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Introduction: Medical image segmentation is a widely researched field where neural networks serve as a basis for many medical data 
analysis and visualization processes. Traditional approaches to training segmentation models often rely on voxel-wise loss functions, 
which are insufficient for many segmentation tasks, and do not consider the topological correctness of the segmentation. Consequently, 
masks learned by such models may be spatially inconsistent, resulting in unrealistic features such as spurious connected components 
or holes. Purpose: To develop a method for training models to improve the quality of medical 3D image segmentation by leveraging 
persistent homology and comparing persistence diagrams during training. Results: We propose a method for training 3D image seg-
mentation models, including persistent homology-based constraints and a loss function that is used to regularize the shape and edge 
reconstruction process of the mask. We present a filtration function based on the distance to the centroid of a binary mask to refine the 
shape and edge of the predicted mask. The analysis of the results obtained during the experiments on lung computed tomography data 
for segmentation and target structure extraction tasks has shown the effectiveness of our approach. The proposed approach not only 
improves the accuracy at the voxel level, but also preserves essential morphological properties, which is extremely important for sub-
sequent tasks, such as nodule volume estimation and clinical decision making. Practical relevance: The use of the presented approach 
makes it possible to improve the quality of lung nodule segmentation using 3D CT images.
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Introduction

In the analysis and visualization of clinical data 
workflows, accurate segmentation of medical images 
is a crucial step. For example, lung nodule segmen-
tation plays a vital role in computer-aided diagnosis 
(CAD) systems for lung cancer, as it provides essen-
tial information such as nodule sizes, shapes, and 
other critical medical characteristics [1]. By allowing 
for accurate volume estimation, reliable segmenta-
tion is essential for effective nodule management, 
particularly when calculating volume doubling time 
[2, 3]. The large volume of data generated by CT im-
aging, which can produce hundreds of images of the 
lungs per second, poses a significant challenge to ra-
diologists, who must individually examine thousands 
of slices in each scan for diagnostic purposes. This 
process is not only time-consuming and labor-inten-
sive but also susceptible to errors [4]. Furthermore, 
manual segmentation is prone to observer variabili-
ty, highlighting the need for an efficient and accurate 
automated lung nodule segmentation method to en-
hance the early detection rate of lung cancer.

The works [5, 6] show that there has been sig-
nificant progress in the segmentation of 2D and 3D 

medical images. This was influenced by the advent 
of deep learning models and convolutional neural 
networks, an successful example of which is the 
U-Net architecture [7], which generalizes features 
at different levels (from local at the voxel level to 
global at the anatomical level) and is successfully 
applied in various domains. At the same time, it 
can be noted that less attention is paid to the pro-
cess of model optimization [8] and most works use 
loss functions common in segmentation problems: 
cross-entropy, Jaccard index and Dice coefficient 
(which consider voxels independently and are insen-
sitive to errors such as false connected components 
or holes). As a result, such loss functions are insuf-
ficient for many segmentation problems and do not 
take into account the topological correctness of the 
segmentation, which can be learned during the op-
timization process.

In clinical practice, the characteristics of pul-
monary nodules, such as their sizes, shapes, and 
specific features like calcification, lung lobe, and 
ground-glass shadows, exhibit significant variabil-
ity across different levels. In addition, the morpho-
logic features seen on CT images often resemble 
those of vascular tissues, which may make accurate 
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segmentation of pulmonary nodules difficult and 
lead to spatial inconsistencies.

If spatial features are not taken into account 
when optimizing a convolutional neural networks, it 
can result in segmentations that lack spatial coher-
ence, including spurious connected components or 
holes. Such errors can appear nonsensical, but they 
are often confined to object boundaries and may not 
significantly impact the assessment of specific clin-
ical features. Nevertheless, for many downstream 
applications, such as nodule volume estimation [2, 
3], it is essential to accurately capture these spatial 
features in order to ensure reliable results.

