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Введение: анализ сетевого трафика интернета вещей осложнен высокой размерностью, избыточностью и нестабильностью 
признаков. Наблюдается сильная корреляция, мультиколлинеарность и шум, что снижает качество кластеризации и затрудняет 
интерпретацию. Кроме того, легитимный и аномальный трафик часто перекрываются, что осложняет формализацию границ 
между классами. Вǡэтой связи требуется метод отбора признаков, обеспечивающий устойчивость, компактность и семанти-
ческую интерпретируемость. Цель: разработать и экспериментально оценить новый метод для построения устойчивого и ин-
терпретируемого признакового пространства вǡ задачах кластеризации сетевого трафикаǡ— Progressive Feature Filtering with 
Stability and Significance (PFF-SS, PF2S). Методы: описан пошаговый алгоритм PF2S, сочетающий анализ линейных (корреля-
ция, VIF) и нелинейных (взаимная информация) зависимостей сǡоценкой стабильности и информативности. На каждом этапе 
исключаются избыточные, слабо значимые или нестабильные признаки. Результаты: применение PF2S кǡдатасету сетевого 
трафика интернета вещей позволило сократить число признаков сǡболее чем 300 до 17, сохранив высокую информативность. 
Сравнение сǡпространствами, редуцированными методом главных компонент и методом рекурсивного исключения призна-
ков, показало, что PF2S обеспечивает более высокие метрики стабильности, интерпретируемости и качестве кластеризации. 
Метод не преобразует признаки, как метод главных компонент, а сохраняет их исходную семантику. По сравнению сǡметодом 
рекурсивного исключения признаков PF2S обеспечил отсутствие мультиколлинеарности, более низкую сложность модели и на 
17,6 % более высокий силуэтный коэффициент. Кластеры, построенные на основе PF2S-пространства, оказались устойчивыми 
(высокий скорректированный индекс Рэнда) и семантически интерпретируемыми. Практическая значимость: PF2S формирует 
компактное и устойчивое признаковое пространство, пригодное для систем обнаружения аномалий вǡсетевом трафике интерне-
та вещей. Обсуждение: перспективным направлением является адаптация PF2S для потоковой обработки данных и интеграция 
сǡсигнатурными методами выявления аномалий и онтологиями сетевого трафика.

Ключевые словаb— интернет вещей, устойчивость признаков, информативность признаков, кластеризация K-средних, агло-
меративная кластеризация, спектральная кластеризация, модель гауссовых смесей, метод главных компонент, метод рекур-
сивного исключения признаков, анализ сетевого трафика, обнаружение аномалий.
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В ведение

Ш ирокое применение систем искусственного 
интеллекта сопровождается ростом числа задач, 
в которых признаковое пространство характери-
зуется высокой размерностью, разнотипностью и 
избыточностью. Это особенно актуально в пред-
метных областях, где данные генерируются в ре-
альном времени и содержат сотни, а иногда и тыся-
чи признаков, описывающих поведение устройств, 
пользователей и правила их взаимодействия [1]. 
В таких условиях эффективность моделей машин-
ного обучения снижается из-за увеличения вы-
числительной сложности, риска переобучения и 
потери интерпретируемости. Сокращение призна-
кового пространства становится ключевым усло-
вием построения устойчивых, интерпретируемых 
и масштабируемых моделей. 
К таким задачам относится анализ сете-

вой активности в системах интернета вещей 

(Internet of Things, IoT), где применение тради-
ционных протоколов безопасности затруднено 
требованиями к облегченности и энергоэффек-
тивности решений из-за ограничений в вычис-
лительной мощности и времени автономной ра-
боты устройств [2]. Архитектура IoT объединяет 
физические и виртуальные объекты: датчики, 
исполнительные механизмы, облачные сервисы, 
специальные сетевые протоколы, транспорт-
ные средства коммуникации и пользователей 
[3]. Основными целями безопасности IoT явля-
ются обеспечение конфиденциальности, целост-
ности и доступности предлагаемых услуг [4]. 
Аномалии в таких сетях могут быть вызваны 
как техническими сбоями (например, выходом 
из строя IoT-устройства), так и целенаправлен-
ными кибератаками (например, DoS — «отказ 
в обслуживании», MITM — «атака посредни-
ка», spoofing — «подмена доверенного лица»). 
Эффективное выявление таких угроз требует 
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построения моделей, способных различать нор-
мальное поведение и деструктивные воздей-
ствия на основе анализа многомерных данных 
[5]. IoT-сети характеризуются динамичностью 
процессов, гетерогенностью устройств и посто-
янным изменением признаков нормального по-
ведения, что затрудняет формализацию границ 
между «нормой» и «аномалией» [6].
В рамках исследований по обеспечению без-

