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Introduction: One approach to solving navigation and control problems for outdoor mobile robots is to use real-time classification 
of the underlying surface type over which the robot is traveling. Knowledge of the underlying surface type allows one to use previously 
known surface characteristics to improve localization accuracy and control algorithms. Purpose: To research applicability of the energy 
cost of motion for solving the problem of classifying surfaces with different physical properties for a robot with complex kinematics. 
Results: The analysis of multi-component motion types has shown that the best distinguishing between surfaces is achieved by using the 
motor current values. A fuzzy classifier is synthesized on data that was grouped according to the criterion of the most impactful motor in 
a selected direction of motion. We then compare the classifier with machine learning methods. Machine learning algorithms outperform 
the fuzzy logic in terms of average accuracy, but fall behind in terms of generalization. We propose a fuzzy logic – machine learning 
hybrid in order to preserve the generalization of the fuzzy classifier and improve the accuracy of surface detection by considering more 
patterns using machine learning methods. The proposed method for analyzing and classifying data allows us to distinguish with high 
accuracy between surfaces differing in power consumption levels, including those that are formed due to different surface properties. 
Practical relevance: Results of the research can be employed in developing either a standalone surface classifier or a component of a 
complex classifier with varying input data types.
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Introduction

One approach to solving navigation and control 
problems for outdoor mobile robots is to use re­
al­time classification of the underlying surface type 
over which the robot is traveling. They traverse dif­
ferent surfaces such as soil, sand, stones, snow, ice, 
concrete, asphalt and others. 

Knowledge of the underlying surface type allows 
previously known surface characteristics to be used 
to improve localization accuracy and control algo­
rithms. In this case, controlling the mobile robot 
using internal parameters and coordinates meas­
ured by the robot’s sensitive elements is particular­
ly valuable. This approach provides greater auton­
omy and is sometimes the only technically feasible 
option. To obtain additional information about the 
underlying surface, it is proposed to determine its 
type using the robot’s internal measured variables. 
In this case, the classifier will consider previously 
known surface characteristics, including their im­
pact on the robot. This will provide additional in­
formation for solving problems related to local nav­
igation, design adaptation, and control algorithms, 
resulting in a qualitatively different outcome.

In our opinion, there are four main approaches 
to solving the surface classification task, which vary 
according to the information given to the classifier 
and the way the surface affects the robot’s move­
ment.

The first approach is to use visual information 
about the surface. This way we can obtain indirect 
information about the surface parameters. For ex­
ample, roughness, color, and uniformity. Cameras 
are used as sensors. In this case, the images of the 
surface can be taken in front of the robot [1] or un­
der its wheels [2]. The main advantages of this cat­
egory are the independence from the design of the 
mobile robot and the ability to determine the type 
of surface before moving on it. The disadvantages 
are dependence on sensor operating conditions (the 
influence of lighting, dust, precipitation, vibrations) 
and the inability to directly determine the charac­
teristics of the surface, which are important param­
eters for solving other problems. Therefore, in most 
studies, this method is fused with methods based 
on other data. For example, visual data is combined 
with inertial sensor readings as in [3, 4] or with 
acoustic signals corresponding to the surfaces un­
der investigation [2, 5]. In [3] the classification ac­
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curacy using the visual method ranged from 73.6 to 
96.4% depending on the method applied. 

The second approach is to identify the surface to­
pography during locomotion. In this case, we obtain 
surface characteristics directly through the robot’s 
interaction with it. The topography can be derived 
through the vibration of the mobile robot’s struc­
ture components. For this purpose, acoustic sensors 
(microphones) [6] and inertial systems mounted on 
the robot’s actuators (Inertial Measurement Unit — 
IMU) [7–9] can be used. To develop a classifier, ini­
tial tests are necessary to collect data on the surfac­
es where the robot will operate. Hence, classification 
is based on comparing with known test data. In [10] 
there are results of surface classification by differ­
ent types of input data, including the surface topol­
ogy obtained by IMU. It shows that this approach 
achieves high accuracy (>80%) for rough surfaces 
and low accuracy (about 33–63%) for smooth and 
soft surfaces. A tapered spring attached to a mobile 
robot can act as a sensor for vibration detection [11]. 
Ideologically, this principle can be implemented for 
the robot’s suspension. Displacement of magnets 
fixed on the spring is determined by hall sensors to 
measure the spring vibration. At the same time, the 
acquired vibration data is used for subsequent AI­
based classification with an accuracy ranging from 
80 to 89% on the trained data and from 77 to 89% on 
new data [11]. Another direct topography identifica­
tion method is based on the use of surface­reflected 
sound signals of different frequencies emitted from 
the robot [12]. Here, the average classification accu­
racy on three types of surfaces — grass, sand, and 
concrete — was 97.33%. 