Capturing spatial consistency and boundary 
consistency in segmentation masks requires ab-
stract and adaptable information that can accom-
modate the diverse range of cases encountered in 
clinical settings, rather than relying on specific ex-
amples from training data. Spatial prior consistency 
offers a global measure of segmentation consistency. 
Such measure can be applied to normal and complex 
pathological regions of an image, unlike convention-
al losses that treat voxels independently. However, 
while quantifying conventional loss functions is 
straightforward, estimating spatial prior consist-
ency presents significant complexity and non-triv-
ial challenges. Furthermore, explicitly integrating 
this measure into convolutional neural networks is 
hampered by the opacity of such models. We present 
a topological descriptor module and topological con-
straints to address the limitations and challenges 
described above.

The contributions can be summarized as follows:
—Recently, there have been some papers that 

use topological data analysis (TDA) together with 
machine learning [9]. Using TDA, it is possible to 
analyze the shape of objects in different dimensions 
and use it as an additional source of features. We 
propose a loss function that uses these features to 
help the model learn the shape and boundaries of a 
mask in a segmentation task.

—We propose a centroid loss that encourages 
the alignment of centroids between the predicted 
mask and the ground truth to improve optimization 
process.

—To capture boundary information of shape we 
introduce filtration based on distance to the cen-
troid of binary mask.

Related works

Medical images segmentation
Accurate segmentation of lung nodules is a cru-

cial component of CAD systems, as it enables the 
precise delineation of a target nodule’s boundary. 
The primary objective of lung nodule segmenta-
tion is to provide detailed information about the 

nodule, including its diameter, size, and seman-
tic characteristics important for diagnosis [10]. In 
[11], authors highlight the importance of these de-
tails for malignancy assessment of the nodule and 
treatment planning. The segmentation method al-
lows for the extraction of precise boundaries of the 
nodule and overall size [12]. The main challenge of 
this task is that lung nodules have various shapes, 
sizes, and delicate features. Recently, deep learning 
has become the most popular method in this area. 
In [13], the authors propose a novel model called 
the Dual-branch Residual Network (DB-ResNet), 
which enhances segmentation accuracy by integrat-
ing multi-view and multi-scale feature extraction 
techniques. This model can handle the complexities 
associated with different types of lung nodules: the 
proposed method involves the use of features cap-
ture from three different slices (upper, middle, low-
er) and central intensity pooling layer, which focus-
es on extracting intensity features from the center 
voxel of the nodule.

Zhou et al. [14] proposed a cascaded multistage 
framework and split the process into several stages. 
In the localization stage 2D-based model performs 
initial rough localization of nodules on axial CT 
slices. In aggregation and segmentation stages, the 
candidate nodule selection algorithm refines the 
location of nodules and reduce redundancy among 
candidates and segment final masks.

Yang et al. [15] considered the problem of cap-
turing the variability of clinical practice where dif-
ferent radiologists may provide different segmenta-
tions for the same nodule and designed an uncer-
tainty-aware attention mechanism that leverages 
the consensus and disagreements among multiple 
annotations to improve segmentation performance. 
Their model aims to provide a more nuanced under-
standing of areas with varying levels of confidence.

The results of such models can be used to per-
form subsequent evaluation of the characteristics of 
the nodule [16]. Observations from previous studies 
suggest that current methods tend to focus primar-
ily on improving segmentation accuracy without 
taking into account the spatial and boundary con-
sistency of the predicted segmentation mask.

Segmentation with topological data analysis
Various approaches leveraging TDA have been 

developed to ensure the topological accuracy of ob-
jects in images [17, 18]. In [19], the authors proposed 
method measures the difference between high-level 
structural information which include concepts such 
as connectivity or holes captured by pretrained net-
work for delineating curvilinear structures such as 
cell membranes. TDA has also been successfully ap-
plied for tumor segmentation [20] and cortical plate 
segmentation [21] in 3D MRI scan, cancer prediction 
on whole slide histology images [22], for ultrasound 
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imaging analysis [23] and object segmentation in 
microscopy images [24]. The first type of applica-
tion involves designing segmentation methods that 
constrain their topology. For instance, researchers 
in [25] introduced a topological loss function, calcu-
lated using TDA, to supplement the standard loss 
function used in training segmentation models. By 
incorporating prior topological knowledge, the seg-
mentation process is restricted to produce results 
that closely resemble a predefined shape. This con-
cept has been successfully applied to segmenting 
the myocardium, which is known to have a ring-like 
shape, and to segmenting the placenta, which is rec-
ognized as a single connected component without 
holes.

