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Introduction: One of the current topical problems of cryptography is the development of post-quantum digital signature algorithms
with relatively small sizes of the public key and signature. Purpose: To develop a new method for designing post-quantum algebraic
signature algorithms with a hidden group, based on the computational complexity of solving large systems of quadratic multivariate
equations, which allows to reduce the size of the public key and signature as compared to the known analogues. Results: We propose
a new method for designing digital signature algorithms with a signature of the form (e, S), where e is a natural number (randomization
parameter) and S is a vector (fitting parameter. The method makes it possible to reduce the dimension of finite non-commutative
associative algebras used as an algebraic support. The method is distinguished by the use of the technique of doubling the verification
equation for fixing the hidden group, which allows one to set the formation of the vector S depending on the random reversible vector and
thereby eliminates the influence of the number of signed documents on the security, which is typical of the known analogous algorithms.
The method has been tested by the development of a specific post-quantum signature algorithm, various modifications of which use
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Introduction

Development of post-quantum standards on pub-
lic-key cryptographic algorithms is one of current
challenges faced by the global cryptographic com-
munity [1, 2]. This challenge is due to the fact that
modern standards for public key cryptographic al-
gorithms are based on the computational difficulty
of the discrete logarithm problem and of the factor-
ing problem, each of which can be solved on a quan-
tum computer in polynomial time [3, 4].

Post-quantum public-key cryptalgorithms are
to be based on computationally difficult problems
different from the said two ones. One can mention
post-quantum algorithms on codes [5, 6], and on
hash functions [7]. Regarding post-quantum digital
signature algorithms, their main disadvantage is
the large total size of the public key and signature.
To overcome this shortcoming, signature schemes
with a hidden group were proposed in [8-11], using
computational complexity of so called hidden dis-
crete logarithm problem (HLP). However, some of
such signature schemes (for example, introduced in
[8, 9]) are vulnerable against algebraic attacks [12].

A new paradigm for the development of algo-
rithms with a hidden group has been proposed in [13,
14]. That paradigm exploits the computational diffi-

culty of finding a solution to a large system of quad-
ratic multivariate equations with many unknowns.
The latter problem is considered as an attractive
post-quantum primitive [15, 16]. It had been put into
the base of security of multivariate cryptographic al-
gorithms, like EFLASH [17], MQDSS [18], Rainbow
[19, 20], GeSMM [21], and UOV [22]. However, the
multivariate cryptographic algorithms have a very
significant drawback, which consists in the extreme-
ly large size of the public key (up to several hundred
kilobytes (several megabytes) for the case of 128-bit
(256-bit) security [20, 21]).

The algebraic algorithms with a hidden group ex-
ploiting computational complexity of solving a large
system of quadratic multivariate equations provides
possibility to develop signature algorithms with
small size of both the public key and the signature.
In algorithms of this type, a digital signature is a
pair of values (e, S), the number e and the vector S.
For example, the signature algorithm [13] uses a col-
lision-resistant hash function f(-) and the next verifi-
cation equation with two entries of the vector S:

62

R* =(Y;SZ; )° (YoSZy)

In the latter equation the vectors Y;, Z;, Y,, Z,
are elements of the public key, which are calculat-
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ed as follows: Y; = AG*B; Z;, = CJA}; Y, = AJ¥B;
Z, = CGA! (when performing a direct attack
against the algorithm, these four formulas define
four vector quadratic equations with the unknown
vectors G%, J, J¥, and G), where u, w are private
integers; G, J, A, B, and C are private reversible
vectors such that GJ = JG and G, A, B, C are
pairwise non-permutable vectors. The signature
(e, S) is valid, if f(M||R*) = e, where M is a signed
document and || denotes the concatenation oper-
ation. Note the verification equation connects the
signature with the public key and the latter equal-
ity connects both the signature and the public key
with the document M. The use of verification equa-
tions with two [13] and multiple [14, 23] entries of
the vector S in the verification equation is focused
on increasing resistance to attacks using S as a fit-
ting parameter.

Unfortunately, for a fixed value of the public key,
the number of different vectors that can potential-
ly be a signature element is limited by the order of
the hidden commutative group, since the vector S
is computed by the formula S = B-1G*J"C1X [13],
where integers n and r are computed depending on
the document to be signed; vectors G and J com-
pose a minimum generator system of the commu-
tative hidden group; vectors B and C are elements
of the private key. It can be shown that, given five
(or more) different signatures, it is possible to com-
pose a system of five vector quadratic equations,
which can be solved independently of other secret
values. The latter provides a significant reduction
in the complexity of solving a system of equations
that connects the elements of the public key with
the elements of the secret key.

Therefore, to ensure the required security level
of the algorithm from [13], it is required to use finite
non-commutative associative algebras (FNAAs) of a
sufficiently large dimension m (m > 10 for 128-bit
security and m > 20 for 256-bit security), which lim-
its the possibility of reducing the size of the public
key and signature and increasing performance.

