_MPOrPAMMHDIE U AMNMNAPATHbIE CPEACTBA IS

UDC 004.05
doi:10.31799/1684-8853-2023-1-17-28
EDN: ORVZMP

Advanced metric analysis tool for Java source code

V. V. Burakov?, Dr. Sc., Tech., Associate Professor, orcid.org/0000-0002-0158-8681, burakov@compmechlab.com
A. I. Borovkov®, PhD, Tech., Professor, orcid.org/0000-0003-3177-0959

aCompMechLab LLC, bld. 2a, 21, Gzhatskaya St.,, 195220, Saint-Petersburg, Russian Federation

bPeter the Great St. Petersburg Polytechnic University, 29, Politekhnicheskaia St., 195251, Saint-Petersburg,

Russian Federation

software metrics visualization, code smell.

Introduction: Despite considerable efforts made by numerous researchers and developers, procedures for software quality
assessment are still not sufficiently formalized and automated. Purpose: To develop a specialized software tool to quantify the structural
properties of Java code. Results: We have developed MetricsTree, a software tool that calculates 61 established object-oriented metrics
and is one of the largest sets among similar tools. MetricsTree is integrated into the IDE to ensure the fastest possible information
delivery, contains unique visualization tools to increase the efficiency of metrics analysis, and implements a metrics profile mechanism
to select classes based on a set of metrics values. Practical relevance: As a result of applying MetricsTree to automate quality assurance
processes in the development of Peter the Great St.Petersburg Polytechnic University's flagship CML-Bench system (a platform for
developing digital twins), the average number of software defects detected by external means decreased by 34% during the year.

Keywords — software quality, software metrics, object-oriented metrics, Java metrics, software metrics tool, metrics analysis,

For citation: Burakov V. V., Borovkov A. I. Advanced metric analysis tool for Java source code. Informatsionno-upravliaiushchie sistemy
[Information and Control Systems], 2023, no. 1, pp. 17-28. do0i:10.31799/1684-8853-2023-1-17-28, EDN: ORVZMP

Introduction

The digital platform for development and applica-
tion of CML-Bench for digital twins has been creat-
ed and continues to be maintained by specialists at
the STT Centre “New Manufacturing Technologies”
at Peter the Great St. Petersburg Polytechnic
University (https:/cml-bench.ru). Digital twins [1],
which our system manages, are families of com-
plex multidisciplinary mathematical and computer
models with a high level of adequacy to real mate-
rials, objects, structures, machines, devices, tech-
nical systems, physico-mechanical, technological
and production processes [2, 3]. CML-Bench is a
system for numerical design, mathematical model-
ling and computer-aided engineering control that
belongs to the SPDRM (Simulation, Process, Data
& Recourses Management) class of systems, pro-
viding standardized computations and processing
of results, coordination of distributed engineering
and design teams, greater transparency of design
and engineering processes, optimized development
of digital twins through an accumulated knowledge
base and intelligent supercomputer management.

CML-Bench has been developed since 2014, in-
cluding more than 600,000 lines of code; it compris-
es a set of services whose server side is implemented
in Java. CML-Bench is implemented at enterprises
from the high-tech industries with stringent re-
quirements to code quality.

As initial steps, we adopted a regulation that we
built for quality assurance, describing the relevant

procedures and tools. Initially, we used SonarQube
(https://www.sonarqube.org) and PMD (https://pmd.
github.io) as basic tools.

Problem statement

The importance of the tasks solved by software
implemented in all areas of human activity, the
possible damage from the exploitation of low-qual-
ity software is very high, so it is very important to
formalize all components of software quality as-
sessment. A set of specialized mathematical mod-
els has been developed to solve this problem [4-6].
One way to formalize the quality assessment pro-
cess is based on the calculation and interpretation
of object-oriented values of source code metrics.
Researches on source code metric analysis started
in the 80-s, at present several tens of metrics types
are used, the correlation of their values with the
qualitative state of software is scientifically proved,
and there are several tens of software applications,
designed for calculation of Java code metrics. We
investigated this software as part of selecting a
calculation tool to implement in our quality assur-
ance processes. After determining the functionality
requirements needed for our processes, we identi-
fied weaknesses in the existing metrics calcula-
tion software that made implementation difficult.
We concluded that the existing products primarily
lacked the following important features:

— support for some types of metrics;

N21,2023 N\

WH®OPMALIMOHHO-YMNPABJISIIOLLME CUCTEMbl N\ 17

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA /

— possibility to calculate new metrics with min-
imum labor intensity;

— rapid data delivery;

— integration into IDE;

— possibility to investigate samples of classes
corresponding to a given set of metrics values.

As a solution to these problems, we developed a
plugin for the IntelliJ IDEA IDE, which we called
MetricsTree.

Practical implementation

MetricsTree is a plugin for Intellid IDEA (https:/
plugins.jetbrains.com/plugin/13959-metricstree)
that is compatible with the Ultimate, Community,
Educational, and Android Studio editions. Plugin
development for IDEA consists in correlating plugin
classes with special extension points provided by
this IDE to extend functionality. As a result, class-
es become available to the elements of the IDE from
the methods of the plugin; the IDE then determines
from the extension points where to delegate the cor-
responding calls in response to user actions, events of
the plugin or the IDE itself. The Java code model gen-
erated by IDEA and used by MetricsTree is the PSI
(Program Structure Interface) tree, which is similar
to the AST (Abstract Syntax Tree) in this IDE. This
makes it possible to feed the model of program ele-
ments of the source Java file to MetricsTree input as
efficiently as it is implemented in IDEA itself.

MetricsTree accesses Java code elements in the
form of a PSl-tree, performs their calculation and
collects the value of a particular metric. Two hier-
archies of classes, for metrics and for code elements,
are used to model the subject domain. Hierarchies
of classes have been developed that are responsible
for sequential traversal of PSI-tree nodes and cal-
culate them according to the rules defined by the
metrics, which are traditionally represented as the
Visitor pattern for this kind of problems.

The source code of MetricsTree (https:/github.
com/b333vv/metricstree) is freely distributed under
the Apache 2.0 license and is structured, clean, sim-
ple and straightforward to the extent that there is
no need for more detailed descriptions of its techni-
cal implementation in this article.

Supported metrics

We analyzed the most cited research on ob-
ject-oriented metrics, some of them were related to
coupling metric analysis [7-10], the other parts is
with maintenance [11], reusability [12, 13] and com-
plexity [14, 15] and chose a set of metrics to imple-
ment in our plugin. The set turned out to be one
of the most significant among the peers. In total,

MetricsTree supports 61 metrics: 18 on project level,
11 on package level, 22 on class level, 11 on method
level. The full list of supported metrics can be found
in Table A (Appendix) and on the plugin’s GitHub
page (https:/github.com/b333vv/metricstree).

Along with including a large number of sup-
ported metrics, the software design of the plugin is
intended for minimizing the amount of rework re-
quired to add new types of metrics. All countable
Java code elements are available (which the IDE is
responsible for), and there are entities for represent-
ing metrics. Thus, all that remains to implement a
new basic metric is to define an heir in the Visitor
hierarchy, describing in it the rules for counting
Java code elements of this new metric. If a deriva-
tive metric is added, it is necessary to make an heir
in the metrics hierarchy, describing in it the formu-
la for complexing the base and derivative metrics to
get the value of the new metric.