An alternative approach, presented in [21, 26], 
involves training a neural network to minimize the 
difference between the persistence diagrams of the 
images and their corresponding ground truth seg-
mentations. Rather than relying on explicit prior 
knowledge to constrain the persistence diagram, 
the authors introduce a topology-preserving loss 
function. It encourages the segmentation output 
to preserve the same topological characteristics as 
the ground truth, specifically by aligning the Betti 
numbers (which represent the number of connected 
components and holes) between the predicted and 
actual segmentation masks.

As an another application of TDA, it can be uti-
lized to characterize the topological structure of 
image components. For example, in [27, 28], the 
authors use persistent homology to identify image 
patches that contain tumors, based on the pres-
ence of an increased number of holes and connected 
components. This approach is grounded in the fact 
that infected tissues often exhibit irregular nuclei 

shapes and sizes, which can be distinguished from 
healthy tissues using TDA. Finally, it is worth not-
ing that TDA is a rapidly evolving field with ongoing 
research and development of new methods.

Method for training 
3D segmentation models

In Figure 1 we provide a flowchart of our pro-
posed pipeline, which include the integration of 
TDA, particularly persistent homology, with a new 
filtration function based on distance to the centroid 
to refine shape and boundary topology. Given a 
predicted mask and 3D ground truth, we calculate 
topological features using topological descriptor 
with cubical persistent homology. We compare the 
resulting persistence diagrams using topological 
constraints and combine it with centroid loss and 
Dice loss.

The output of the trainable model and the 
ground truth segmentations are sequentially pro-
cessed through a topological descriptor to efficiently 
capture the topology information of target instanc-
es. Then we compare the resulting persistence dia-
grams using topological constraints and combine it 
with centroid loss LC and Dice loss LDice. It encour-
ages the segmentation output of the trainable model 
to preserve the same topological characteristics as 
the ground truth.

Topology assessment
Previous studies [29, 30] have shown that cu-

bic complexes are effective for representing and 
exploring volumetric data. Topological features of 
different dimensions for cubical complex include 

  Fig. 1. Overview of the proposed method
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connected components, cycles, and voids. We rep-
resent a volume V as a cubical complex C. A volu-
me V can be described by a m-dimensional tensor 
with a shape of n1  n2  ...  nm. Cubical complex 
represents an each voxel of a volume V as verti-
ces and their spatial relationships (points, lines, 
squares and cubes).

The Betti number, represented as k, measures 
the number of k-dimensional topological features, 
such as connected components, loops, or voids, in 
a cubical complex V. Betti numbers only provide a 
count of features and do not account for their scale 
or how long they persist across different resolutions. 
Therefore, they are limited in applications requir-
ing multi-scale analysis, although there are works 
that use them in image segmentation tasks as a 
topological prior [31, 32]. To address this limitation 
we utilize persistent diagrams to enable the calcu-
lation of topological features (capturing both their 
presence and their persistence over varying levels of 
detail) across multiple scales.

To analyze the structure of the volume, we ap-
ply a threshold   R which filters the voxels based 
on their likelihood values. We get likelihood val-
ues using likelihood function f : V R, learned by 
our model, evaluates each voxel x  V, and assigns 
it a probability value indicating how likely it is to 
belong to a nodule. Specifically, a cubical complex 
C() is formed by including all voxels x that satisfy 
f(x) . The topology of the resulting cubical com-
plex changes only at a finite number of thresholds 
  …  m (due to the volume is finite). Thus, by 
applying these thresholds, we obtain super-level set 
filtration — a sequence of nested cubic complexes: 

1 2( ) ( ) ( )mC C C V       which captures 
the changes of the volume’s topological features. 
In this way we can track pairs of thresholds at 
which k-dimensional features appear and disap-
pear. We then define the persistence  diagram ( )k

fD
as the set of pairs of such thresholds: (i, j), where 
i  j — creation and destruction of k-dimensional 
features with 0  k  m. By monitoring these fea-
tures throughout the entire filtration, persistent 
homology offers a detailed and comprehensive char-
acterization of the nodule’s topological structure.