This article proposes a new method for developing
algebraic signature algorithms with a hidden group,
which, for a given security level, provides possibility
to use FNAAs of comparatively small dimension as
algebraic support. A new post-quantum signature
algorithm is introduced as implementation of the
method. The signature has the form (e, S) and the
indicated restriction is eliminated due to the fact
that the signature element S can take any value in
the FNAA used as an algebraic support. To insure
such possibility, the technique of doubling the verifi-
cation equation is used for setting the hidden group.
Previously [24], this technique was used as a way
to define a hidden group in signature algorithms
on finite commutative algebras, which are based on
computational difficulty of the HLP. Earlier, such

technique was used by authors to implement the
post-quantum resistance criterion, when designing
the signature algorithms on FNAAs, based on the
HLP [9, 24]. The introduced method is illustrated
by a signature algorithm in which two different
hash functions are used as an auxiliary technique
for providing security against attacks using the sig-
nature element S as a fitting element.

Preliminaries

The technique of doubling the verification equa-
tion (see, for example, [9]) consists in specifying two
different equations defining computation of the next
two vectors R; and R,, depending on the signature
(S, e) and the public key (P, Pys, ..., Py, Py, Py,
oy P

R, = 1P, Py, ..., Py, S, 0);
R2 = fl(PZI’ P22, ceey P2d’ S, e),

where b and d are some small natural numbers;
the vectors P;;, Py, ..., Py, Pyy, Py, ..., Py, are
elements of the public key.

And then, using a collision-resistant hash func-
tion f(-), connection of the signature and public key
with an electronicdocument M is confirmed by check-
ing the validity of the equality f(M||R,||R,) = e.

In the introduced algorithm with a hidden group,
FNAAs are used as algebraic support. An m-dimen-
sional FNAAs is defined as a finite vector space (de-
fined over a field GF(p)) with the non-commutative
associative multiplication operation of the vectors
A=aqase,tae +...+a, e, jandB=>0ye,+be; +
+..+b, e,  (wheree;i=0,1,...,m -1, are basis
vectors), defined by the next formula:

m-1gm-1
AB = Zi:() Zj:O aibjel-ej, (1)

in which the values a; and b; are multiplied as the
field elements. Using a basis vector multiplication
table (BVMT), every product ee; is replaced by a
one-component vector (see more details in [13, 24]).

Table 1 sets a 4-dimensional FNAA with the
two-sided global unit E = (1, 1, 0, 0), for which the
decomposition into commutative subalgebras is
studied well in [10]:

1) the said algebra contains p2 + p + 1 commu-
tative subalgebras having order p2; every non-sca-
lar vector is contained in a unique subalgebra; every
scalar vector is included in all subalgebras, i. e., the
latter intersect exactly in the set of scalar vectors
{L:L=RE,h=0,1,....,p-1}

2) the multiplicative group I' of the FNAA has
order equal to

Q=pp?-1p-D; 2)
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3) the group T includes p(p + 1)/2 commutative
subgroups I'; possessing 2-dimensional cyclicity
(i. e.,, a minimum generator system of the subgroup
I'; contains two vectors of the same order) and hav-
ing order equal to

Q, =@p@-1% 3

4) the group I includes p(p — 1)/2 commutative
cyclic subgroups I'y of the order

Qy=p2-1=@p@-Dp+ 1) 4)

5) the group I includes p + 1 commutative cyclic
subgroups I'; of the order

Q; =pp-1. 5)

The vector G = ge, + g,€; + g,€5 + g5€3, such
that g, # 0, and g5 # 0, determines the commutative
subalgebra described as the next set of vectors X
[10], which includes G:

X:(xo,xZ,x3,x4):[d, d+rEL"80 p kg—3j, ©)
82 82

whered, 2 =0, 1, ..., p — 1. Type of the commutative
group including all reversible vectors of the set (6)
depends on the value of

A=(gy—8)? + 4L gy8s.

If A # 0 is a quadratic residue in GF(p), then the
multiplicative group of the latter subalgebra relates
to the I'j-type groups and has order (p — 1)? [10].
Note that the probability of a vector G selected at
random from the set (6) is equal to ~ 0.5 (i. e., to
the probability that the value A # 0 is a quadratic
residue).

It is assumed that, depending on the required
level of security, FNAAs of different dimensions m
will be used as algebraic support of the developed al-
gorithm. For the case m > 6, the FNAAs are set with
using the next formula for generating the BVMTs
for arbitrary even dimensions [25]:
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ei+jm0dm, if lm0d2=0,
eiej = ei_jmodm, if im0d2=1, Jm0d2=0,
Xei_jmodm, if tmod2 = 1, Jm0d2 = 1,

where i, j € {0, 1, ..., m — 1}. The latter formula
allows to construct BVMTs setting FNAAs with
global two-sided unit of the form E = (1, 0, 0, ..., 0).
Tables 2 and 3 shows the BVMTs for the cases
m = 6 and m = 8. In framework of this article,
we consider the FNAAs set over the ground finite
field GF(p) with odd characteristic p (such that
p = 2q + 1, where p and g are prime numbers).
However, the method by [25] can be also used
for setting the FNAAs over the finite fields of
characteristic two.

The condition for the vector A = (a, a;, ay, a3,
ay, as) to be reversible is the following non-equality

[25]:
i((ao +aqg +a4)2 ~A(ay +ag +a5)2)><
X ((ao —(12)2 +(a0 —a4)2 +(a2 —04)2 —
2
—7\.(0/1 —03)2 —7\.(0/1 —(15)2 —7\.((13 —a5)2) # 0. (7)

Finding a reversible 6-dimensional vector A can
be done by generating at random six of its coordi-
nates and checking the validity of inequality (7).
For the cases m > 8 there are no formulas for the
condition of vector reversibility and the following
method for generation of reversible vectors can be
applied: generate random vectors B until B»>1 = E
or BP-D? = E.