опасности сети IoT в Красноярском научном цен-
тре СО РАН создана и внедрена инфраструктура 
для сбора данных и имитации угроз, позволяю-
щая генерировать реалистичные сценарии сете-
вой активности [7]. Схема IoT-сети построена по 
шаблону «Издатель — Подписчик» с использо-
ванием протокола MQTT. Различные сценарии 
атак для этого протокола рассмотрены в рабо-
те [8]. Обязательным элементом архитектуры 
сети является брокер, отвечающий за прием и 
маршрутизацию сообщений. Исследования про-
водятся для брокеров, развернутых в несколь-
ких популярных платформах (Eclipse Mosquitto, 
EMQX, NanoMQ, VerneMQ) с различными кон-
фигурациями политик безопасности. Настройки 
брокеров осуществляются адаптивно [9], но во-
просы безопасности для такой разнообразной се-
ти остаются. С помощью программных агентов 
фиксируется весь сетевой трафик, поступающий 
на стандартные и шифрованные порты как во 
внутренней сети, так и извне [10]. В настоящее 
время собраны датасеты, описывающие времен-
ные, статистические, протокольные и поведенче-
ские характеристики трафика.
Полученные датасеты характеризуются вы-

сокой размерностью как по числу объектов (па-
кетов, накопленных за длительный период), так 
и по числу признаков (которых более 300). При 
этом легитимные и аномальные сетевые сессии 
могут быть как долгосрочными, так и кратко-
временными, что затрудняет их исследование на 
основе временных характеристик. Наблюдается 
высокий уровень шума, многие признаки явля-
ются избыточными, сильно коррелированными 
и чувствительными к вариативности данных. 
Особую сложность представляет перекрытие 
классов на подмножествах признаков. В работе 
[11] показано, что на качество классификации 
значительно влияет степень такого пересечения. 
В этих условиях возникает необходимость в при-
менении надежных и интерпретируемых мето-
дов снижения размерности, способных выделить 
устойчивое ядро информативных признаков.
Существующие методы снижения размерно-

сти можно разделить на фильтрующие, встраи-
ваемые, обертывающие и методы преобразова-
ния [12]. Несмотря на их различия, большинство 
подходов не обеспечивают высокой стабильно-
сти отбора признаков. В работе [13] показано, что 

в реальных задачах эффективность сокращения 
пространства признаков целесообразно оцени-
вать по критерию его устойчивости (стабиль-
ности), т. е. способности метода воспроизводить 
схожие наборы признаков при вариации обу-
чающих выборок. Это свойство особенно важно 
в условиях IoT, где нормальное поведение дина-
мично, а данные подвержены изменчивости из-
за обновлений устройств, сбоев или изменений 
в сетевой нагрузке.
Фильтрующие методы (например, на основе 

корреляции, взаимной информации или у слов-
ной энтропии) просты и вычислительно эффек-
тивны, что делает их популярными для предва-
рительного анализа в задачах с большим числом 
признаков [14]. Однако фильтрующие методы не 
учитывают взаимодействия между признаками 
и не зависят от целевой модели. Это может при-
вести к отбору избыточных признаков (напри-
мер, нескольких коррелирующих переменных) 
или пропуску информативных комбинаций. 
Встраиваемые методы интегрируют отбор 

признаков в процесс обучения, что позволяет 
учитывать скрытую структуру данных. К та-
ким методам относится LASSO (Least Absolute 
Shrinkage and Selection Operator), который при-
меняет L1-регуляризацию для обнуления ко-
эффициентов при слабых признаках, деревья 
решений и градиентный бустинг (XGBoost, 
LightGBM), где признаки ранжируются по важ-
ности [15]. Эти методы эффективно учитывают 
нелинейности и взаимодействия, но в условиях 
шумных и разреженных данных, типичных для 
сетевых сессий интернета вещей, даже неболь-
шие изменения выборки приводят к существен-
но разным результатам, что снижает доверие 
к модели.
Методы преобразования признаков, такие 