In contrast to Betti numbers, which require a 
fixed threshold  for the likelihood function and 

yield a single set of topological descriptors, persis-
tence diagrams offer a more comprehensive rep-
resentation of the data by encoding all possible 
thresholds simultaneously. This allows for the cap-
ture of additional geometrical details that would 
be lost with a single threshold choice. The persis-
tence of a topological feature defined as pers(i, j) 
= |i – j| for a given tuple (i, j) in the persistence 
diagram, provides a measure of the feature’s scale 
or stability. Larger persistence values typically indi-
cate more robust features that persist over a wider 
range of thresholds.

It is important to note that although the filtra-
tion can be computationally expensive, practical im-
plementations have shown that persistent homology 
for cubical complexes can be computed efficiently, as 
highlighted in previous work [29].

We showcase an example of a filtration process 
from a centroid distance function in Fig. 2. Given 
a centroid distance function of the binary mask, as 
the threshold increases, various features appear 
and disappear. Each point on the persistence dia-
gram represents a feature and has a creation and 
destruction value — interval in which it appears 
and disappears. Note that this is for illustrative pur-
poses only, and in reality the resulted persistence 
diagram may look different, since cubical complex 
for this example is built from only one slice of the 
3D nodule patch.

Topological descriptor
As previously noted, pixel-wise loss is insensitive 

to capturing spatial consistency and boundary con-
sistency in segmentation masks. To explicitly incor-
porate such priors into parameter optimization and 
quantitatively represent them, we present a topolog-
ical descriptor module.

At the input, the module receives a binary mask 
V and transforms it using the filter function . Then, 
for computational efficiency, we downsample each 
sample to reduce the dimensionality using bilinear 
and trilinear interpolation for 2D and 3D respec-
tively. We provide an additional information about 
the impact of interpolation step in Experiments sec-
tion. Based on the interpolated result, we calculate 
a cubic complex C. This module is used to obtain 
topological features, which are then compared with 
topological constraints.

 Fig. 2. An example of the filtration process
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The choice of filtration in persistent homology 
determines the type of information that is cap-
tured about cycles, ranging from purely topolog-
ical to a combination of topological and geomet-
ric information. Specific topological invariants 
exhibit robustness under affine transformations, 
whereas geometric invariants do not necessarily 
possess this property. As a result, the choice of fil-
tration has significant implications for the persis-
tence and importance of cycles, influencing which 
cycles are deemed significant and which are con-
sidered noise and less relevant [33]. To capture 
boundary information of shape we introduce fil-
tration based on distance to the centroid of binary 
mask.

Lets V be a gray-scale volume, V  [xdhw] where 
xdhw is the gray-scale value of the voxel (d, h, w), 
d {1, 2, …, n1}, h {1, 2, …, n2}, w {1, 2, …, 
n3}. First, we define a radial filtration function as 
l2-norm distance between centroid of the binary 
mask and the reference point:

0 0 0 02    

0 otherwise,

( , , ) ( , , ) ,
,

;dhw
r

d h w d h w x x    


where (d, h, w) is the reference point for which the 
distance is calculated, x0 is the gray-scale threshold, 
we take threshold value x0  0.5max(V). We use 
centroid of the binary mask as the reference point 

(d0, h0, w0) for radial filtration. The centroid is 
defined as a simple spatial average.

To capture information not only about topolog-
ical features, but also about shape information the 
final filtration function defined as   r(1 – edt), 
where edt is euclidean distance transform filtra-
tion which calculates the distance by replacing each 
foreground element on the mask with its shortest 
distance to the background.