In the proposed signature algorithm, we use the
primes p having the size |p| = 80 and |p| = 128 bits
(the corresponding values of |q| are equal to 79 and
127 bits). We also use two collision-resistant hash
functions, the usual type f() and the vector type
H(). The hash function of the latter type take on
the values in the FNAA used as algebraic support.

B Table 1. Defining non-commutative associative
multiplication of 4-dimensional vectors (A = 0) [10]

° €9 € € €3

e, e, 0 0 e;

e; 0 e; €y 0

€y €y 0 0 req

es 0 e; Aeg 0

B Table 2. Defining non-commutative associative
multiplication of the 6-dimensional vectors (A = 0) [25]

o

€o € €s €3 €y €5
€o €9 € €y €3 €4 €5
e; e, Aeg e; rey e; hegy
€9 €9 €3 €y €5 €o €
e; eq re, e; re, es rey
€4 €y €5 €o € €y €3
es ex ey es reqy e; re,
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B Table 3. Defining the 8-dimensional FNAA (A = 0)

° e | e | e | e3 | e, | e5 | es | e

€y €y €; €y €3 €4 €5 €g €7

e, e | rey | e; | heg | e5 | hey | es | Aey

€9 €9 €3 €y €5 € €7 €9 €

e; || e3 | heq | e | ke, | e; | heg | e5 | ey

€4 €y €5 € €7 €o € €9 €3

ey es | e, | eg | hey, | € | Aey | e; | Aeg

€g €g €7 ) € ) €3 €y €5

e; | e; | heg | e5 | ey | e3 | hey | e; | Aeg

To compute H(M) from a document M, other hash
function of the usual type /() is used to calculate
coordinates of the vector H = (A, hy, ..., h,,_;). The
size of the values of the usual type hash functions
is equal to 2|p|. Calculation of the value of H(M) is
performed as follows:

1. Compute the value hjy = hgy ||, = f(M)
represented as concatenation of two |p|-bit values.

2. Calculate the values hl;y = ki ||k, =
=f'(h;_y) forj =1, ..., (m - 2)/]12(/. Hnll

3. Set values of the coordinates hy; = hf;; and
hgiv1 = hiyg, wherei =0, 1, ..., (m — 2)/2.

Setting the hidden group and formation
of the public key

A commutative group contained in the FNAA
used as algebraic support can serve as a hidden
group in the proposed method and algorithm.
However, we will consider the case of setting the
hidden group with two-dimensional cyclicity, i. e.,
the group containing the minimum generator sys-
tem <@, J> including two vectors of the order p — 1
(in the case m = 4, this is the I';-type group).

Algorithm 1: Setting a hidden group possessing
two-dimensional cyclicity in the case m > 4.

1. Generate a random reversible vector G of or-
derp — 1.

2. If G is a scalar vector, then go to step 1.

3. Generate at random an integer £ (¢ < p — 1)
and a primitive element  in GF(p).

4. Compute the vector J = pG*.

5. Output the pair J and G as a basis <G, J> of
the hidden group I'_g ;..

In the case m = 4 the efficiency of Algorithm 1
can be estimated as follows. Taking into account
that the number of the I';-type groups in the 4-di-

mensional FNAA used as algebraic support is equal
to p(p + 1)/2 [10], one can estimate that the number
of the vectors contained in all groups of the I';-type
is equal to = p%/2. Therefore, a random vector G is a
non-scalar vector and is contained in a group of the
I';-type with probability = 0.5. For the case of prime
p = 2q + 1 (where q is also a prime), one can easily
show that a fixed I'; group contains ~ g2 of vectors
of the order q and ~ 32 of vectors of the order p — 1,
i. e., arandom vector from the fixed I'; group has or-
der p — 1 with the probability ~ 3/4. Thus, a random
vector G passes the steps 1 and 2 with the proba-
bility ~ 3/8 and generation of the required vector G
requires on the average performing steps 1 and 2
about 8/3 times.

Taking into account that step 3 is performed on
the average two times, one can conclude that gen-
eration of a random basis <G, J> of the hidden
group I'_g j. requires on the average performing
Algorithm 1 less than 3 times.

Estimate of the efficiency of Algorithm 1 for the
cases m > 4 requires using the detailed information
about decomposition of the corresponding FNAAs
into commutative subalgebras. Because of the lack
of such information we have experimentally found
the average number y of performing Algorithm 1
for generating the base <G, J> of the hidden group
with two-dimensional cyclicity. For every of the cas-
esm =6,m = 8, and m = 10, we have get v < 5
for different values of structural constant A and of
prime p. Thus, Algorithm 1 has acceptable efficien-
cy, since it is intended to be used only at the stage of
forming the public key.

Algorithm 2: Alternative procedure for setting a
hidden group of the I'; type in the case m = 4.

1. Generate a random reversible vector
G = (gy, &1, 89> 83) such that g, # 0 and g5 # 0 and
compute the value of A = (g, — g,)? + 40g,83.

2.If A = 0 or A is a quadratic non-residue in
GF(p), then go to step 1.