In general, this approach is widely used. It pro­
vides valuable information about surface relief and 
allows to classify it with high accuracy. The topog­
raphy is an important characteristic of the surface 
that is often used to evaluate its impact on the mo­
bile robot. Nevertheless, this can only be achieved 
by relying on the previously derived dependencies 
between the relief and the robot’s motion. One of the 
drawbacks of using this approach is the reduced ac­
curacy when dealing with smooth and soft surfaces. 

The third approach is to use information about 
the propulsor’s contact force with the surface. In 
this case, the reaction forces at the contact points 
are measured. Therefore, surface characteristics di­
rectly obtained through robot­ground contact. It is 
widely studied by terramechanics. In this case, F/T 
sensors are primarily used. They can be installed 
on the propulsion system either separately or as a 
combination of several dozens of sensors. In general, 
this approach is widespread for walking robots. In 
[13, 14] an average accuracy of 91–93% is obtained 
depending on the used approach to data preparation 
and analysis. Applying this method for a walking ro­
bot [15] using a special motion resulted in classify­

ing surfaces with an average accuracy ranging from 
62.00 to 97.50% depending on the number of con­
sidered surface features and on the chosen machine 
learning model. In [16] arrays of F/T sensors on a 
flex circuit are placed on the C­shaped legs of the 
robot. A classifier performs better on soft surfac­
es (grass, gravel, sand) with accuracies of 92–97% 
than on hard surfaces (concrete, tile) with accura­
cies around 70%. 

The advantage of this approach lies in the di­
rect focus on the robot’s contact with the surface. 
Consequently, it is possible to determine its char­
acteristics. For example, for wheeled robots [17–19] 
this approach allows for the determination of under­
lying surface parameters such as surface cohesion 
and internal friction angle. However, additional in­
formation must be used to evaluate the direct effect 
on the robot. The disadvantages are the difficulties 
in determining the surface and the design limita­
tion of installing such sensors.

The fourth approach — we propose to use infor­
mation about the energy cost of motion. This infor­
mation characterizes the impact of the surface on 
the robot, rather than the surface itself. The power 
consumption can be evaluated using basic sensors 
integrated into the platform, such as the draw cur­
rent and voltage sensors of the actuators. Therefore, 
in essence, we use internal measurable states of the 
system. Current sensors of motors are primarily 
used. In this case for DC motors, this information 
can be applied to calculate the torque applied to 
each wheel [20]. Often this information is combined 
with information from other sensors, such as encod­
ers [21]. In [10], the values of motor voltages and 
currents are used to classify 5 types of outdoor sur­
faces using a neural network: gravel, grass, sand, 
pavement, and dirt. The average accuracy on motor 
currents in the time domain was 56.9%. The clas­
sifier on motor currents performed best on smooth 
surfaces with accuracies in the range of 76–83%. 
Motor current was shown to be the best parameter 
for sand identifying among all other methods.

However, most often, the energy­based approach 
is used not for surface classification tasks, but for 
obtaining the parameters affecting the motion like 
rolling resistance, wheel slippage [16, 18, 22]. The 
advantage of this method is the ability to evaluate 
the surface impact on the robot directly. This is im­
portant to designing effective control systems. The 
disadvantages are: the difficulty in identifying the 
surface topography, dependence on robot kinemat­
ics and control actions such as speed and type of 
motion.

An analysis of the advantages and disadvantages 
of the above approaches shows that none of them can 
solve the surface classification problem with high 
accuracy for a wide class of robots and a large num­
ber of underlying surfaces. This conclusion is sup­
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ported by results presented in a study [10], where an 
analysis of various sensor data groups showed the 
prevalence of different methods for different surface 
types. Consequently, the relevance of the study is 
confirmed by the lack of a general methodology. At 
the moment, there are only specific solutions to this 
problem with predetermined conditions. In terms of 
control algorithms, the proposed approach, that is 
based on direct evaluation of the surface’s effect on 
the robot, will solve the problem of surface classifi­
cation while also allowing to directly control the ro­
bot depending on the required character of motion. 