Table 1 compares MetricsTree with its closest
counterparts in terms of the main families of sup-
ported metrics (open-source tools are highlighted in
gray).

Along with the calculation of metrics values,
MetricsTree implements functions for setting ref-
erence metrics values. These values were derived
based on the analysis of studies of metrics correla-
tion with software attributes. At the same time, to
adapt to the peculiarities of development, the values
of the benchmark intervals can be changed. To in-
crease the speed of assimilation of information by
developers, MetricsTree uses color indication to in-
dicate the extent to which metrics fall within the
benchmark interval.

Key features

Trees

Trees grouping metrics by class and method
level are used to display the hierarchy of class met-
rics (Fig. 1, a). The grouping levels for mapping the
application metrics are application, package, class,
and method (Fig. 2, a, b). In addition, the project
metrics tree groups metrics by metrics authors (e.g.,
Chidamber — Kemerer and Robert Martin’s met-
rics, etc.). For each metric, a choice of 5 colors is
used: green (if the metric value is within the control
limits), yellow @f the metric value is slightly out of
bounds), red @f the metric value is out of bounds),
bright red (if the metric value is significantly out
of bounds). The function for getting the evolution of
the metric value of each class during development is
also implemented (Fig. 1, b).

Treemaps
Treemap charts are used to view data in a hier-
archical view, using a grid of rectangles with sizes

18 7 VHOOPMALIMOHHO-YMPABJSIOLLME CUCTEMbI

/ N21,2023

\ NMPOrPAMMHDIE U AMMAPATHbIE CPEACTBA \

B Table 1. Support for families of metrics by metric analysis tools

g § = —
— = | £ | = | =
s = é = = ;3 %, I % 8 = -8
. = a ‘T S| X 2 I k7
App/Metric Set 8 S |S&|E & | 5 § 2| g £ ;ﬁ
S| S |27 |28 ~ | B |E8E|l 2| 8| &
= = 2 =.9 I [I = = n
< |8 O X o - s | =
= 3 —
—
CAST’s AIP (doc.castsoftware.com/display/ TECHNOS) + + +
CKJM (www.spinellis.gr/sw/ckjm) +
CMT++/CMTdJava (www.verifysoft.com/en_cmtx.html) + +
CodeMR (www.codemr.co.uk) + + + +
Halstead Metrics Tool (sourceforge.net/projects/
. +
halsteadmetricstool)
JHawk (www.virtualmachinery.com/jhawkprod.htm) + + + + +
MetricsReloaded (github.com/BasLeijdekkers/Metrics-
(8 / J / + T + +
Reloaded)
MetricsTree + + + + + + + +
PMD +
SonarQube a4 + +
Understand (emenda.com/scitools-understand) + + + +
MeiricsTree: Class Metrics Project Metrics Metric Profiles Leg
T RecommendationManager
o » m RecommendationManager({PyxidataClient, RecommendationMapper)
~ ~ m addFiltersAndFindPage(PageableDataRequest, R dationAccessibleObjectlds)
® 2 Condition Nesting Depth: 1
Lines Of Code: 18
® © Loop Nesting Depth: 0
577 McCabe Cyclomatic Complexity: 6
O Number Of Loops: 0
O Number Of Parameters: 2
» m buildFiltersAndFindTotals (R dationA ibleObjectids) ~ [O Response For A Class: 30
> m findOneOrThrowException(int) O Response For A Class: 30 (+3) [31.01.2022, 11:08, e3adfc 3t
> m findPage(PageableDataRequest) 2 Response For A Class: 27 (+6) (0
> 'm getAllowedFilters{) O Response For A Class: 21 (08,
¥ m getFilters() a) O Response For A Class: 21 (+5) [0
1 O Data Abstraction Coupling: 2 O Response For A Class: 16 {+3
'/ © Depth Of Inheritance Tree: 1 © Response For A Class: 13 (+9) [0
Lack Of Cohesion Of Metheds: 1 2 Response For A Class: 4 (20.06.2
Message Passing Coupling: 51 b)
2 Nen-C ing Source its: 37
Number Of Added Methods: &
' O Number Of Attributes: 2
O Number Of Attributes And Methods: 21
Class: RecommandationManager
B Fig. 1. Class metrics tree (a) and metric evolution tree using the RFC metric as an example (b)
proportional to the size of the class, which is defined middle representing the class displays all the met-
by the Non-Commenting Source Statements metric. rics of this class on the right.
The color of each rectangle (5 shades from red to
green) reflects the degree to which the value of the Charts
metric selected in the list on the left corresponds to Several types of charts are used to improve the
the reference range. Clicking on the list in the left efficiency of metric analysis of Java source code.
part of the window (Fig. 3) displays the Treemap Some of them clearly show the general metric pic-
chart in the middle, clicking on the rectangle in the ture reflecting the state of source code quality

Ne 1, 2023 AN WHO®OPMALIMOHHO-YTMPABJIAIOLWMUE CUCTEMbI AN 19

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA

cmi-bench (Project Metrics)
™ MOOD Metrics Set

C Attribute Hiding Factor: 84,9977 %
Attribute Inheritance Factor: 34,5053 %

© Coupling Factor: 0,2288 %

0 Method Hiding Factor: 15,9035 %
Method Inheritance Factor: 35,7844 %
Polymorphism Factor: 39,4180 %

W Statistics
Lines Of Code: 145535
Non-Cc Source
Number Of Abstract Classes: 79
Number Of Concrete Classes: 3991
> Number Of Interfaces: 153
> Number Of Static Classes' AR
QMOOD Quality Attributes Set
v Doru
v Bcrp
~ [common
~ [» attachedfile
v Im api
~ ¥ output
v [u http
> @ Att
> & AttachedFilesController
> & DependentAttachedFilesColumnsController
b Robert C. Martin Metrics Set
C Abstractness: 0,0
1 O Afferent Coupling: 0
Efferent Coupling: 27
O Instability: 1,0
' O Normalized Distance From Main Sequence: 0,0

its: 57282

hedFilesColumnsCec

B Fig. 2. Project metrics tree

7

(Figs. 4-6). Another part visualizes different types
of relationships between metric values and metric
profiles and serves for more in-depth metric analy-
sis of structural properties of Java code (Figs. 7-9).

Synergy with the IDE

Once a class is selected in the project tree, its
source code is opened in the editor, its metrics are
simultaneously calculated and displayed as a tree
and a table (Fig. 10, a—d). The developers do not
have to take any additional steps to get the met-
rics values for the class processed at the moment.
Embedding the information about the metrics into
the IDE generates a synergy effect, serving to in-
crease the degree of validity and effectiveness of the
decisions made by the developers by promptly ob-
taining the metrics values.

MetricsTree provides an option to control the
composition of the metrics displayed in the tree, as
well as the reference thresholds for base and derived
metrics values.