In Figure 3 we visualize different filtration func-
tions for the same nodule slice and their persistence 
diagrams. The first plot shows an slice of the nodule 
patch, the next two plots respectively show filtra-
tions by centroid distance and euclidean distance for 
this slice, and three plots of persistence diagrams.

Topological constraints
Given a true likelihood function f and a predicted 

likelihood function f and corresponding persistence 
diagrams D and D we use Wasserstein distance to 
compare these diagrams. So, our topological loss 
can be defined as

0

( ) ( )( , ),
d

k k
T p f f

k
W D DL 


 

where ( ) ( )( , )i i
p f fW D D   is a Wasserstein distance 

between persistence diagrams . This loss term 

 Fig. 3. Comparison of different filtrations and their persistence diagrams
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encourages the model to reduce the distance 
between f and f with respect to their topological 
shape and boundary information.

In the training pipeline with topological con-
straints during optimization of the LT the Dice loss 
LDice landscape is flat in regions where there is no 
overlap between the prior and the ground truth due 
to, we regularize the shape and boundary recon-
struction. The result is a limited and local modifica-
tion of the prior that does not extend to the point of 
intersecting with the ground truth, and as a result 
the loss remains unchanged. To prevent the loss 
landscape from entering flat regions we propose a 
centroid loss that encourages the alignment of cen-
troids between the predicted mask and the ground 
truth.

Proposed centroid loss can be defined as

2
    ( , , ) ( , , ) ,C f f f f f fL d h w d h w   

where (df, hf, wf) and (df, hf, wf) are centroids of the 
prior and the ground truth respectively.

To jointly optimize the segmentation network 
the final loss can be defined as

,Dice T T C CL L L L    

where T and C controls the impact of the 
corresponding loss terms.

Experiments

Datasets
The performance of our proposed training pipe-

line was evaluated using the publicly available 
LIDC-IDRI dataset [34], a comprehensive collection 
of CT scans from 1,010 patients, featuring anno-
tated nodules that were identified and outlined by 
multiple radiologists from various medical institu-
tions across the United States, employing a range 
of imaging protocols and scanner models from four 
different manufacturers.

We selected nodules that had a diameter in a 
range 5–50 mm, had minimum 1000 voxels in an-
notation, correct annotations and slice spacing in 
related scan and were identified by at least one radi-
ologist. As a result, we had 393 nodule samples from 
LIDC-IDRI dataset, which divided into a train-
ing dataset of 282 samples, validation dataset of 
32 samples and test dataset of 79 samples. We make 
sure that no sample is included in either the train-
ing, validation or test dataset.

Evaluation metrics
We use three main instance-level evaluation 

metrics to measure the instance segmentation per-
formance of the comparison models: Jaccard index 

(JI), Dice score (DSC) and Hausdorff distance (HD) 
[35]. Jaccard index can be calculated as

.true pred

true pred

Y Y
JI

Y Y






It measures the ratio of the intersection and the 
union between the ground truth mask and predict-
ed mask. Dice score focuses on the ratio of the inter-
section and the sum of the sets and penalizes differ-
ences less strictly because the denominator doesn’t 
grow as fast as in the Jaccard index. Dice score can 
be defined as

2
.true pred

true pred

Y Y
DSC

Y Y






Also we obtained additional performance met-
rics based on Minkowski functionals: volume error, 
surface area error, mean curvature error, which are 
calculated as the difference between the values of 
the corresponding n-th functional between the pre-
dicted mask and the ground truth:

,
f f
n nerror

n f
n

M M
M

M




where f
nM  and f

nM   are corresponding Minkowski 
functional of the ground truth and the prior.

Implementation details
To extract the volume of interest for each nodule 

in our image processing workflow, we employ the 
pylidc package, a specialized library designed for the 
LIDC-IDRI dataset [36]. All patches are resampled to 
0.75  0.75  0.75 mm physical space and cropped to 
the resolution 96  96  96 voxels using linear inter-
polation. Then we clamp intensity values (Hounsfield 
units) of volumes into a range [–1000, 1000] and res-
cale intensity values to a range [0, 1] with contrast 
stretching, as done in previous studies [37]. To imple-
ment processing pipeline for 3D data we use TorchIO 
library [38]. To calculate Minkowski functionals we 
use QuantImPy library [39].