However, classifiers based on the fourth ap­
proach, that use information about power con­
sumption have not been thoroughly researched. 
Therefore, this paper focuses on investigating the 
applicability of these insights to the classification 
task. The problem is complicated by a complex kin­
ematic structure of the robot and varying motion 
velocities. The classifier based on this approach 
can be used in the future in a universal classifier, 
which will combine different approaches to solving 
the problem of surface recognition. Of particular in­
terest is the study of such a classifier on surfaces 
with a wide range of physical parameters, including 
those that are weakly correlated with power con­
sumption.

Experimental setup

The schematic design of the experimental setup 
is shown in Fig. 1. The Festo Robotino 1.6 mobile 
robot is used for the experiments (Fig. 1, a). 

This robot has a wheelbase on omni­wheels, 
which allows it to move in any direction without ro­

tating the entire structure. Such wheelbase makes 
the classification task more challenging due to the 
mutual influence of the wheels during movement. 
There may be situations where the frictional force 
of the wheel does not align with the vector of linear 
motion of the wheel. This effect can be compared 
to lateral slippage on a slippery or inclined surface, 
as seen in outdoor robotics. The use of a robot with 
an omnidirectional platform is a more general and 
complex case for solving the classification task.

The robot is controlled through velocities in the 
local coordinate system. It is equipped with three 
DC motors. Each motor has a current sensor and a 
shaft­mounted encoder. The mobile platform moves 
on a test site with interchangeable types of underly­
ing surface: type 1 — soft smooth (gray); type 2 — 
hard rough (green); type 3 — hard smooth (table) 
(Fig. 1, b). Each surface has a different effect on the 
robot’s motion. Note that type 1 and type 2 surface 
have close values of power consumption parameter, 
but it is formed due to different surface properties 
(gray — softness, green — topography). Similar sur­
faces were also researched in [21, 23, 24].

Consequently, the following control parameters 
are varied in the experiments: 

— underlying surface type (3 surface types);
— the amplitude of the robot’s velocity (from 0.1 

to 0.3 m/s);
— direction of robot‘s speed (26 directions, in­

cluding rotational component).
During the experiment, the following sensor sys­

tem data are read from the robot at a sampling rate 
of 0.1 s: wheel angular velocity {ωi} and consump­
tion current for each motor {I1, I2, I3}. It is not possi­
ble to get a direct measurement of a motor’s voltage 
on the Festo Robotino 1.6. Therefore, we will solely 

 � Fig. 1. Experimental setup: a — appearance, coordinate system and motor arrangement of the Festo Robotino 1.6; b — 
surface types 
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rely on information from current sensors to solve 
the classification task based on power consumption. 
Additionally, the following parameters are calculat­
ed using the values of the current draw [21, 23]:

— currents along the mobile platform movement 
axes {Ix, Iy, Iϕ}: 
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— forces along the axes {Fx, Fy} and robot torque 
MΩ: 
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— total current consumption of the motors 

1 2 3 ;motorI I I IΣ = + +

— total current along the platform movement 
axes 

;axes
x yI I I IΣ ϕ= + +

— torques on the motors {M1, M2, M3}: 

,UI
M =

ω
 ,eU IR C= + ω

where ϕ is the rotation angle of the robot’s wheels  
(ϕ = 30°); α is the rotation angle of the robot; r is the 
radius of the wheels (r = 40 mm); L is the distance 
from the center of the robot to the wheels; U is the 
motor voltage; I is the motor current; R is the motor 
winding resistance; Ce is the electrical coefficient of 
the motor.

Research methodology

At the beginning, data from a single experiment 
was analyzed. This analysis showed that in stat­
ic operating mode, the momentary values fluctuate 
strongly. An example of motor current consumption 
values is shown in Fig. 2, а. Fluctuations arise due 
to measurement noise and weak homogeneity in the 
underlying surface of the same type. The analysis of 
the density of values indicates that the data distribu­
tion adheres to the bell curve (Fig. 2, b). This implies 
the necessity to analyze not momentary readings, 
but the distributions of values for different types of 
surfaces within one experiment. For easier analysis, 
the distributions will be presented in the form of box 
plots. For each experiment, boxes are plotted using 
the motor current values and all derived values de­
scribed in the previous section for all types of surface.