Metric profiles

The metric profiles tool was originally inspired
by research into the possibility of detecting code
smells using metrics [24]. We have extended the
interpretation of this tool by calling it the metric

MericaTree: Class Metrics Project Metrics Metric Profiles. Log o -
Select Metric Type Class: nu.crp.cmib.c it task.core.antity. TRskEntit Ctass: ExportFiesidsnager
Matric Description Matric Value Excass
Accoss To Forelan Data rooa
Coupling Between Objects Coupling Between Objects 24 +11
Data Abstraction Coupling Data Abstraction Coupling -
Depth Of Inheritance Tree Depth Of Inheritance Tree 1
Lack Of Cohesion Of Methods Lack Of Cohesion Of Methads 1
= Message Passing Coupling Message Fassing Coupling 77
- ’ ing Source + Non-Commenting Source Statoments 7%
= Mumber Of Accessor Mothods Mumber Of Accessor Methods o
s Number Of Added Methods Number Of Added Methods 1 -
- Number Of Attributes Number Of Attributes 4 +1
=) Number Of Attributes And Methods. Mumber Of Attributes And Methods k1]
Number Of Children MNumber OFf Children o
* Number Of Methods Mumbar Of Mathods 15 +2
Number Of Dparations Numbar Of Oparations 28
Number Of Overridden Methods Number Of Overridden Methods o
Number Of Public Attributes Mumber Of Public Attributes 0
© Response For A Class Responss For A Class 58 s
Tight Class Cohaslon Tight Class Cohaslon 00208 -0.2
Weight Of A Class. Weight Of A Class 10
. . .
B Fig. 3. Treemap with class-level metrics
MetricsTree: ~ Class Metrics Project Metrics Metric Profiles Log -
1 - o S N ST S R e - d Package Level Metrics Values: Instability, Abstractness, Normalized Distance From Ma
- w Package Instability Abstractn... Distance
2 0.9 . ru.crp.cmib.commen.attachedfile.api.o.. 1,0 0,0 0,0
08 O ru.crp.cmib.common.attachedfile.api.o... 0,1613 1,0 01613
. . © ru.crpecmib.common.attachedfile.dac 0,9 0,0 01
b 0.7 oo . . O ru.crp.cmib.common.attachedfile.entity 0,32 0,0 0,68
L §os . ru.crp.cmib.common.attachedfile.mana... 0,58 0,0 0,42
- é ' 9 O ru.crp.cmib.common attachedfile.mapper 0,8125 0,0 01875
“ o gos i .8 L) - = ® » ru.crp.cmib.common.attachedfile.vo 0,5333 0.0 0,4667
s | 8 g4 .’ > © ru.crp.cmib.common.avatar.apioutput.... 1,0 0,0 0,0
e i 4 . A Sy . s >) ru.crp.cmib.common.avatar.api.output.... 0,4286 1,0 0,4286
- 03 . Ld *) ru.crp.cmib.commeon.avatar.exception 0,0 0,0 10
o oz . 2 LA e AL L) L ° - '. o - © ru.crp.cmib.common.avatar.manager 0,4783 0,0 0,5217
T r . . =) ru.crp.emib.common.column.annotation 0,0104 06667 0,3229
F 0.1 " ® . = ot . L = o © ru.crp.emib.common.column.api.outpu... 0,099 05 0,401
° S . a8 O ru.erp.cmib.common.column.dao 075 0,0 0,25
g - O ru.crp.cmib.common.column.dto 0,0652 0,0 0,9348
3 o1 0z 03 04 o5 06 07 08 09 1 © ru.crp.emib.common.column.entity 0,1429 0,0 0,8571
Instability © ru.crp.cmib.common.column.enumeration 0,0 0,0 1,0

B Fig. 4. Abstractness vs. instability distribution

20 7/

UH®OPMALIMOHHO-YIMPABJIAIOWUE CUCTEMDbI

/ N21,2023

\ MPOrPAMMHDIE U AMMNAPATHbIE CPEACTBA \

MetricsTree: Class Metrics. Project Metrics ~ Metric Profiles Log o -
7 RFC NOM DIT NOOM NOPA NOA NOC NCSS NOAC ATFD WMC CBO High © Very-high O Extreme
"Weighted Methods Per Class" Metric Values Distribution Class Range Value
High (25,8%) SubtaskBaseDto [45.09) 165
3 PartDTO [45.) 118
SimulationSubmodel [45..e0) nz
ClusterManager [45.00) 112
i DependentTargetOut [45.0) 110
5 ProjectDependentTargetOut [45.00) 108
. Very-high (2,6%)
& TeamMemberOut [45.05) 106
a Extreme (3,6%) SecurityProperties [45.00) 104
- MultivariantSimulationOut [45..00) 103
— AuthUtils [45.) 103
[E: Task [45..e0) 103
1 NodeData [45.e0) 102
& TaskUtils [45.00) 102
TreeDto [45.00) 101
SubmodelShort [45..20) 97
Regular (68,1%) SubtaskEntityTable [45..00) 97
DmuDTO [45.00) 92
.
B Fig. 5. Pie chart for metrics distribution by type
| MetricsTree: Class Metrics Project Metrics Metric Profiles Log 9 -
Y 1 Metrics value ranges
L. Metric Description © Regular High © Very-high © Extreme
= 0,8 RFC Response For A... [0..45) [45..65) [65..80) (80..09)
T NOM Number Of Met... [0.7) [7.15) [15.25) [25.%)
® DIT Depth Of Inheri... [0..3) [3.5) [5.7) (7.0)
= Zos NOOM Number Of Ove... [0..3) [3.8) [5.8) [B..25)
é NOPA Number Of Pub... [0..3) [3.5) [5.12) [12..00)
hn 2 NOA Number Of Attr... [0..4) [4..9) [8.14) (14..00)
“ Eoa NOC Number Of Chil... [0.. [2..4) [4.7) [7..00)
. 2 NCSS Non-Commenti... [0.. [1000.15... [1500..20... [2000..c0)
= NOAC Number Of Acc... [0.. 4.7 [7.13) [13..00)
- 02 ATFD Access To Fore... [0..6) 16..8) [8.10) [10..00)
7 ‘ WMC Weighted Meth... [0..12) [12.35) [35.45) [45.%0)
= I ... [0.14 . £ ..
7 0] =~ — — | — ™) CBO Coupling Betwe... [0.14) [14.17) [17.23) [23..00)

wmMmC DIT CBO RFC NOC NOA Nﬂbll NéM ATFD NOPA NOAC NCSS
Metric Type

| B recuiar vich [ek [rxrnmz|

B Fig. 6. Metrics distribution

&

Too Many Methods
Too Many Fields
Long Parameters List
Long Method
Intensive Coupling
High Coupling

God Class (type 4)
God Class (type 3)
God Class (type 2)
God Class (type 1)
Feature Envy
Dispersed Coupling
Deeply Nested Conditions
Complex Method
Brain Method

Brain Class.