3. Generate two random integers d = 0 and & = 0
and, using formula (6), compute the vector T.

4. If the order of T is not equal to p — 1, then go
to step 3.

5. Generate a random integer £ (0 <k <p - 1)
and a random primitive element B in GF(p).

6. Compute the vector J = pT*.

7. Output the pair J and G = V as a basis <G, J>
of the hidden group I'_q j-.-

The probability that a random vector G defines the
value of A # 0 that is a quadratic residue is equal to
~ 0.5, therefore the steps 1 and 2 are performed on the
average two times. Like in the case of Algorithm 1,
one can easily show the probability that a random
vector T has order p — 1 is equal to ~ 3/4. Therefore
the steps 3 and 4 are performed on the average
~4/3 times. Like in the case of Algorithm 1, step 5 is
performed on the average two times. Thus, genera-
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tion of a random basis <G, J> requires performing
Algorithm 2 approximately two times.

The vectors from the hidden group are used to
calculate two parts of the public key. The elements
of the first part are included in the first verifica-
tion equation, and the elements of the second part
are included in the second verification equation.
The vector hash function and two similar verifi-
cation equations, performed on the same signature
value (e, S), are used to prevent signature-fitting
attacks.

The next procedure for generating the public key
has been developed:

1. Generate at random a hidden group I'_g j-.

2. Generate at random reversible vectors A, B,
F, and P such that AG = GA, AB = BA, AF = FA,
AP = PA, BG = GB, BF = FB, BP = PB, FG = GF,
FP = PF, and PG # GP (for random vectors A, B, F,
and P these ten inequalities holds true with a high
probability).

3. Calculate the public key elements Y;, U;, Y,
and U,:

Y, = AGA'., U, = BJB. Y, = FGF],
and U, = PJPL, ®

4. Generate at random a reversible vector D
and hidden group elements G;, G,, J;, and dJ,
such that DG = GD, DA = AD, DB = BD, DF = FD,
DP = PD.

5. Calculate the public key elements Z,, W;, Z,,
and W,

Z, = AG,B1, W, = BJ,D, Z, = FG,P,
and W, = PJ,D1. 9)

Thus, the secret key (private key) represents the
next set of vectors {G, J, G;, Gy, J;, J5, A, B, F, P, D}
with the total size of 110m (176m) bytes for 80-bit
(128-bit) prime p. The public key represents the set
of vectors {Y;, Z;, U;, W, Y,, Z,, Uy, Wy} with the
total size of 80m (128m) bytes for 80-bit (128-bit)
prime p.

Note all elements of the public key are calculated
as masked elements G, J, G;, Gy, J;, J5 of the hidden
group, besides, elements Y; and Y, (U; and U,) are
calculated from the same hidden group element G
(J) using different masking factors A and F (B and
P). Such connection of the public key elements with
the hidden group underlies the correctness of the
developed signature algorithm.

Signature generation procedure
A digital signature (e, S) to an electronic doc-

ument M is calculated using the next randomized
procedure:
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1. Using the vector hash function H(-) and con-
catenating the public key elements Y; and Y, to the
document M, calculate the hash values H; and H,;:

H, = H(Y,||M) and H, = HM||Y,).  (10)

2. Generate at random a reversible vector V and
two natural numbers 2 (k <p-Dandt (¢t <p-1)
and calculate the vectors R; and R,:

R, = AG*J'G,J,VH; (11)
R, = FG:J'G,J,VH,,. (12)

3. Using a specified 2|p|-bit hash function f, gen-
erate the first signature element e as a hash-func-
tion value calculated from the document M to
which the vectors R; and R, are concatenated:
e = e||ey = f(M||R;||Ry), where the hash-value e is
considered as concatenation of two |p|-bit natural
numbers e; and e,.

4. Calculate the integers s; and s,

s;=k—-e; modp -1, 13)
Sg =t—egmodp — 1. (14)

5. Calculate the vector S as the second signature
element:

S = DGS1J52, (15)

6. Output the pair (e, S) as the signature to the
document M.

Note that the accumulation of many unique values
of the signature element S does not make it possible to
form a system of power vector equations from which
the attacker would be able to calculate the secret
vectors D, G, and J. This is due to the fact that each
unique signature (e, S) defines an equation of the form
(15) with a unique unknown vector V that has a ran-
dom value in the FNAA used as an algebraic support
(see step 2 of the signature generation procedure).

Without taking into account the computational
difficulty of finding the hash values e, H;, and H,,
(which depend on the size of document M), the com-
putational difficulty of the rest of the signature gen-
eration procedure can be approximately evaluated
as four exponentiation operations: i) two exponenti-
ations are performed to calculate both of the vectors
R, and R, [note that in (11) and (12) the same two
exponentiations are performed] and ii) two expo-
nentiations are performed to calculate the vector S.
Four exponentiations in the FNAA used as alge-
braic support take about 6m2|p| multiplications in
GF(p) for m > 6 and 48|p| ~ 6150 multiplications in
GF(p) for m = 4.

The signature size is equal to (m + 2)|p| bits,
for example, to 10(m + 2) bytes for the case of 80-
bit prime p and 16(m + 2) bytes for 128-bit prime p.
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Thus, the proposed signature algorithm has sig-
nificantly lower signature size than many known
post-quantum signature algorithms [15, 20].

Signature verification procedure

To verify a signature (e, S) assigned to the doc-
ument M, one is to use the public key of the signer
{Y, Z,, U, W, Y,, Z,, U,, Wy} and the following
procedure:

1. Using the vector hash function H() and for-
mulas (10), calculate the values H; and H,, from the
document M to which the public key elements Y;
and Y, are attached.