In the box plots, we analyze the positions of medi­
an values, boundary intervals, their spread, and inter­
sections with other boxes. The upper boundary of the 
interval corresponds to the value below which 75% of 
all data falls, known as the 75th percentile, while the 
lower boundary corresponds to the 25th percentile. 
Qualitative analysis of box plots showed that, for each 
type of motion, a specific parameter (such as motor 
currents, forces along axes, etc.) was most effective in 
distinguishing the surface. In particular, for motion 
along the X­axis in the local coordinates of the robot, 
the best possibilities for surface identification are giv­

 � Fig. 2. Value current of motor No. 1 when driving on a gray surface along the X­axis at a commanded velocity of 0.2 m/s: 
a — values against time; b — histogram and probability density function 
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en by currents of motor No. 1 and 3, current along the 
X­axis, and force along the X­axis (Fig. 3).

The next step is to quantitatively verify the con­
clusions derived from the qualitative analysis. For 
each experiment we evaluate the intersections of 
value intervals for all types of surfaces. First, we 
select the reference interval and label it as X. Next, 
we label as y the interval for the surface, which in­
tersects a portion of X.

We identify possible interval locations in order 
to calculate quantitative representations of inter­
section.

A. The upper and lower bounds of one interval 
are above or below the corresponding bound of the 
other interval:

75 25
75 75 25 25

75 25

75 25
75 75 25 25

75 25

100  if   

100  if   

%, , ;

%, , .

X y
y X y X

X X
y X

y X
y X y X

X X

−
⋅ > > −∩ = 

− ⋅ < < −  

B. One of the intervals lies entirely within the 
boundaries of the other interval. The values are tak­
en with a negative sign to distinguish them from 
the intersections of the first case:

75 25
75 75 25 25

75 25

75 75 25 25

100  if  

100  if  
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%, , .

X y
y X y X

X Xy X
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C. A value of 0% means that there is no inter­
section for this pair of surfaces, i. e. we can clearly 
distinguish them. 

For the experiment, from which the data was 
previously used for box plots earlier (see Fig. 3), the 
derived numerical representations of the intersec­
tions are shown in Table 1. 

Quantitative analysis of the range intersections 
for different parameters confirms the qualitative 
analysis and shows that the intersection values re­
main stable as the amplitude of the robot‘s velocity 

 � Fig. 3. Box plots for currents of motor No. 1 and 3, current along the X­axis and force along the X­axis at a commanded 
velocity of 0.1 m/s 
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rises. The exception is the pair of two high power 
consuming green­gray surfaces, where an increase 
in amplitude results in an increase in the intersec­
tion value. Similar conclusions are obtained for oth­
er simple motion types, i. e., for motion along the 
Y­axis or for rotation.

The following conclusions were also drawn dur­
ing the analysis.

1. For experiments where the velocity is multi­
component, i.e. a combination of linear motions with 
the possible addition of rotational motion, the use 
of motor currents leads to better results in distin­
guishing between surfaces compared to the use of 
currents and forces along the axes. As a result, the 
motor current was chosen as the key parameter for 
the subsequent analysis.

2. It is worth selecting a motor with a greater 
impact in a particular type of motion in order to ob­
tain better surface identification results by motor 
current consumption values. The experiments show 
that the motor impact depends on the direction of 
motion. It is derived from the kinematics of the ro­
bot. 

3. In the ideal scenario, it would be advanta­
geous to describe patterns for classifying surface 
types across all motion types investigated. However, 
with an increase in the number of directions and 
amplitudes of motion, the number of identified pat­
terns will become excessively large. Also, the need 
to constantly explore new motion types makes the 
classifier inflexible. For these reasons, we group the 
motion types based on the principle of greater motor 
impact in the motion. 

The main disadvantage of grouping experiments 
by motion type is the increased heterogeneity of 
the data compared to individual motions. This ob­
viously leads to a loss of accuracy in surface classi­
fication. A major concern with this approach is the 
selection of an appropriate discretization step to 
form direction­based motion groups. It is clear that 

reducing the step will lead to higher classification 
accuracy, but will force the developers to synthesize 
more rules to identify surfaces. The study favored 
maximum data aggregation by direction of motion. 
In each group, current values of one motor prevail 
over the others. Consequently, 13 motion groups are 
derived (including the rotational component). In our 
opinion, this number of groups represents the min­
imum requirement for adequate surface classifica­
tion.