FEEFE

2]

*

B Fig. 7. Correlation between metric profiles

MetricsTree: Class Metrics Project Metrics Metric Profiles Log

Class

IssueConfigPropertyM...
~ Brain Method RealtimeJobManager 0
s complex Method UserRoleStateComputer 0
w Deeply Nested Conditions WMC MetainformationMana... 0
- Dispersed Coupling DI ICSS SimulationComparator 0
Feature Envy 80 Tcc AvatarManager 0
I God Class (type 1) StoryboardFileManager 1
5 God Class (type 2) RFC woc UserAccessSetter 0
~ God Class (type 3) WorkflowValidator 0
God Class (type 4) TargetGroupPropertie... 0
High Coupling Ot NOAC SimulationvaiueMatrix... 0
Intensive Coupling PermissionsManager 0
Long Method HO& OEA TaskSyncManager 0
Long Parameters List NOO TFD SimulationTaskParent... 0
Too Many Fields NOM | CsvSyntaxValidationM... 0
Too Many Methods FilesManager 0
WorkflowManager 0

TargetValuesFileMana...

TargetGrouplmportFro...

B Fig. 8. Distribution of metric values across metric profiles

Ne 1, 2023 AN WHO®OPMALIMOHHO-YTMPABJIAIOLWMUE CUCTEMbI AN 21

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA /

4 NOAM Number Of Added Methods Lorenz-Kidd Metrics Set
SIZEZ Number Of Attributes And Methods Li
NOM Number Of Methods

enry Metrics Set
enry Metrics Set

MtricsTroe: Class Motrics Project Metrics _ Metric Profiles Log & —
m| riptic S
il il i Distribution Of "MPC" Metric Values By Metric Profiles
WMC Weighted Methods Per Class Chidamber-Kemerer Metrics Set o ey ~ 2 -+ - - L
DIT Depth Of Inheritance Tree Chidamber-Kemerer Metrics Set 400 :
li cBO Coupling Between Objects Chidamber-Kemerer Metrics Set {
W RFC Response For A Class Chidamber-Kemerer Metrics Set 350 + s 1 ras +
.. LEOM Lack Of Cahesion Of Methods Chidamber-Kemerer Metrics Set 1 l
NOC Number Of Children Chidamber-Kemerer Metrics Sat 300 : i
" NOA Number OF Attributes Lorenz-Kidd Metrics Set + + + + i i
5 NOO Number Of Operations Lorenz-Kidd Metrics Set i + | |
NOOM Number Of Overridden Methods Lorenz-Kidd Metrics Set) 1 1
|
! 1
i 1
1
1
|

Data Abstraction Coupling

._
B
p=-[T]--=1

ilE e i S e
(T - - - - - i HEHHH
e e =

HCT T - - - - HH- +

OBt o
- W

1 - - -+ + +

-+ o+

ATED Access To Foreign Data Lanza-Marinescu Metrics Set 100 '
NOPA Number Of Public Attributes Lanza-Marinescu Metrics Set L}
NOAC Number OFf Accessor Methods Lanza-Marinescu Metrics Set 50 :
WOC Weight Of A Class Lanza-Marinescu Metrics Set i i é

TCC Tight Class Cohesion Bieman-Kang Metrics Set o

B Fig. 9. Correlation between metric values and metric profiles using the MPC metric as an example

P 1-bench — i ntroller.java [cmi-bench.main]
core sic main java ru crp cmib component simulation core api output = hitp & SimulationControlier 2 A emi_bench-endpoints | #1 ¥ B = Git & v 2 Q Qe P
g Project v (%] & — agerjava © J & Ji © © Expos I’ c v i
&~ Wicore [emi-bench] @RequestMapping(method = RequestMethod.POST) &+ 347 ¥8 §
- 2 gradie public Simulation create(@Validated(SimulationValidationGroup.class) PRequestBody SimulationIn simulation, —I=
i el) @CurrentUser PortalUser currentUser) { =
2 W analysis-sceiple: // oll other access rights checks should be applied in simvlationMonager.creoteAndRead °
: ::L‘: permissi = eObjects0fType (0TRegistry.SIMULATION) ; §
5 Bmdata dmuValidator.checkDnuExistsAndAccessible(simulation.getDnuId()); s
> Budb
> Bmdocker SimulationEntity simulationEntity = Mapper.mop(simulation, SimulationEntity.class);
> W= docs
> [gradle a) simulationEntity.setStatus(SinulationStatus.Created); b)
> MElogs 161 simulationEntity.setStatusId(SimulationStatus.Created.getId());
> = packaging 162 simulationEntity.setCreationDate(new Date());
> scripts simulationEntity.setModificationDate(new Date());
. simulationEntity.setOwnerId(currentUser.getUser().getId());
~ bz main
> = asciidoc . .) .
~ java SimulationEntity createdSimulation = simulationManager.createAndRead(simulationEntity,
R sinulation.getPid(),
« P common currentlser. getUser());
[attachedfile
~ [api.output Simulation response = getTransformer().transform(createdSimulation);
v B http if (simulation.getAddToClipboard()) {
€ AttachedFilesColumnsController clipboarddanager.addToClipboard(currentUser.getUser(), createdSimulatien.asTypedObject());
@ AtachedFilesController respanse.setIsInClipboard(true);
€ DependentAttachedFilesColumnsCo }
MetricsTree: Class Metrics Project Metrics Metric Profiles Log o -
u mulationController Class: SimulatienController
= > SimulationC er i L Cl % .
B . @ create{Simulationin, PortalUser) Metric Metrics Set Description Value Regular R...
é % » Condition Nesting Depth: 1 WMC Chidamb... Weighted Methods Per Class 24 [0.12)
= Lines Of Code: 22 DIT Chidamb... Depth Of Inheritance Tree 3 [0..3)
5‘_ (0} © Loop Nesting Depth: 0 RFC Chidamb... Response For A Class 78 [0..45)
7 © McCabe Cyclomatic Complexity: 2 C) LcoM cnjdamb..‘ Lack Of Cohesion Of Methods 2
£ »Number Of Loops: 0 © NOC Chidamb... Number Of Children d) o [0.2)
H © Number Of Parameters: 2 O NOA Lorenz-K... Number Of Attributes 20 [0..4)
E > @ Integer, PortalUser) NOO Lorenz-K... Number Of Operations a8 |
n > int, PortalUser, HitpSer NOOM Lorenz-K... Number Of Overridden Methods 3 [0.3) :
> i get{int, Portaluser) NOAM Lorenz-K... Number Of Added Methods 12 &
§ > @ getfullSimulation(int) SIZE2 Li-Henry ... Number Of Attributes And Met... 67 g
© > i getManager() NOM Li-Henry ... Number Of Methads % 0.7) g
Class: SimulationController
P Git =TODO @ Problems | i MelricsTree G Profiler [Terminal @ Services % Endpoints & Dependencies = Spring
D Checked out new branch test-local from 2022.5 (today 12:19) 7714 LF UTF-8 dspaces | test-local ' % |