2. Calculate the vectors Rj and R; by the next
two formulas:

R| = Y"'Z,U?W;SH;; (16)
R} = Y5 Zo U2 WySH. 17

3. Calculate the hash-value e’ from the docu-
ment to which the vectors R} and Rj, are attached:
e’ = fiM||R;|[Ry).

4. If e’ = e, then the signature is genuine, else the
signature is false.

The computational difficulty of the signature
verification procedure is approximately equal to
that of the signature generation algorithm.

Correctness of the signature scheme is proven as
follows.

Signature scheme correctness proof.
Compute the vectors R} and Rj:

R} = Y;'Z;U>W;SH, =
= AG2A'AG,B'BJ“2B1BJ;D ISH, =
= AG“G,J%2J,D'DG"1 J2VH, =
= AGAGJ%2J,GF e vH, =
- AG*J!G,J,VH, = R;;
R} = Y;'ZyUs? WySH, =
= FGYF 'FG,P 'PJ2P1PJ,D ISH, =
— FG%G4J%2J,D DG J2VH, =
— FG*GoJ%2J,GF 3" VH,, =
= FG*J'G,J,VH, = R,,.
Then compute the hash value e’ = f(M||R}||R5):
{R{ =Ry; R =Ry} =

f(M[R}[Rz) = £ (MR [Ry ) =

= e =e.

The latter equality determines validity of the
verified signature.

Forging-signature attacks

Let’s consider two attacks related to the for-
mation of a genuine signature without knowing
the secret key. In the first attack the forger selects
arbitrary values of S and of e; and e, and, using
the signature verification equations (16) and (17)
computes the vectors Rj and R}, (note the attacker
can also fix the values of e; and e, and modify only
the value of S). Then he computes the hash value
e’ = e}|ley = fIM||R;||R,) until e] = e; and e, = e,.
Probability that both of the latter two equalities
hold true is equal to ~ p~2, therefore, the computa-
tional dlfflculty of such attack can be estimated as
O(p2) or as 0(22'p!) multiplications in FNAA used as
algebraic support. For the cases of 80-bit and 128-
bit prime numbers p such attack is computationally
infeasible.

One can propose some versions of the first at-
tack, in which the vectors R and R} are selected
at random. Then the value ¢’ = f(M||R}||R;) and
signatures S; and S, are computed from (16) and
(17), correspondingly, until the equality S; =S, = S
holds true. The latter equality take place with prob-
ability ~ p~™, causing the computational difficulty of
the attack equal to O(p™), where m > 4.

In the second attack the forger uses some known
genuine signature (e, S) assigned to the docu-
ment M (thus, he can compute H; = H(Y,||M) and
H, = HWM||Y,) and attempts to calculate a valid
signature (e”, S”) assigned to the document M".
He calculates the vectors H; = H(Y;||M") and

= H(M"||Yy). Then, using the formulas (16) and
(17) and value of e = e, ||e, he calculates the vectors
R; and R;, and the value e” = e{'||ey = f(M, R;||R)).
At the next step of the attack the forger tries to com-
pute the vector S” satisfying the both verification
equations. From (16) he has

R = Y'Z, U2 W,;SH, = YZ, U2 W;S"H]. (18)

The equality (18) gives
S” =DGa 1y D ISH, HY L 19)
In a similar way from (17) the forger gets
§"=DGa 4 e e ISH, Hy L. (20)
The second attack is successful, if the values of
S” calculated from (19) and (20) are equal, i. e., if

the following equality is true:

Hy 'Hj = Hy'H;.
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The latter takes place with a probability p=* and
determines the computational complexity of the at-
tack equals to p™, when a limited number (for exam-
ple, less than 240) of valid signatures are available
for the attacker, or to p™/2, when an extremely large
number (= p™/2) of valid signatures is available for the
attacker (consider, for example, a model of the oracle
that signs documents generated by the attacker). In
the latter case, the attacker selects p”/2 different doc-
uments M"@ (¢ = 1, 2, ..., p2) and computes for every
document M"® the value of (Hy@)-TH;@. He also
computes the values of (HU)) H )(] = 1 2, ..., p™2)
connected with the correspondlng documents MU)
signed with the signatures ('), SV)),

In correspondence with the birthday paradox,
with probability equal to ~ 0.5 the first set con-
tains a value (Hy®)-TH;® such that (H;®)-1H;® =
= (Hg))—lH(lt) for some natural number ¢ < p™/2. The
attacker orders all values from the first and sec-
ond sets (performing ~ m|p|p™2/2 operations of
comparison) and finds the values (H,®)-1H;® and
(H(’f)) 1H(t) Then, using formula (19) or (20) and the
s1gnature S®, he calculates the valid signature S"®
to the document M"® connected with the product
(Hy®)-TH;®. Calculation of the said two sets takes
4p™/2 operations of computing the vector hash func-
tion and 2p™/2 multiplications in the FNAA used as
algebraic support. Computational complexity of the
birthday-paradox-based attack can be roughly esti-
mated as O(p™/2).

Thus, the second forging attack is also imprac-
tical for the cases of 80-bit and 128-bit prime num-
bers p.