The DeepLabV3 [40] architecture is employed as 
our target model, and in order to guarantee a fair 
comparison, we maintain a consistent implementa-
tion and hyperparameters setting throughout the 
entirety of our experiments, we employ ”Weights 
and Biases” for tracking experiments [41]. The 
network are trained from imagenet weights for 
200 epochs with a batch size of 28. We use the Adam 
optimizer with a dynamic learning rate (cosine an-
nealing warm restarts [42]) from the start value 
6  10–5 to the maximum value 1  10–4. The op-
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timizer has the first moment estimate 0.9 and the 
second moment estimate 0.999.

Also we optimize T and C parameters on an in-
dependent data set, as a result we used T  0.02 and 
C  1.0 for all experiments. These parameter values 
are chosen because the topological loss term is based 
on the Wasserstein distance between persistence dia-
grams and compares multi-scale topological features 
across the entire volume, which can yield relatively 
large numerical values. Larger T parameter values 
can destabilize the model training process (topolog-
ical features can be noisy at early training stages). 
Target shape for the interpolation step in topological 
descriptor was 18  18  18 voxels because it’s opti-
mal in terms of performance and errors.

We augment the training data using standard 
image data augmentation techniques. This included 
randomly applying transformations such as reverse 
the order of elements in a volume along the axes, 
random rotating the input patch in a range [–25, 25] 
degrees and random affine transformation. To main-
tain consistency, we apply identical transformations 
to all slices within a nodule volume. Furthermore, 
we randomize the order of training examples in the 
each epoch. Our models and training pipeline are 
built using PyTorch and data processing pipeline is 
built with TorchIO and Torchvision libraries. The 
source code for the implementation of models and 
the training pipeline, data processing and dataset 
preparation is available at the link: https://github.
com/dumaevrinat/ph_constraints.

Experiment results and discussion

To evaluate the benefits of our topological con-
straints, we perform the same experiment twice: 
in first run we use Dice loss only, and then added 
TLT and CLC loss terms. As shown in Table, our 
training pipeline with topological constraints outper-
forms the baseline across all three main metrics. We 
also provide error comparison based on Minkowski 
functionals. The volume error, surface area error, 
and mean curvature error are all also slightly low-
er for the approach with topological constraints. We 
perform a paired Wilcoxon signed-rank test between 
the two error distributions, the obtained p-values are 
also presented in the Table. We show a detailed com-
parison of 1  DSC (fig. 4, a) and 1  JI (fig. 4, b) eval-
uation metrics on different groups of nodules divided 
into quartiles by volume and surface area.

The results of comparing two approaches to 
model training, with and without topological con-
straints, indicate that incorporating topological 
constraints leads to improved lung nodule segmen-
tation performance.

The effectiveness of the proposed segmentation 
method with topological constraints is illustrated in 

the Fig. 5. The segmentation results (one slice from 
the whole segmentation volume) for four example 
nodules from the test dataset are compared against 
the baseline approach, with invalid regions shown 
as red rectangles. The baseline method exhibits in-
consistencies such as fragmented boundaries and 
isolated false-positive regions. In contrast, method 
based on persistent homology-based constraints 
produces more closely segmentations to the ground 
truth. This improvement is especially noticeable in 
the absence of topological errors such as holes or un-
connected components.

  Lung nodule segmentation performance of different 
training pipelines

Evaluation metric
Without 

topological 
constraints

With 
topological 
constraints

p-value

1  DSC 0.33 ± 0.20 0.29 ± 0.16 0.0103

1  JI 0.46 ± 0.19 0.43 ± 0.17 0.0056

HD 7.74 ± 5.05 6.09 ± 5.70 0.0094

M0 (volume error) 0.29 ± 0.32 0.30 ± 0.29 0.0465

M1 (surface area 
error) 0.22 ± 0.25 0.19 ± 0.23 0.0158

M2 (mean 
curvature error) 0.26 ± 0.21 0.21 ± 0.22 0.0002

  Fig. 4. Comparison of Dice (a) and Jaccard (b) loss 
metric for base and topological pipelines for samples di-
vided into quartiles by surface area and volume
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The proposed method integrates persistent ho-
mology-based topological constraints into 3D med-
ical image segmentation, demonstrating improved 
performance over traditional pixel-wise loss func-
tions. By leveraging TDA, our approach ensures 
that predicted segmentations adhere to expected 
morphological properties and boundary consistency. 
Below, we discuss our results, compare our method 
with existing approaches, and outline its limitations 
and potential applications.