An example is provided in Table 2, that displays 
the median and standard deviation values of a cur­
rent consumption calculated for the motor No. 3 
by motion groups. The lines in bold are those for 
which the current sensor readings of the third mo­
tor show good separability. Derived data confirms 
the assumption that a particular motor prevails 
for identifying surfaces depending on the motion 
direction. 

Figure 4 shows motor current box plots across 
all surfaces for each type of motion. The number of 
the motor that provides the most accurate distin­
guishing between surfaces for a given motion type 
is indicated above each plot. Thus, the figure shows 
the best dependencies for classifying surfaces in our 
case. It is observed that poor surface separability in 
particular motions is caused by the prevailing im­
pact of the motor No. 2.

Considering all the analyses, we estimated a low­
er bound for the accuracy of surface classification 
based on the obtained patterns. For this purpose, 
the following formula was applied:

( )
1

1 1
3

,
dirsn

i i i
gray green table

dirs i
accuracy

n =
= β + β + β∑

 

where ndirs — is the number of motion groups; βx — 
accuracy of surface x, i. e. the part of the range of 
surface x that does not intersect with the ranges of 
the other surfaces.

 � Table 1. Intersection values for movement along the X­axis for currents of motor No. 1 and 3, current along the X­axis and 
force along the X­axis 
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In this case, the minimum classification accura­
cy is estimated to be 79.2%.

Fuzzy classifier

In this paper, fuzzy logic was used to solve the 
surface classification problem. Our decision was 
made based on the qualitative and quantitative 

 � Table 2. Median and standard deviation values of consumption current of motor No. 3 by motion groups

Direction in the local coordinates Motion group

Current of motor No. 3

Gray Green Table

Mdn σ Mdn σ Mdn σ

X+, X– X 1,103 0,039 1,000 0,032 0,308 0,018

Y+, Y– Y 0,564 0,022 0,615 0,017 0,256 0,013

X+ Y+, X– Y– XY (I) 1,205 0,053 1,000 0,047 0,333 0,034

X+ Y–, X– Y+ XY (II) 0,513 0,098 0,436 0,068 0,205 0,017

R+, R– R 0,385 0,016 0,410 0,017 0,205 0,012

X+ R+, X– R– XR (I) 1,256 0,036 0,923 0,024 0,333 0,014

X+ R–, X– R+ XR (II) 0,923 0,163 0,795 0,155 0,231 0,024

Y+ R+, Y– R– YR (I) 0,692 0,019 0,615 0,020 0,256 0,012

Y+ R–, Y– R+ YR (II) 0,026 0,004 0,077 0,006 0,000 0,007

X+ Y+ R+, X– Y– R– XYR (I) 1,269 0,038 1,051 0,031 0,359 0,023

X– Y+ R+, X+ Y– R– XYR (II) 0,128 0,009 0,051 0,009 0,026 0,007

X– Y+ R–, X+ Y– R+ XYR (III) 0,487 0,018 0,462 0,017 0,205 0,016

X– Y– R+, X+ Y+ R– XYR (IV) 1,077 0,038 0,949 0,025 0,308 0,013

 � Fig. 4. Box plots of motor current on three surfaces depending on the direction of motion (color indicates surface types, 
gray and green accordingly surfaces title, brown for table) 
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analysis of the intersection of motor current in­
tervals across the surfaces, without considering 
the median value’s position. We have chosen to use 
fuzzy logic because it offers several advantages in 
this case:

— easily handles data represented as sets;
— flexible rule generation for different motion 

types;
— based on the degree of membership of a par­

ticular value to a set which will help make use of 
median values later when forming sets;

— suitable for working with tasks that are not 
well formalized, for example, as in [25].

It is also convenient that the key objectives of im­
plementing fuzzy logic have already been solved in 
the data analysis section. These objectives include 
creating input variable sets and formulating the al­
gorithm rules.

In this paper, the Takagi — Sugeno fuzzy algo­
rithm was chosen because it eliminates the need for 
deriving membership functions at the classifier’s out­
put. This choice is based on the specific classification 
task we addressed. The input of the classifier is the 
consumption current values of each robot‘s motor I1, 
I2, I3, the values of commanded X­axis speed, Y­axis 
speed, and commanded rotation speed ω. Numerical 

velocity values do not play a role in the classification 
process. Rather, they function as logical variables in 
the classifier to identify the direction of motion. An 
example of input membership functions for motor 
current values is shown in Fig. 5.