Attacks connected with calculation
of the private key

The formulas (8) and (9) define connection be-
tween elements of the private and public keys.
Namely, from (8) and (9) we have the following sys-
tem of eight quadratic vector equations with eleven
unknown vectors G, J, G;, Gy, J;, J,, A, B, F, P,
and D:

YA =AG; Z;B=AGq;
U;B=BJ; W;D=BJ;; 1)
YoF =FG; ZyP =FGy;
UsP =PJ; W;D=PJ,.

In this system, the vectors G, J, G;, G,, J;, and
dJ, are elements of the hidden commutative group.
This fact is to be taken into account when repre-
senting the system (21) in the form of scalar equa-
tions in GF(p). Such a reduction of the system (21) is
performed using the BVMT setting the FNAA used
as algebraic support.

N\
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Consider the case of 4-dimensional FNAA for
which detailed decomposition into the set of commu-
tative subalgebras is known [10]. One can consider
the coordinates of one vector (for example, G) from
the hidden group as four scalar unknowns and then
represent the coordinates of every of the other un-
known vectors from the hidden group (for example,
d, G, Gy, J,, and J,) as four scalar values depending
on two unique scalar values d and % in accordance
with the formula (6). Such representation leads to
transformation of quadratic equations into cubic
ones, however, this does not increase the computa-
tional difficulty of solving the system of power equa-
tions, since the best known methods (based on the
F4 [26] and F5 [27] algorithms) for finding a solu-
tion of such system have about the same efficiency
for quadratic and cubic equations

The system (21) reduces to the system of 8m power
equations (quadratic and cubic). In the case m = 4 we
have the system of 32 equations with 34 unknowns in
GF(p). For the FNAAs of the dimensions m > 6 their
decomposition into commutative subalgebras has not
yet been investigated in detail, however, we have get
preliminary results for the cases m = 6 and m = §,
which show these FNAAs contain commutative sub-
algebras every one of which can be described as a
vector subspace (that is set by coordinates of a vector
contained in the subalgebra) of the dimension m/2.

The latter means that, like in the case m = 4,
in the cases m = 6 and m = 8 the system (21) re-
duces to the system of W = 8m scalar equations
with n = 6m + 5m/2 scalar unknowns. Since the
number of unknowns is larger than the number of
equations, one can suppose the considered system
of scalar power equations has many solutions. The
latter fact is easily confirmed by considering system
(21) at the level of the FNAA. Indeed, let system (21)
has a solution G, J,, G, Gog, 19, J20, Ags By, Fs
Py, and D,,. Then for every reversible vector X (the
number of reversible vectors is approximately equal
to p™) one has the following unique solution

Gx = XIGX; Jx = X 1J X;
Jix = X, X; Jox = X1y X
Fyx = F X; Px = P)X; Dgx = D X.

At the level of a system of scalar equations, the
presence of ~ p™ solutions means the presence of de-
pendent scalar equations. Namely, we can assume
that the number (u) of independent scalar equations

is equal to the number of unknowns minus m. Thus,
we have y =n—-m = 6m + bm/2 -m,i. e.

u=6m + 3m/2. (22)
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Like in the case of multivariate public-key al-
gorithms, the attack based on solving a system of
many power equations with many unknowns can
be called direct attack. Computational difficulty of
solving such systems depends mainly on the number
of equations (1) and number of unknowns (n). In our
case we have u < n, therefore, to evaluate security W
of the introduced signature scheme to the direct at-
tack, one can take the number of equations p equal
to the number of the unknowns (for example, the
values of n — p unknowns are predetermined) and
use the minimum number of equations p ; to get a
given level of security, which has been calculated in
[28], taking into account the best known algorithms
for solving a system of power equations in the field
GF(n).The results of [28] are presented in Table 4.
For the developed algorithm we have system of pow-
er equations in GF(p), where p >> 28, therefore, for
a rough estimate of the required dimension of the
used FNAAs one can take the values of p ;, from
Table 4, which relate to the case n = 28.

Taking into account formula (22), for the case
m =4,m = 6,and m = 10 one gets p = 30, p = 45,
and p = 75, correspondingly. Thus, for the said di-
mensions we have 80-bit, 128-bit, and 192-bit secu-
rity of the introduced algorithm against the direct
attack. To provide 256-bit security the introduced
signature algorithms should be implemented on the
FNAA of the dimension m > 14.

In the developed signature algorithm the signa-
ture element S is computed by formula (15), where
the vector V is selected at random from the mul-
tiplicative group of the FNAA used as algebraic
support. One can represent (15) in the form V =
= D-1G51J7528. The value of V is unique for every
valid signature (e, S), therefore, arbitrary fixed tri-
ple of values of the private-key elements D, G, and J
can be connected with every known valid signature.
This means that no information about the values of
D, G, and J can be obtained from a large set of valid
signatures, until two different signatures are cal-
culated using the same value of V. However, proba-
bility of the latter event is negligibly small (< p~2, if
the number of available signatures is equal or less
p™2-1), In addition, it is not obvious how to establish

7

B Table 4. The value of p; providing a given level of

security against the direct attack [28]

signatures connected with the same value of V. This
is due to the fact that the value of S depends not
only on V, but also on the values of s; and s, that
change from one signature to another.