Most deep learning-based segmentation methods 
focus on improving accuracy through architectural 
modifications or post-processing. These approaches of-
ten ignore topological correctness. Recent works have 
explored topology-aware losses, but many of them rely 
on simplifying assumptions such as fixed Betti num-
bers [25], which lack the multi-scale flexibility of per-
sistent homology. In contrast, our method captures 
topological and shape representation features across 
varying scales through persistence diagrams.

Despite the above advantages, our method has 
several limitations. The topological loss assumes 

high-quality ground truth annotations. In prac-
tice, variability in medical annotations from multi-
ple experts may require robustness to noisy labels. 
Calculating persistent homology for high-resolu-
tion 3D volumes is computationally intensive and 
requires CPU resources. Although downsampling 
mitigates this to some extent, future work may fo-
cus on exploring this limitation.

Although the effectiveness of the method has 
been confirmed in pulmonary lung nodules, further 
studies are needed for other types of lesions.

Conclusion

In this paper, we proposed persistent homolo-
gy-based topological constraints and their integra-
tion into medical image segmentation represents a 
significant advancement in the field, particularly 
for applications such as lung nodule detection. By 
employing a new filtration function based on cen-
troid distance, the proposed method effectively re-
fines shape and boundary representation and im-
proves the accuracy of segmentation.

Empirical results (see Table) for lung nodule 
segmentation using 3D computed tomography im-
ages validate the effectiveness of our framework. 
The results indicate that this approach not only im-
proves pixel-level accuracy but also preserves essen-
tial morphological properties, which are critical for 
downstream applications such as volume estimation 
and clinical decision-making.

Future studies and improvements in topolo-
gy-aware methods may further increase the accura-
cy and usefulness of automated segmentation tools, 
ultimately leading to improved patient outcomes 
in clinical settings. The current evolution of TDA 
within machine learning has great potential to im-
prove understanding and interpretation of complex 
medical images.
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Введение: традиционные подходы к обучению моделей сегментации часто опираются на функции потерь по вокселям, что не-
достаточно для многих задач сегментации, и не учитывают топологическую корректность сегментации. Следовательно, маски, полу-
ченные с помощью таких моделей, могут быть пространственно несогласованны, что приводит к появлению нереалистичных харак-
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теристик, таких как ложные связанные компоненты или дыры. Цель: разработать метод обучения моделей для повышения качества 
сегментации медицинских 3D-изображений за счет использования персистентных гомологий и сравнения диаграмм персистентности 
в процессе обучения. Результаты: предложен метод обучения моделей сегментации 3D-изображений, включающий ограничения на 
основе персистентных гомологий и функцию потерь, которая применяется для регуляризации процесса восстановления формы и 
краев маски. Представлена функция фильтрации, основанная на расстоянии до центроида бинарной маски, для уточнения формы и 
границы предсказанной маски. Анализ результатов, полученных в ходе экспериментов на данных компьютерной томографии легких 
для задачи сегментации и выделения целевых структур, показал эффективность предложенного метода. Он не только повышает точ-
ность на уровне вокселей, но и сохраняет существенные морфологические свойства, что крайне важно для последующих задач, таких 
как оценка объема узелков и принятие клинических решений. Практическая значимость: использование представленного метода 
позволило повысить качество сегментации легочных узелков по 3D-изображениям компьютерной томографии.

Ключевые слова — сегментация медицинских изображений, предсказание формы, топологический анализ данных, персистент-
ная гомология, сегментация узелков в легких. 
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