B Fig. 10. Main window in IntelliJ IDEA with embedded MetricsTree plugin: ¢ — selecting a class in the project tree;
b — displaying source code in the editor; ¢ —results of metrics calculation in the tree; d — results of the metrics calculation
in the table

profiles formation tool, allowing to identify class- e . T T
es Wit,h given Sets Of metric Values by Constructing Basic Metrics Valid Values Darivative Maotrics Valid Values Class Metrics Troo Composition Metrics Profiles
appropriate samples. The conjunct of metric value — Ve pros
ranges serves as an analytical specification of the . A o sanTog R
metric profile (Fig. 11). oo NS AN e W e e e
Once defined, metric profiles allow generating omislntevio il e v R O
subsets of classes with certain metric values, which S s S el
can be visualized as a table (Fig. 12, a) or a Treemap God Chass type) ATFD S 44080 2 14 W 40
(Fig 12 b) God Class (type 4) CBO 214 RFC 2144 4 TCC < 0.37 A WMC = 48
. . HH Lf =
’ .:;f:::"o:pnng 2:?57 fcllil SACINT 28 A MHD 22
Long Methad LOC = 16
. . ong Parameters Lis! NOPM = 4
Comparison with counterparts Too bary Fiakls NoA=15
. . . Too Many Methods HOM =10
in terms of functionality
Table 2 presents a comparison of the selected cuee | NI
tools for metric analysis within the selected set of B Fig. 11. Dialog box for setting the metric thresholds

22 7 VH®OPMALIMOHHO-YMPABSIOLLME CUCTEMbI Z N21,2023

N\

NMPOrPAMMHDIE N AMNMMNAPATHbDIE CPEACTBA

@) | MetricsTree: ClassMetrics Project Metrics Melric Profiles. Log s —
BE Profile Name Metric Profie Class. Package Metric M Value Regula..
© Brain Class CC23ALOCE30 A MND23 o HOAV 234 TEC .. Is;qlu . Lk ”‘": tiha Lan i e o
o tils Fucrpemib.comman cor, .
S 2I"nlh;:‘mhud gg *: ALOCZ30 AMND 23 A NOAV 23 ; e ST NOOM Lorenz-Kidd Meftrics Set Number Of Overridden Methads 7 (0.3
- " . R MOAM Lorens-Kidd Metrics Set Number Of Added Mathods 7
ja | Dota Class HOAM =4 4 NOPA 2 3 A WMC < 154 WOC < 0,34 :::"F e iy SIZEZ Li-Hanry Matrics Set Humber Of Attributes And Methods 62
om'y Nested Conditions CHD a3 imeJobEntity ru.crp.cmib.component....
- o N i NOM Li-Henry Metrics Set Nurnber Of Methods 6 [0.7)
O Dispersed Coupling CDISP 20,86 ACINT 2 6 o MND 2 2 . MPC Li-Henry Matrics Set Message Passing Coupling 54
IO Feature Envy ATFD 2 5AFDP 254 LAA <033 sl m'cm'c"::momwnm' DAC Li-Henry Metrics Set Data Abstraction Coupling 4
ter ru.crp.cmib, .
T God Class type 1} ATFO 8. TO0 2 0,83 WhiC 2. 47 UserGroupControlier ru.crp.cmib, companent ATED Lanza-Maringscu Motrics Set Accoss To Foreign Data 1 [0.8)
x g:“‘ |['“” 2: :z: 5 : A 2:3 o ‘30 "w“_:;“: “:: Pag prgeigis) NOPA L Melrics Set Number Of Public Attributes o [0.3)
» o ass (type =da zMa = % iy = . 5
b e . i P Al S NOAC Lanza-Marinoscu Metrics Sot Number Of Accessor Mothods o [0.4)
Hich o BenchPageableRequest Fu.crp.cmib system come. . WOC Lanza-Marinescu Metrics Set Weight O1 A Class 10 0.6.0...
sy ChildrenPaggeHandle fuicepismib TCC Bieman-Kang Motrics Set Tight Ghass Cohesion 0,6028 [0,33...
2-Imianaivs Cotipling N iz 1ot et i ememnn i 0 NCSS Chr, Clomens Lee Metrics Sat Non-Commenting Source Stateme.. 50 [0.10.
b) MetricsTree: Class Metrics Project Metrics Metric Profiles. Log -
E= Salect Profile Class: ru.crp.cmib.compenent.wiki.core. apiinput.attachedfile. Wikil aAttachadFilesHandler Class: & boardFileManager
Profile Name Mt alie Excess
b Dispersed Coupl... © Access To Forelgn Data N 46
- Feawre Envy O Coupling Between Objects 26 +13
God Class (type 1] Data Abstraction Coupling 7 -
- God Class (type 2) O Depth Of Inheritance Tree 1
[O God Class (type.. Lack Of Cohesion Of Me... 1
God Class (type... Message Passing Coupll... 116
T High iing “ Non-Commenting Soure,.. 131
£ Inten: Coupling Mumber OF Accessor M... 1
3 Long Method Number Of Added Meth_. 18 -
O Long Parameter...) Number Of Attributes 14 1
Too Many Flelds Mumber Of Attributes A... 45
B Fig. 12. Class distribution by metric profile: a — table view; b6 — Treemap view
B Table 2. Comparison of metrics calculation tools by functionality
o
= = ®
o 0 0 « S
£ | Sw z g g 2 < 8 g o
Q = Q 3 = = = = = o .8
g .9 = .5 s 3 = = 3 B =3 58
- — o= < © O 5
o B o o s = o, = o o S E=2
App/Feat S = =t 3 3 a, a3 = e 2
pp/Feature 23 (R=t = [« g o o 2 2 g =
o [=1} = 5} - 1 = QD o o o @
g = =8 2 =)) ~ = w = O =]
< [= «) = - 15 [
S 8 % 8 é“ B & @ 5} < S8
= g a & = = s 7
<
b
CAST’s AIP + + +
CKJM n
CMT++/CMTJava + +
CodeMR + + + + + +
Halstead Metrics Tool +
JHawk N +
MetricsReloaded + + +
9
MetricsTree s A + + + F + + + +
PMD + +
SonarQube + + + +
Understand +

properties. Many of the metrics analysis tools com-
pared have useful features not considered in the
presented comparison. The rows with open-source
tools are highlighted in gray.

Effects of use

Over the past year, while still using SonarQube
and PMD, we have integrated MetricsTree into our
quality assurance processes. MetricsTree is imple-
mented as a multifunctional tool, the main aspects

of its implementation can be summarized as the fol-
lowing three groups.

Working on the task

The main element of the MetricsTree that ac-
companies a programmer’s daily work in the IDE is
the tree of class metrics (see Fig. 10, ¢). It displays
the values of metrics at the class and method level,
drawing the developer’s attention to the class metrics
whose values fall outside the control limits by means
of color-coding. There are five color codes, which
change depending on the degree of deviation from

N21,2023 N\

WH®OPMALIMOHHO-YMNPABJISIIOLLME CUCTEMbl N\ 23

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA /

the reference values. The developer can use the user
interface to control the thresholds of the metric value
ranges. To help the developer focus on the important
tasks, the Ul has a feature to control the composition
of the metrics in the tree. Developers do not need to
take any steps to manage the metric values, as nor-
mal work with Java classes in IDEA in the project
tree and editor is accompanied by quick calculation
and display of metrics values for the class considered
at the moment. Based on feedback from our develop-
ers, we can conclude that adding real-time metrics
information to the typical IDE window structure
helps them make the right decisions when working
on a certain class or its method in a timelier manner.