In this case, the membership functions are 
constructed as Gaussians, because at the analysis 
stage the values from the current sensors within 
one experiment adhere to a normal distribution. 
The values of medians and standard deviations for 
the membership functions are taken from the data 
analysis section.

The classifier’s output variable represents the 
degree of membership of motor current values to 
each surface, using a one­vs­all approach.

Evaluation of the fuzzy classifier

The evaluation of classifier accuracy is per­
formed in two steps:

1. Testing the classifier on the original data that 
we used in the analysis phase to derive rules for dis­
tinguishing surface (old data).

2. Testing the classifier on separately gathered 
new data. New dataset contains more motion direc­

 � Fig. 5. Example of input membership functions of a fuzzy classifier
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 � Fig. 6. Confusion matrices for results obtained with the fuzzy classifier
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tions and amplitudes compared to the old data. This 
test is necessary to evaluate the classifier’s general­
ization in case of variable data.

Accuracy will be used as the key metric:

correct predictions
all predictions

.accuracy =
 

The accuracy on old data is expected to be high­
er than the previously estimated lower bound of 
79.2%. The obtained accuracy on the two datasets is 
shown in the confusion matrices in Fig. 6.

As a result, the classifier showed an average ac­
curacy of 85.8% (gray — 77.3%, green — 82.1%, ta­
ble — 98.1%) on the old data. After switching to the 
new data, the accuracy dropped to 79.5% (gray — 
77.0%, green — 72.2%, table — 97.4%). The most 
errors in both cases are made between the gray 
and green surfaces as the sensor system readings 
on these particular surfaces are partially similar in 
the process of a motion.

Machine learning

The performance of the fuzzy classifier is com­
pared with machine learning models, which showed 
high quality of performance for the multiclass clas­
sification task.

Based on a review [26] that identifies advantages, 
disadvantages, and applications of various machine 
learning methods used in classification tasks, we 
have chosen the following models that are balanced 
in terms of accuracy and learning speed: decision 
tree [27], random forest [28], LightGBM [29] and 
CatBoost [30]. All models are trained on the same 
data set that used to create the fuzzy classifier.

The algorithms are trained and validated on the 
initial set old data. Train — validation — test split 
ratio is 60–10–30%. Then, like a fuzzy classifier, the 
algorithms are tested on new data. The accuracy of 
the algorithm is evaluated similarly to that of the 
fuzzy classifier. During training on old data, hyper­
parameters are selected from the parameter grid 
based on the best accuracy criterion for each model. 
The accuracy score for hyperparameter tuning was 
calculated on train data using 5­fold cross­valida­
tion.

The results of the two­step tests are shown in 
Fig. 7. From the figure we can see that:

— The maximum accuracy of 91.1% on old da-
ta and the maximum accuracy of 82.7% on new da-
ta was shown by the gradient boosting algorithm 
CatBoost. Almost similar levels of accuracy are 
achieved with random forest.

— The fuzzy classifier shows the smallest accu­
racy fall of 6.3% between results for both data sets. 
This indicates its better generalization compared 

to machine learning algorithms tuned for the best 
accuracy.

— The accuracy fall in the range of 7 to 8%, 
comparable to the fuzzy classifier, appears only in 
the CatBoost and LightGBM boosting algorithms. 
Meanwhile, the average accuracy of the fuzzy logic 
based algorithms is lower by about 8% compared to 
the boosting algorithms, with a comparable accura­
cy fall. In other cases, an accuracy fall of over 8% is 
observed.

Similarly to tuning hyperparameters with the 
best accuracy criterion, machine learning algo­
rithms are tuned for greater generalization in order 
to get a smaller accuracy fall when transitioning to 
new data. The CatBoost model achieved the best re­
sults at these hyperparameters, with an accuracy 
fall of only 5.2%.

Fuzzy logic — machine learning hybrid

The proposed fuzzy classifier, which is based 
on the identified patterns derived from analysis, 
demonstrates a generalization that is comparable to 
the best machine learning algorithm tuned for the 
same purpose. The reason for this is the design of 
input sets and rules derived from statistical infor­
mation. Still, when compared to machine learning 
algorithms, its overall accuracy is lower because of 
a significant discretization step for grouping data 
based on motion direction. With precise tuning of the 
fuzzy classifier, the accuracy could be comparable to 

 � Fig. 7. Results of classifier accuracy evaluation on two 
datasets 
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that of machine learning algorithms. However, the 
synthesis of a large number of rules would require a 
great deal of time. For instance, currently, the fuzzy 
classifier has 78 rules, while CatBoost tuned for the 
best accuracy has 1974 rules.