The fundamental role of using a random value
of V is easily seen when compared with the case of
calculating the signature element S by the formu-
la S = B-1G"J"C-1 in [13], where natural numbers
n and r are unique for every signature. The vector
G"J" is contained in the hidden group. For the case
of using the 4-dimentional FNAA used as algebraic
support, the unknown coordinates of the vector G’
= (80, 81> 85, 83) = G"J", where n' and r' relates to
some given valid signature (e’, S'), can be used to de-
scribe the vector G*J” with two unknown scalar val-
ues d and %k [see formula (6)]. Suppose we have five
different valid signatures (e', S'), (e;, Sy), (ey, Sy),
(e3, Sgy), and (ey, S,). Then the next system of five
vector equations can be written:

BS'C=G’;
BS;C=G™"J"1;

BS,C=G"J2;
BS3C =G™J'3;

BS,C=G"J's.

This system of the vector equations can be re-
duced to the system of 20 scalar power (quadrat-
ic and cubic) equations with 20 scalar unknowns
(coordinates of the unknown vectors B, C, and G’
and four pairs of unknows (d;, k,), (dy, ky), (s, k3),
and (d4, k,)). Solving the latter system one gets the
values of the private-key elements. Taking into ac-
count the required minimum number of equations
(see Table 4) one can recommend to implement
algorithm from [13] on FNAAs of the dimensions
m = 10, m = 16, and m > 20 for the cases of 2128,
2192 and 2256 security levels, correspondingly.

Discussion and conclusion

The article proposes a new method for developing
signature algorithms with a hidden group, which
are based on computational difficulty of solving
large systems of quadratic multivariate equations,
and introduces a new post-quantum signature algo-
rithm. In the latter, the fitting parameter S of the
signature (e, S) is calculated by the formula (15) in
which a random vector V is used as a multiplier. Due
to the presence of a random multiplier, the accumu-
lation of a large number of different signatures can-
not be used to obtain additional equations, which
made it possible to reduce the computational com-
plexity of calculating the elements of the secret key,
when using the known elements of the public key

log,W Fmin 24
n =24 n =28

80 30 26

100 39 33

128 51 43

192 80 110

256 68 93
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and formulas (8) and (9). Thus, the proposed method
for developing algebraic signature algorithms with
a hidden group eliminates the disadvantage (men-
tioned in the Introduction) of the algebraic algo-
rithms [13, 14] that use a verification equation with
multiple occurrences of the signature element S.

The introduced method and the post-quantum
signature algorithm represent an attractive alter-
native for using it as a prototype of a post-quantum
signature standard, due to comparatively small siz-
es of signature, public and private keys.

Table 5 presents a rough comparison of the in-
troduced algorithm with the multivariate signature
algorithms selected as finalists of the NIST world
competition on the development of the post-quan-
tum public-key algorithms [20, 21].

In the proposed signature scheme we have spec-
ified using the FNAAs set over the ground finite
field GF(p) with characteristic p = 2¢ + 1, where
q is a prime. However, one can use the primes p of
an arbitrary form (for example, p = 280 + ¢; and
p = 2128 + ¢, where ¢, and ¢, are some specified
natural numbers having a small size), since the lat-
ter does not influence the security level.

From a practical point of view, it seems very in-
teresting to implement the proposed algorithm on
FNAAs defined over finite fields of characteristic
two, for example, over GF(280) and GF(2!28). This
will reduce the hardware implementation cost and
improve performance.

The performed evaluation of the security of the
proposed algorithm is rather preliminary. A more
detailed analysis of the features of the emerging
system of power equations is required, which could
potentially lead to finding special solution meth-
ods and to refinement of the security evaluation. It
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B Table 5. Comparison with two finalists of the NIST
competition

Signature | Signature size, Key size, bytes W
algorithm bytes Public Private
128
3 versions 66 158 000 101000 | 2
of Rainbow 164 861 000 611 000 | 2192
[20] 204 1885000 | 1375 000 | 2256
3 . 29 358 000 16 2128
versions
of GeMSS 47 1294 000 24 2192
(21] 64 3223000 | 32 | 2256
Proposed
m=28 100 640 880 2128
|p| = 80
Proposed
m =10 192 1280 1760 2192
|p| = 128
Proposed
m=14 256 1792 2464 2256
|p| = 128

should also be noted that in the framework of future
research, attention should be also paid to studying
the detailed decomposition of the FNAAs into a set
of commutative subalgebras for the cases of dimen-
sion m > 6.
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BBenenue: ofHOH 13 TEKYIIUX aKTyalbHbIX IIP00IeM KpHUITOrpaduu ABIgeTCa paspaboTka MOCTKBAHTOBBIX alITOPHTMOB SJIEKTPOHHON
nr(POBOY MOJIKMCH CO CPABHUTENHLHO MAIBIMHE PasMepaMy OTKPHITOro Kiioda ¥ mopnucu. Ileas: paspaGoraTs HOBBIU CIIOCOG ITOCTPOEHHS
[IOCTKBAHTOBBIX alIrebpandecKiux aJrOpPUTMOB IU(MPOBOM IIOAIKCH CO CKPHITOM IPYIIOM, OCHOBAHHBIX HA BBHIYHUCIUTEIBLHON CI0KHOCTH pe-
mieHus GOJBIINX CHCTEM KBAAPATHBIX yPAaBHEHHH ¢ MHOTHMMH HEHM3BECTHBIMH, 00€CIIeYNBAIOLIHI yMEHbIIEHHEe Pa3MEePOB OTKPHITOTO KIII0Ya
¥ TIOJIIFCH 10 CPABHEHUIO C U3BECTHHIMY aHamoramu. PesyabTarsl: IpenokeH HOBBIH CII0CO0 ITOCTPOSHHS AJITOPUTMOB LH(PPOBOIM OJIHCH