Final checks on the task

After completing the task in the local environ-
ment, the developer performs a quality check of the
new or modified functionality before implementing
the changes in the main branch of code. The devel-
oper uses the metric profiles tool to look for classes
with code smells or defects. If the developer discov-
ers classes for which they are responsible in the gen-
erated sample, they fix the defects found before put-
ting the results of the work into the common code
base.

Prerelease activities

After the set of tasks making up the new CML-
Bench release is completed, several specialized
measures are taken as part of our quality assurance
regulations.

First, analysis of code smells or defects is per-
formed based on metrics profiles, similar to the one
described in the previous section, but project-wide.

The second important component is the analy-
sis of project quality using diagrams. We evaluate
the evolution of QMOOD metrics on a diagram, con-
trolling for possible quality degradation associated
with refinements. Other diagrams are used to inves-
tigate different aspects of the project metrics state
at a deeper level: distribution of metrics values, de-
pendencies between different metrics, dependencies
between metrics and metrics profiles, etc.

Third, we use an unloading of all project met-
rics as an XML file and compare it to a similar
unloading associated with the previous releases.
Assessing the evolution of metrics values, we look
for system elements whose quality has deteriorated
due to changes made when the current release was
prepared, analyze the reasons for the deterioration,
and determine ways to fix them.

As noted above, after we developed and started to
use MetricsTree, we continued to use SonarQube and
PMD. In the year that MetricsTree was adopted to
support quality assurance processes, our three CML-
Bench development teams created 5 new services
and refined 11 existing services, while writing about

72,000 lines of new and modified Java source code. At
the same time, the number of code defects identified
by SonarQube and PMD during this period decreased
by 34%. The improvement in quality metrics from
release to release of CML-Bench reinforces our confi-
dence in the effectiveness of automating quality assur-
ance processes with our MetricsTree tool and justifies
the importance of its use in the development process.

Conclusion

The plugin we developed for IDE Intellid IDEA is
designed for metric analysis of structural properties
of Java code and has a number of key features:

— is based on rigorous mathematical models for
quality and measurement of software quality con-
trol theory;

— aims to minimize the cost of adding new types
of metrics;

— synergistically extends the space generated by
the IDE to quickly add information about quanti-
tative properties of the software entities developed;

— supports different ways to visualize metrics
information, i.e., trees, Treemaps, charts of differ-
ent types to enhance analysis of quantitative prop-
erties of Java code;

— implements a mechanism for describing met-
ric profiles and forming class subsets with appropri-
ate combinations of metric values.

MetricsTree has been successfully used for a
year to ensure the high quality of the advanced
CML-Bench platform for developing and implement-
ing digital twins we are working on.

Our immediate plans include:

— conducting an in-depth study to validate the
feasibility of the metric profile mechanism;

— conducting a comprehensive study of the im-
pact of various MetricsTree features used on soft-
ware quality assurance processes;

— applying MetricsTree to multiple open-source
Java projects to increase the generality and validity
of the conclusions;

— evolution towards taking into account the
other components of software development.

As short-term directions for MetricsTree, we will
focus on engineering a tool for formulating analyti-
cal expressions for metric profiles. Furthermore, we
plan to implement a number of additional metrics:

— Halstead Metrics [23];

— Maintainability Index (MI) [24];

— Decoupling Level (DL) [25];

— Propagation Cost (PC) [26].

In addition, the MetricsTree repository on
Github currently contains about 30 Issues created
by plugin users from different countries; we intend
to analyze the feasibility of implementing these in
the near future.

24 7 VHOOPMALIMOHHO-YMPABJSIOLLME CUCTEMbI

/ N21,2023

N\

NMPOrPAMMHDIE U AMMAPATHbIE CPEACTBA \

Appendix
B Table A. List of metrics calculated by MetricsTree
Level Family (Author) Abbreviation Description Source
Project Chr. Clemens Lee NCSS Non-Commenting Source Statements www2.informatik.
Package | Chr. Clemens Lee NCSS Non-Commenting Source Statements hu-berlin.de/ swt/intkoop/
jese/tools/JavaNCSS%20
-%20A%20Source
Class Chr. Clemens Lee NCSS Non-Commenting Source Statements %ZOMea.lsurement
%20Suite%20for
%20Java.html
Project - LOC Lines of Code -
Package - LOC Lines of Code -
Class - LOC Lines of Code -
Method - LOC Lines of Code -
Project - NOC Number of Concrete Classes -
Package - NOC Number of Concrete Classes -
Project - NOA Number of Abstract Classes -
Package - NOA Number of Abstract Classes -
Project - NOSC Number of Static Classes -
Package - NOSC Number of Static Classes -
Project - NOI Number of Interfaces -
Package - NOI Number of Interfaces -
Project MOOD MHF Method Hiding Factor
Project MOOD AHF Attribute Hiding Factor
Project MOOD MIF Method Inheritance Factor [16]
Project MOOD ATF Attribute Inheritance Factor
Project MOOD PF Polymorphism Factor
Project MOOD CF Coupling Factor
Project QMOOD - Reusability
Project QMOOD - Flexibility
Project QMOOD - Understandability (17
Project QMOOD - Functionality
Project QMOOD - Extendibility
Project QMOOD - Effectiveness
Package | Robert C. Martin Ce Efferent Coupling
Package | Robert C. Martin Ca Afferent Coupling
Package | Robert C. Martin I Instability 18]
Package | Robert C. Martin A Abstractness
Package Robert C. Martin D Normalized Distance from Main Sequence
Class Ch;g:‘rlrit;eel; - WMC Weighted methods per class
Class Ch;g;nlﬁgg - DIT Depth of Inheritance Tree [19]
Class Ch;g:&zg N NOC Number of Children
Class Ch;g;gig - CBO Coupling between object classes
N21,2023 N\ WNH®OPMALIVOHHO-YMPABJSISIOLME CUCTEMbl N\ 25

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA /

B Ending of Table A

Level Family (Author) Abbreviation Description Source

Class Ch;gjnlile?‘ii N RFC Response for a Class

Class Chidamber — LCOM Lack of cohesion in methods

Kemerer

Class Lorenz - Kidd NOA Number of Attributes

Class Lorenz - Kidd NOO Number of Operations [20]

Class Lorenz — Kidd NOAM Number of Added Methods

Class Lorenz — Kidd NOOM Number of Overridden Methods

Class Li - Henry SIZE2 Number of Attributes and Methods

Class Li - Henry MPC Message Passing Coupling [21]

Class Li - Henry DAC Data Abstraction Coupling

Class Li - Henry NOM Number of Methods

Class Lanza — Marinescu ATFD Access to Foreign Data

Class Lanza - Marinescu NOPA Number of Public Attributes [22]

Class Lanza - Marinescu - Number of Accessor Methods

Class Lanza — Marinescu WOC Weight of a Class

Class Bieman - Kang TCC Tight Class Cohesion [27]
Method McCabe CC McCabe Cyclomatic Complexity -
Method - - Maximum Nesting Depth -
Method - - Loop Nesting Depth -
Method - - Condition Nesting Depth -
Method - - Number of Loops -
Method - LAA Locality of Attribute Accesses -
Method - FDP Foreign Data Providers -
Method - NOAV Number of Accessed Variables -
Method - CINT Coupling Intensity -
Method - CDISP Coupling Dispersion -

References 5. Burakov V. V. The use of simulation modeling to im-

. State Standard R 57700.37-2021. Digital Twins of
Products. General Provisions. Moscow, Rossijskij in-
stitut standartizacii Publ., 2021. 11 p. (In Russian).