We suggest a solution to use the outputs of the 
proposed fuzzy classifier as feature inputs for ma­
chine learning algorithms. We aim to achieve more 
precise tuning of the fuzzy classifier while preserv­
ing its simplicity and generalization. The structure 
of the proposed hybrid solution is shown in Fig. 8.

For the hybrid algorithm, we trained the same 
machine learning methods used in the previous 
stage.

The results of testing the cascade on two data­
sets and comparing them to methods without fu­
sion with fuzzy logic are shown in Fig. 9. It can be 
observed that the addition of fuzzy logic as input 
features gives inconsistent results. It can either in­
crease or decrease the accuracy fall and the aver­
age accuracy on different datasets. The best effect 
is achieved for a hybrid of fuzzy logic and CatBoost. 
The average classification accuracy increased on 
both datasets, resulting in a reduction of the accu­
racy fall compared to the original fuzzy classifier. 
In comparison with CatBoost, the proposed algo­
rithm showed on old data an accuracy comparable 
to the best accuracy tuning 91.1% (gray — 86.0%, 
green — 82.6%, table — 100.0%) and an accuracy 
drop comparable to the best generalization tuning 
with difference 0.7%. As a result, the proposed hy­
brid method gave the maximum accuracy on new 
data 85.2% (gray — 83.6%, green — 79.5%, table — 
98.9%). Also, the number of rules of the final classi­
fier decreased to 980.

It was confirmed that the output values of the 
fuzzy classifier are the main parameters that 
CatBoost uses for surface recognition. For complex 
gray and green surface types, the fuzzy classifier 
values are prioritized in CatBoost. Decision tree 
structure analyses in CatBoost reveal the prioriti­
zation of fuzzy classifier outputs as features at first 
layers in the trees (1–2 layer). In addition, the fea-
ture importance metric of CatBoost model showed 
the following feature priority: fuzzy classifier out­
put for gray surface (23.72%), fuzzy classifier output 

for green surface (20.01%), consumption current of 
motor No. 3 (17.36%), consumption current of mo­
tor No. 1 (16.47%), consumption current of motor  
No. 2 (13.83%), fuzzy classifier output for table 
(8.60%).

This set of feature importances confirms the sig­
nificance of the fuzzy classifier outputs, and also in­
dicates that the model uses motor current values to 
adjust the final result, thus increasing the average 
accuracy.

Conclusion

The research carried out on resolving the sur­
face classification issue, using an omnidirectional 
robot as an example, allowes us to draw several con­
clusions. The analysis of complex multi­component 
motion types has shown that the best distinguish­
ing between surfaces is achieved by using the motor 
current values. In this case, it is more appropriate 
to classify the surfaces based on the readings from 
the current sensor of the motor with the most im­
pact in the motion process. The impact of the motor 
derives from the robot kinematics and the selected 
direction of motion.

During the preparation phase for the classifier 
implementation, it became evident that the fuzzy 
logic principles complement the performed analysis 
of sensor value distribution, including their medi­
an and standard deviation values. The quantitative 
analysis of the values’ intersection proves the qual­

 � Fig. 8. Fuzzy logic — machine learning hybrid struc­
ture 
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 � Fig. 9. Results of hybrid method accuracy evaluation 
on two data sets 
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itative analysis and allowes us to assess the classifi­
er’s lower limit of accuracy at 79.2%.

The fuzzy classifier is synthesized on data that 
was grouped according to the criterion of the most 
impactful motor in a selected direction of motion. 
This approach reduces a number of fuzzy logic 
rules. The classifier is subsequently tested on the 
original (old data) and extended (new data) da­
ta sets. The accuracy is estimated to be 85.8 and 
79.5% respectively, with an accuracy fall of 6.3%. 
The fuzzy classifier is then compared with machine 
learning methods. In most cases, machine learning 
algorithms outperform the fuzzy classifier in terms 
of average accuracy, but loses out in terms of accu­
racy fall.

In this paper, we propose a fuzzy logic — ma­
chine learning cascade in order to preserve the gen­
eralization of the fuzzy classifier and improve the 
accuracy of surface detection by considering more 
patterns using machine learning methods. The best 
results are achieved by the hybrid of CatBoost and 
fuzzy logic. It shows 91.1% accuracy on old data and 
85.2% on new data with a 5.9% accuracy fall. This is 
the best classification result among all tested meth­
ods.

