula (9)
is quite high.

Figure 3, a, b shows approximation curves
for input values a € [0.1, ..., 0.85] with the step
0.05. It is easy to see that the largest deviations
of the bumping routes from the limit shapes are
achieved at o = 0.4 and 0.45, and the smallest at
0.1 and 0.85.

B Values of the coefficients a and b depending on inserted
values of o and the maximum deviations A of the approxima-
tion curves from the experimental bumping routes

a a b A
0.1 0.244 0.191 0.000217
0.15 0.270 0.184 0.000239
0.2 0.285 0.213 0.000349
0.25 0.296 0.236 0.000301
0.3 0.302 0.264 0.000209
0.35 0.303 0.325 0.000249
0.4 0.305 0.319 0.000202
0.45 0.304 0.331 0.000298
0.5 0.296 0.475 0.000230
0.55 0.289 0.597 0.000211
0.6 0.281 0.622 0.000233
0.65 0.266 0.826 0.000294
0.7 0.253 0.914 0.000216
0.75 0.233 1.136 0.000270
0.8 0.210 1.457 0.000228
0.85 0.179 1.925 0.000167
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B Fig. 3. Approximation curves of average distances between bumping routes in Young tableaux with sizes from n = 10°
to 4-105 and limit curves corresponding to input values o € [0.1(=), ..., 0.4(- )] (@); o € [0.45(=), ..., 0.85(- )] (b) with the

step 0.05
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B Fig. 4. Variances of distances between bumping routes
in Young tableaux with sizes from n = 105 to 4-10% and
limit curves corresponding to input values o € [0.1, ...,
0.85] with the step 0.05

The corresponding variances of the distances be-
tween the experimental curves and the limit shapes
are shown in Fig. 4. As can be seen, the variances
decrease for all considered input values, although
not monotonically. Also note that as n increases, the
spread of variances for different a decreases.

The coordinates distributions of the ends
of the bumping routes obtained in the experiment

Within the framework of our computer experi-
ments, we have studied the coordinates distribu-
tions of the ends of the bumping routes. Also we es-
timated the values of the parameters of the function
approximating these distributions. This experiment
actually uses only end points of bumping routes in-
stead of their entire trajectories as the previous one.

In these calculations, we fixed the input value
o, the number of considered tableaux & and the size
of the tableaux n. Fig. 5, a demonstrates 20 bump-
ing routes for each input value a = 0.1, 0.3, 0.5, 0.7,
0.9 inserted into a tableau of size 106, as well as the
Vershik — Kerov limit shape (1). The correspond-
ing limit curves are dashed. Examples of individual
bumping routes for the same set of a are shown in
Fig. 5, b. Figure 5, ¢ shows some final parts of the
bumping routes in a high zoom level for the case
o = 0.5. The ends of the bumping routes are marked
with red circles.

To study the distribution of the values of the end
points, we calculated the number of coordinates be-
longing to one or another range in x. As a result, we

b 2

1.5

0.5

0.58 D

0 0.5

1

1.5 2 0.58 0.6 0.62 0.64 0.66 0.68 0.7

B Fig. 5. The spread of the coordinates of the ends of bumping routes for the input values o = 0.1 (=), 0.3 (=), 0.5 (=),

0.7 (=), 0.9 (), the limit shapes of bumping routes (— —), and the Vershik — Kerov limit shape (==) for 20 (@), 1 (b) bumping
routes, and 100 zoomed final parts of the bumping routes for a = 0.5 (¢)
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B Fig. 6. Frequency histogram of the distribution of the
ends of the bumping routes and its approximation using a
Gaussian curve

obtained a series of frequency histograms that dis-
play how these projections are distributed. An exam-
ple of one of such histograms is shown in Fig. 6. It
is constructed for 10° bumping routes in tableaux of
size 108, when processing an input number o = 0.5.

As can be seen from the figure, the distribu-
tion of the projection coordinates of the ends of
the bumping routes is in good agreement with the
normal distribution with the parameters u ~ 0.63,
o ~ 0.023. Figure 7, a, b shows the distribution pa-
rameters given by approximating the frequencies of
the coordinates of the end points. We considered in-
put values of a. € [0.1, ..., 0.85].

As can be seen from the presented graphs, the
dependence of the parameter pu of the normal dis-
tribution is close to linear on the studied interval
of input values. The parameter o is estimated less
reliably than the amplitude p, and the results do not
allow us to draw a conclusion about the form of such
a dependence.

The software package developed to perform the
experiments is implemented in C++ with the aid
of OpenMP. Experiments use significant computer
resources both in terms of memory and time cost.
Our calculations were carried out for more than
two weeks of continuous computations on the server
Ubuntu 20.04.2 LTS, 240Gb RAM, Xeon Gold 5218.

Conclusion

Here we have described the results of our com-
puter simulation of the bumping routes in the RSK
algorithm obtained on a very large dataset consist-
ing of extra large Young tableaux. We have studied
the deviation of these bumping routes from the cor-
responding theoretical limit shapes.