. Borovkov A. I., Rozhdestvenskiy O. I., Pavlova E.,
Glazunov A. 1., and Savichev K. Key barriers of digital
transformation of the high-technology manufactur-
ing: An evaluation method. Sustainability, 2021,
vol. 13, no. 20: 11153. doi:10.3390/su132011153

. Borovkov A. I., Gamzikova A. A., Kukushkin K. V.,
Ryabov Yu. A. Cifrovye dvojniki v vysokotekhnologich-
noj promyshlennosti [Digital Twins in the High-Tech-
nology Manufacturing Industry]. Politekhnicheskij
universitet Publ., Saint-Petersburg, 2019. 62 p. (In
Russian).

. Burakov V. V. Upravlenie kachestvom programmny'kh
sredstv [Software Quality Management]. Saint-Pe-
tersburg, GUAP Publ., 2009. 287 p. (In Russian).

prove software quality. Trudy devyatoj vserossijskoj
nauchno-prakticheskoj konferencii po imitacionnomu
modelirovaniyu i ego primeneniyu v nauke i promysh-
lennosti “Imitacionnoe modelirovanie. Teoriya i prak-
tika” IMMOD-2019 [Proc. of the IX All-Russian Sci-
entific and Practical Conf. on Simulation Modelling
and its Applications in Science and Industry. “Simula-
tion Modelling. Theory and Practice” IMMOD-2019)],
2019, pp. 368-374 (In Russian).

. Burakov V. V., Kulakov A. Yu., Cherniy A. N. Soft-

ware maintenance evaluation. Informatization and
Commaunication, 2019, no. 4, pp. 14-21 (In Russian).
doi:10.34219/2078-8320-2019-10-4-14-21

. Kumar N. R, Viji C., and Duraisamy S. Measuring

cohesion and coupling in object oriented system us-
ing Java reflection. ARPN Journal of Engineering
and Applied Sciences, 2015, vol. 10, no. 7, pp. 3096—
3101.

26 7 VH®OPMALIMOHHO-YMPABSIOLLME CUCTEMbI

/ N21,2023

\ NMPOrPAMMHDIE U AMMAPATHbIE CPEACTBA \

8. Ankush Vesra, Rahul. A study of various static and
dynamic metrics for open source software. Interna-
tional Journal of Computer Applications, 2015,
vol. 122, no. 10, pp. 17-19. doi:10.5120/21736-4927

9. Nicolaescu A., Lichter H., Xu Yi. Evolution of object
oriented coupling metrics: A sampling of 25 years of
research. Software Architecture and Metrics (SAM),
2015 TEEE/ACM 2nd Intern. Workshop, May 2015.
doi:10.1109/SAM 2015.14

10. Schnoor H., Hasselbring W. Toward measuring soft-
ware coupling via weighted dynamic metrics. 40th In-
tern. Conf. on Software Engineering: Common Proc.,
ACM/IEEE, 2018, pp. 342-343. doi:10.1145/3183440.
3195000

11. Tkachuk M., Nagornyi K., and Gamzayer R. Models,
methods and tools for effectiveness estimation of post
object oriented technologies in software maintenance.
ICTERI 2015, CCIS 594, Springer International Pub-
lisher Switzerland, 2016, pp. 20-37.

12.Padhy N., Satapathy S., and Singh R. P. State-of-the-
art object oriented metrics and its reusability: A dec-
ade review. Smart Computing and Informatics, 2018,
pp. 431-441. doi:10.1007/978-981-10-5544-7_42

13.Padhy N., Satapathy S., Singh R. P., and Sethlani J.
A systematic literature review of an object oriented
metrics components: Case study for evaluation of re-
usability criteria. Intern. Conf. on Advanced Studies
in Engineering and Sciences, 2017, pp. 49-61.

14.Mao C., Xu Ch. Entropy based dynamic complexity
metrics for service oriented systems. 24th Asia-Pacif-
ic Software Engineering Conf. Workshops, IEEE, 2017,
pp. 90-97. doi:10.1109/APSECW.2017.14

15.Aswini S., Yazhini M. An assessment framework of
routing complexities using LOC metrics. Intern. Conf.
on Innovations in Power and Advanced Computing
Technologies, IEEE, 2017, pp. 1-6. doi:10.1109/IP-
ACT.2017.8245022

16.Brito e Abreu F. and Carapuca R. Object-oriented
software engineering: Measuring and controlling the
development process. 4th Intern. Conf. on Software
Quality, Mc Lean, VA, USA, 1994, pp. 1-8.

17. Bansiya Ja., and Davis C. G. A hierarchical model for
object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 2002, vol. 28,
iss. 1, pp. 4-17.

18.Martin R. C. Agile Software Development: Principles,
Patterns, and Practices. Alant Apt Series. Prentice
Hall, Upper Saddle River, NJ, USA, 2002. 552 p.

19. Chidamber S. R., and Kemerer C. F. A metrics suite
for object oriented design. IEEE Transactions on Soft-
ware Engineering, 1994, vol. 20 (6), pp. 476-493.

20.Lorenz M., Kidd J. Object Oriented Software Metrics.
Pearson, 2008. 160 p.

21.Li W., and Henry S. Object-oriented metrics that pre-
dict maintainability. Journal of Systems and Soft-
ware, 1993, vol. 23, iss. 2, pp. 111-122.

22.Lanza M., Marinescu R. Object-oriented metrics in
practice: Using software metrics to characterize, evalu-
ate, and improve the design of object-oriented systems.
Springer, 2006. 207 p. doi:10.1007/3-540-39538-5

23.Chhillar R. S., and Gahlot S. An evolution of software
metrics: A review. Proc. of the Intern. Conf. on Ad-
vances in Image Processing, ICAIP 2017, New York,
NY, USA, 2017, pp. 139-143. doi:10.1145/3133264.
3133297

24.Coleman D., Ash D., Lowther B., and Oman P. Using
metrics to evaluate software system maintainability.
Computer, 1994, vol. 27, no. 8, pp. 44-49. doi:10.1109
/2.303623

25.Mo R., Cai Ya., Kazman R., Xiao Lu, Feng Q. Decou-
pling level: A new metric for architectural mainte-
nance complexity. Proc. of the Intern. Conf. on Soft-
ware Engineering, Austin, TX, 2016, pp. 499-510.