The proposed method for analyzing and classi­
fying data allows us to distinguish between surfac­
es with different power consumption (gray and ta­
ble). Moreover, the classifier demonstrates high ac­
curacy in identifying surfaces with similar power 
consumption levels that are formed due to different 
surface properties (gray — softness, green — to­
pography).

Compared to [10], the obtained surface classifi­
cation accuracy on the new data of 85.2% is high­
er than the average classification accuracy for all 
surfaces of 56.9% when using only information from 
motor currents.

The proposed classifier demonstrated compara­
ble classification accuracy on the training data (old 
data) (gray — 86.0%, green — 82.6%, table — 100%) 
to the classifier in [21] (gray — 82.1%, green — 

88.0%, table — 97.0%). In [21], the authors used an 
extended vector of sensory information for the clas­
sifier, including robot velocities, accelerometer, and 
gyroscope data. The robot and the underlying sur­
faces are similar in both cases.

Discussion

Surface classification with subsequent extrac­
tion of information about the properties of the sur­
face is one of the main priority tasks for outdoor 
robots. However, for most local navigation tasks 
this problem is solved by conducting a preliminary 
surface analysis and creating a classifier based on 
the obtained data. This paper raises the problem of 
a lack of universally applicable approach for solving 
the classification problem. In continuation, we will 
focus on the versatility of solving the classification 
problem based on the proposed data analysis and 
the classifier construction technique. 

Firstly, further research will focus on the possi­
bility of transitioning to a single value that describes 
the energy cost of motion. This value depends on the 
kinematics of a mobile robot, direction of motion, ro­
tation speed amplitude, and other relevant parame­
ters. We believe a universal parameter will reduce a 
number of input features in the classifier.

Secondly, we plan to explore the classification 
of surfaces across a full range of motor currents or 
the power consumption parameter. This involves 
generating new sets and rules for the classifier as 
the robot navigates, and adapting existing sets and 
rules to changes in the external environment. Real­
time modifications to the classifier will make it a 
universal solution to the problem of distinguishing 
between surface types.

Lastly, as this work concentrates on analyzing 
only the direct power consumption of motion, fur­
ther research will use additional information to ex­
pand the understanding of surfaces’ physical prop­
erties.
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Синтез гибридного классификатора подстилающих поверхностей на основе нечеткой логики  
с использованием токовых энергозатрат движения мобильного робота
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Введение: одним из подходов при решении задач навигации и управления мобильными роботами, работающими на открытом 
воздухе, является использование классификации типа подстилающих поверхностей, по которым перемещается робот в реальном 
времени. Знания о типе подстилающей поверхности позволяют использовать ранее известные характеристики поверхностей для 
улучшения точности локализации и алгоритмов управления. Цель: исследовать применимость данных об энергозатратах движения 
для решения задачи классификации поверхностей с различными физическими свойствами для робота со сложной кинематикой.  
Результаты: анализ многокомпонентных типов движения всенаправленного робота показал, что лучшая разделимость поверхностей 
достигается при использовании значений токов двигателей. При этом классификацию поверхностей целесообразнее осуществлять 
по значениям тока двигателя, наиболее влияющего на процесс движения. Нечеткий классификатор синтезирован на основе данных, 
сгруппированных по критерию наиболее влияющего на выбранное направление движения двигателя. Проведено сравнение нечет­
кого классификатора с методами машинного обучения. Предложен каскад нечеткая логика — машинное обучение с целью сохранить 
обобщающую способность нечеткого классификатора и улучшить точность определения поверхностей через учет большего количе­
ства закономерностей с помощью методов машинного обучения. Предложенная методика анализа данных и метод классификации 
позволяют с высокой точностью разделять поверхности, отличающиеся по энергозатратам, в том числе сформированным за счет 
разных параметров поверхности. Практическая значимость: результаты исследований могут быть использованы как для создания 
самостоятельного классификатора поверхностей, так и в рамках комплексного классификатора с использованием разных видов вход­
ной информации. 

Ключевые слова — классификация подстилающих поверхностей, гибридные методы, машинное обучение, нечеткая логика, 
деревья решений, градиентный бустинг, мобильная робототехника, анализ токов потребления.
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