Our computer experiments show good agree-
ment with the theoretical results obtained in [6] and
confirm the empirical asymptotics of the approxi-
mation of the bumping routes to their limit shapes.
Convergence turns out to be rather slow with the

a) 1.6
14
1.2

0.6
0.4
0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p) 0.03
0.028]
0.026
0.024
0.022

© 0.02
0.018
0.016
0.014
0.012

0.

B Fig. 7. Dependence of the parameters p (a) and o (b) of
the normal distribution for the input values o

1

principal term proportional to n 4. As in many
problems of asymptotic combinatorics, such exper-
iments require the involvement of a huge number
of large Young tableaux. A similar problem and the
RSK algorithm itself, are also defined for the case
of strict Young tableaux and the Plancherel process
on the Schur graph [15-17]. These two Plancherel
processes have a close relationship. The limit shapes
of the bumping routes for the strict Plancherel tab-
leaux can be derived from ones in the standard case.
But, it should be noted that it is possible to construct
much larger Young tableaux on the Schur graph. As
a result, it could be possible to obtain much more
accurate determination of the parameters of the
obtained distributions. So, in the future we plan to
extend our research to the strict case. For this, it
is also planned to expand the functionality of our
specialized software.
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Beenenue: anropurm RSK ycranaBinBaer 3KBHBaIEHTHOCTH IIOCIEI0BATENHHOCTEN 3JIEMEHTOB JIMHEHHO YIOPALO0YEHHBIX MHOKECTB U
nap rabaun I0ura P u @ oxusakoBoit dopMbl. OTIenbHbIi HHTEPEC IPEACTABIAET UCCIe0BaHHe aCUMIITOTUIECKOTO IIPe/iesa, T. €. IIPeieib-
HOU (hOPMBI TAK HABHIBAEMBIX IIyTEH BBITATKUBAHUK, 00pa3yeMbIX BHITAIKHUBAEMbIMU aIrOPUTMOM KieTkamu Tabaursl P. Tounbie dopmymnbr
IUIST 9THUX TPeneabHbIX popM ObutH panee moaydenbr . Pomukom u I1. Cusager 8 2016. Oqrako mpobieMa U3ydeHUs TUHAMUKA CTPEMJICHUS
mmyTel BHITAIKUBAHUU K UX IIPEJENbHBIM (hopMaM ocTaeTcsi HeOCTaTOIHO HcciaenoBanHoi. Ileas: nccienoBarh TUHAMUKY OTKIOHEHUS IIy-
Ted BBITAJKUBAHUH OT UX IIpefeNbHbIX hopM B Tabumnax IOHra ¢ moMoIpio KOMIbIOTEPHBIX SKCIEPUMEHTOB. Pe3yabTaThl: B IPOBEIEHHON
CepHM KOMITBIOTEPHBIX DKCIepuMenToB A1a Tabmur I0ura P pasmepos 0 4-108, 3ammomHeHHBIX BelllecTBeHHBIME YHCIAMHE B fuanaszone [0, 1],
u HabopoB BeTaBisieMbIx 3HaueHwuit o € [0.1, 0.15, ... , 0.85] moixy4eHo 6OIBIIOE KOIUIECTBO HKCIIEPUMEHTANBHBIX IIyTeH BHITAIKUBAHUIM,
KOTOpbIe CPABHUBAINCH B METPHKE L, C COOTBETCTBYIOIIUMHE [IPEAEIbHBIME (popMaMu. BbIYuCIeHbI cpefHre PACCTOSHIA U JUCIIEPCHH UX
OTKJIOHEHHH OT IIPEJeIbHBIX KpI/IBbIX.QyTO‘{HeHLI rapaMeTrpsl B SMIIUPHYECKOH (DOPMYIIe I CKOPOCTH IPUOINKEHNA JUCKPETU3HPOBAHHBIX
myTed BBITAJIKUBAHUU K MX IpeneabHOH dopme. IlomydeHb! sKcliepuMeHTaTbHbIE IapaMeTpbl HOPMAaIbHBIX PACIPEIeIeHUN OTKIOHEHHT
IyTell BBITATKUBAHUH I PA3IHIHBIX BXOAHBIX 3HAYEHUH.

Kirouessrie cioBa — amroputm RSK, coorsercreue RSK, rabnuna IOura, mepa Ilnanmepens, kpusas Bepuinka — Keposa, myTs BbI-
TaJKABAHUH, [IpefenabHas hopMa, THHEHHO YyIOPA[0YeHHOe MHOKECTBO, YHCIEHHBIH DKCIIEPUMEHT, aCHMIITOTHYeCKasd KOMOHHATOPHKA.
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B pesysnprare [y1s Bcex MO OTIEIBHOCTH CIUTAIOTCA HHAEKCHI ITUTUPOBAHUSA, YTO CHUKAET PEUTHHT
YUEHOTO.

Hna unentuduraiuu aBTopos B ceTsax Thomson Reuters mpoBogut perucTpariuio ¢ IprucBoeHu-
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