26.MacCormack A., Rusnak J., Baldwin C. Y. Exploring
the structure of complex software designs: An empiri-
cal study of open source and proprietary code. Man-
agement Science, 2006, vol. 52, iss. 7, pp. 1015-1030.

27.Bieman J. M., Kang B. Cohesion and reuse in an ob-
ject-oriented system. Proc. of the 1995 Symp. on Soft-
ware Reusability, Seattle, Washington, United States,
1995, pp. 259-262.

VIIK 004.05
doi:10.31799/1684-8853-2023-1-17-28
EDN: ORVZMP

CpencrTBo 11 yrily0/JI€eHHOTO METPHIECKOr0 aHAIN3a HCXOMHOI0 Koa Ha Java

B. B. Bypaxos?, 1okTop TexH. HayK, qoieHT, orcid.org/0000-0002-0158-8681, burakov@compmechlab.com
A. Y. Boposros®, xamy. TexH. HayK, mpodeccop, orcid.org/0000-0003-3177-0959
28000 Jla6oparopust «BeraucinnrenbHas MmexaHuka», [arckas yi., 21, k. 2a, Caukr-Ilerep6ypr, 195220, PO

6Camkr-IleTepGyprekmii momuTexHrdeckuit yausepeureT Ilerpa Benukoro, Ilomurexanyeckad yi., 29, Carxrr-Ilerep6ypr,
195251, PO

BBenenne: HecMOTpS HAa 3HAYWUTEIbHBIE YCHINA MHOTOYHCIEHHBIX HCCIIE0BaTeNed U paspabOTIYNKOB, IPOIELYPhI OIEHKHA KAaYecTBa
[IPOrpaMMHOro 00ecedeHus Bee ellle HyKAaiTcsa B (hopManusanuu u apromarusanuu. Ilenas: paspaborars crenuaninsupoBaHHOE [IPOrpaM-
MHO€ CPEeJICTBO, IIpeJHa3HaueHHOE 71 KOJIHMYECTBEHHOM OIEHKH CTPYKTYPHBIX CBOHMCTB Java-koga. Pesyaprarsr: paspaboraHo mporpaMMHoOe
cpencrBo MetricsTree, koropoe paccuurbiBaer 61 ycTosABIIyIOCS 00BEKTHO-OPUEHTHPOBAHHYI0 METPUKY (3TO OAMH U3 CaMbIX OOJBIINX Ha-
60poB cpeau aHanmorunyHbIx nHCTPyMeHTOB). MetricsTree unrerpuposano B IDE mis o6ecnieuenuss MakcuMaibHO GBICTPOM JOCTABKH HHQOP-

Ne 1, 2023 AN WHO®OPMALIMOHHO-YTMPABJIAIOLWMUE CUCTEMbI AN 27

7/ TMPOrPAMMHBIE N AMMAPATHbIE CPEOCTBA /

MAaI|H, COAEPIKUT YHUKAIbHbIE CPE/ICTBA BH3YATH3AIMH I [IOBBIIIEHN 2(D(PEeKTHBHOCTH aHAIN3a METPHUK, a TAKKe Pealns3yeT MeXaHu3M
npoduiieil METPUE /IS BhIOOpa KJIAaCCOB HA OCHOBe Habopa sHadeHwi MeTpuk. IIpakTHdeckas sHAYMMOCTB: B pesyjbTaTe IMPUMEHEHUS
MetricsTree nns aBromarmsanuu mporeccoB obecriedeHns KadecTBa IpH paspaborke darmanckoit cucrembl Cauxt-IlerepOyprekoro ro-
CyZapcTBEHHOro mosurexHudeckoro yuusepeurera [lerpa Bemukoro CML-Bench (mmmatdopmsbr f1s paspaboTku ¥ IpUMeHEHHs [[H(POBLIX
JBOMHWKOB) B TeYeHHe rojia CpefHee KOIMIECTBO BBIABIEHHBIX IPOIPAMMHBIX /1e(heKTOB BHEIIIHIMHU CPEACTBAMHU COKPATHIOCh Ha 34 %.

KnroueBnle c1oBa — KavyecTBO IIPOTPAMMHOTO OGecIiedeHusd, METPUKH IIPOTPAMMHOr0 obecredeHns1, 00beKTHO-OPHEHTHPOBAHHbBIE Me-
TPHUKH, METPUKH HUCXOJHOTO KoJa Ha Java, IporpaMMHbIe CPEICTBA pacuyeTa MeTPHKH, METPUYECKUI aHAIN3, BU3YaINU3alisa IPOrPAMMHOTO
obecrieueHus, 1e(PeKThI KCXOIHOTO KOJIa.

Jua nutupoBanusa: Burakov V. V., Borovkov A. I. Advanced metric analysis tool for Java source code. Hnpopmayuonro-ynpasasowue
cucmemur, 2023, Ne 1, c. 17-28. d0i:10.31799/1684-8853-2023-1-17-28, EDN: ORVZMP

For citation: Burakov V. V., Borovkov A. I. Advanced metric analysis tool for Java source code. Informatsionno-upravliaiushchie sistemy
[Information and Control Systems], 2023, no. 1, pp. 17-28. d0i:10.31799/1684-8853-2023-1-17-28, EDN: ORVZMP

YBAXXAEMbIE ABTOPbI!

Hayumbie 6a3b1 nanabix, BEIo4Yas Scopus u Web of Science, o6padarsiBaioT JaHHbIE ABTOMATH-
yecku. C 0JJHOM CTOPOHBI, 3TO YCKOPSET IpoIiecc 00paboTKH TaHHBIX, C APYTOM — PA3JINYUs B TPAHC-
aurepanuu PUO, HeTouHbIE JaHHBIE 0 MecTe paboThI, 06IACTH HAYYHOTO 3HAHUS U T. JI. IIPUBOAIT
K TOMY, 94TO B 6a3aX OKa3bIBAETCS HECKOJIHKO ABTOPCKUX CTPAHMIL JJIS OTHOTO U TOTO K€ YeIOBeKa.
B pesysibrare 11 Bcex 10 OTHEIBHOCTH CYUTAIOTCA WHACKCHI [ATUPOBAHUS, YTO CHUKAET PEUTHUHT
YYEHOTO.

Insa unenruduranuu aBTopos B ceTsix Thomson Reuters mpoBoguT perucTpariuio ¢ IprucBOeHu-
eM yuukajabHoro uuaekca (ID) mis kammoro u3 aBTopoB HAYYHBIX IyOJTHKAITHH.

IIponenypa momyuenus ID 6GecriaTia u 04eHb IPOCTa, €CTH BO3MOKHOCTH IIPOBECTH PETUCTPa-
nuo Ha 12 a3bIKAx, BKIIOYAS PYCCKUU (4TOOBI BHIOPATH S3BIK, KIMKHUATE HA 3€JI€HOE II0JI€ BBEPXY
cIpaBa Ha cTapToBo# crpanwuiie): https://orcid.org

28 7 VH®OPMALIMOHHO-YMPABSIOLLME CUCTEMbI Z N21,2023