68 7 VHOOPMALIMOHHO-YMPABJSIOLLME CUCTEMbI 7/ N23,2023



\ 3ALLUTA MHOOPMALUU N\

¢ moanucko Buja (e, S), rqe e — HATypaabHOE YHCIO (IapaMeTp paHAOMU3ANUU) U S — BEKTOp (IIOATOHOYHBIN Iapamerp), MO3BOJISIOUN
YMEHBIIUTh Pa3sMEPHOCTh KOHEYHBIX HEKOMMYTATHBHBIX ACCOLMATHBHBIX aIre0p, WCIIOAb3yeMbIX B KAYecTBe alrebpandecKoro HOCHUTEJIS.
Croco6 oTiiMuaeTcs MCIoNIb30BAaHUEM IIPHeMa yABOEHHsI IIPOBEPOYHOTO YPABHEHHS Ui (PUKCHUPOBAHUSA CKPBITOM IPYIIIBI, B KOTOPOM (op-
MHPOBaHME BEKTOPA S BBIMOJHAETCI B 3aBUCUMOCTH OT CIIyYAMHOTO 0OPATMMOTO BEKTOPA W TEM CaMbIM YCTPAHSETCS BIMSHUE YHCIA IIOJ-
MMCAHHBIX JOKYMEHTOB HA CTOMKOCTD B M3BECTHBIX ajiropuTMax-aHamorax. Crocob ampobupoBas paspadoTKON KOHKPETHOTO IIOCTKBAHTOBOTO
aaropuT™Ma IU(QPOBOM MOAIKCH, HUCIIOIb3YIOIIEr0 aAre0phl PasiIMYHbIX PAa3MEPHOCTEH B 3aBHCHMOCTH OT TPeOyeMOro YPOBHS CTOMKOCTH.
Brimonsena npegsapuTenbHas OLIEHKA 0€30IMaCHOCTH HpeiokeHHoro anropurMa. Ilpakruyeckas 3HAYUMOCTD: 61arofaps CPABHUTEIHHO
HeOOBIINM pasMepaM IIOAIICH U OTKPHITOTO KII04Ya PACCMOTPEHHBIH AJTOPUTM IOANKCH IIPEJCTABIAET 3HAYUTENbHBIA IPAKTUIECKII HH-
Tepec KAk IMPOTOTHUII TOCTKBAHTOBOTO CTAHAAPTA ITOATIKCH.

KiroueBslie ¢10Ba — MMOCTKBAHTOBBIE KPUIITOCXEMBI, KOMIIBIOTEPHAS 0€30IIaCHOCTD, DIIEKTPOHHAS A(PPOBAs MOAIUCH, KPUIITOTPapUs,
3a/1a4a AUCKPETHOrO Jorapu(pMUpOBaHus, KOHEYHbIe HEKOMMYTATHBHbIE aIre6phl, aCCOUaTUBHBIE aare6phbl, KOMMYTATUBHBIE IPYIIIIbL.

Jua quruposanua: Moldovyan A. A., Moldovyan N. A. Post-quantum signature algorithms with a hidden group and doubled verification
equation. Hugpopmayuorno-ynpasasowue cucmemst, 2023, Ne 3, c. 59-69. doi:10.31799/1684-8853-2023-3-59-69, EDN: GXPTKZ

YBAXKAEMbIE ABTOPbI!

Hayunnie 6asbr qanabix, BiIodas Scopus u Web of Science, 06pabarsiBaioT faHHbIE AaBTOMATH-
gecku. C 0HOU CTOPOHBI, 9TO YCKOPSET IpoIiecc 06paboTKH TaHHBIX, C APYTOA — PAa3IHIud B TPAHC-
aurepannu PUO, HeTouHbIe faHHBIE 0 MecTe pab0ThI, 06IACTH HAYYHOTO 3HAHUA U T. A. IPUBOAAT
K TOMY, 9YTO B 0a3ax OKa3bIBAETCSI HECKOJIHKO ABTOPCKUX CTPAHMIL AJIA OZHOTO M TOTO K€ YeI0BEeKa.
B pesynbrare 115 Bcex MO OTIEIBHOCTH CIUTAIOTCA HHAEKCHI [IUTUPOBAHUSA, YTO CHUKAET PEUTHHT
Y4EHOTO.

Haa unentudurauu aBTopoB B ceTsax Thomson Reuters mposogut perucrpariuio ¢ mpucBoeHu-
eM yHuRaIbHOrO HHAeKca (ID) m1ma kammoro u3 aBTOPOB HAYYHBIX IIyOIHKAITH.

IIponenypa momyuenus ID 6ecrataa u 04eHb IpPOCTa, €CTH BO3MOKHOCTH IIPOBECTH PETHUCTPA-
nuo Ha 12 g3bIKax, BRIIOYAd PYCCKUU (YTOOBI BHIOPATH A3BIK, KINKHUTE HA 3€JI€HOe II0JIe BBEPXY
CIpaBa Ha CTapTOBO# crpanure): https://orcid.org

Ne 3, 2023 AN WHO®OPMALIMOHHO-YIMNPABJAIOWMUE CUCTEMbI N\ 69