как метод анализа главных компонент (Principal 
Component Analysis, PCA), t-SNE, UMAP и 
autoencoders [16], подразделяются на глобальные 
и локальные в зависимости от того, какие струк-
турные свойства данных они стремятся сохра-
нить. Глобальные методы ориентированы на со-
хранение расстояний между всеми парами точек 
в пространстве, в то время как локальные мето-
ды фокусируются на сохранении структуры ло-
кальных окрестностей. В результате локальные 
подходы могут лучше передавать внутреннюю 
структуру кластеров, но при этом искажать гло-
бальную топологию данных; напротив, глобаль-
ные методы воспроизводят общую структуру 
распределения, но могут терять детали локаль-
ной кластеризации. Современные методы стре-
мятся сбалансировать эти аспекты. Например, 
t-SNE моделирует распределение попарных 
сходств в исходном многомерном пространстве и 
воспроизводит его в низкоразмерном представ-
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лении, что позволяет сохранить как локальные, 
так и частично глобальные структуры. Тем не 
менее такие методы остаются чувствительными 
к выбору гиперпараметров и теряют интерпре-
тируемость, поскольку представляют данные 
в виде линейных или нелинейных комбинаций 
исходных признаков, а не в терминах самих при-
знаков [17]. Это делает их неприменимыми для 
задач, где важно понимать, какие именно исход-
ные признаки вносят вклад в модель.
Обертывающие методы, такие как метод ре-

курсивного исключения признаков (Recursive 
Feature Elimination, RFE) и метод исключения 
предсказуемых признаков (Predictable Feature 
Elimination, PFE), обеспечивают высокую точ-
ность, но требуют значительных вычислитель-
ных ресурсов. RFE итеративно исключает наи-
менее важные признаки на основе обученной 
модели, но требует многократного переобучения, 
что делает его неэффективным для больших 
данных [18]. PFE оценивает предсказуемость 
каждого признака по остальным с помощью 
вспомогательной модели машинного обучения и 
последовательно исключает признаки, которые 
могут быть восстановлены через остальные [19]. 
В отличие от PCA, PFE сохраняет интерпрети-
руемость, так как работает с исходными при-
знаками, но не учитывает целевую переменную 
и не оценивает стабильность отбора. Сравнение 
эффективности методов для разных типов задач 
приводится, например, в [20, 21]. 
На практике для выбора адекватного метода 

требуется компромисс между статистической 
значимостью признаков и воспроизводимостью 
их отбора. Многие подходы фокусируются толь-
ко на одном из этих аспектов, что снижает на-
дежность итогового решения, особенно в услови-
ях шумных, разреженных или несбалансирован-
ных данных. 
Целью данной работы является разработка 

нового метода отбора признаков, сочетающего 
пошаговое сокращение признакового простран-
ства с одновременной оценкой значимости и 
стабильности признаков. Результатом работы 
стал оригинальный метод прогрессивной филь-
трации признаков на основе стабильности и 
значимости (Progressive Feature Filtering with 
Stability and Significance, PFF-SS, или PF2S), ос-
нованный на итеративной фильтрации. Метод 
позволяет на каждом шаге выявлять зависимые 
признаки (коррелирующие, мультикоррелирую-
щие или информационно-связанные), которые 
ранжируются по комбинированному критерию 
значимости и стабильности (последняя оценива-
ется через бутстрэп-выборки), выполнять оценку 
сложности модели при исключении признака и 
в результате исключать наименее устойчивые и 
слабые признаки, не увеличивающие обобщаю-

щую способность модели. Метод предназначен 
для данных, собранных в инфраструктуре ин-
тернета вещей, развернутой в рамках корпора-
тивной сети научного центра. 

Постановка задачи исследования 
данных IoT

Набор данных, содержащий сетевой трафик 
интернета вещей, охватывает шесть ключевых 
категорий: временные характеристики, флаги 
протоколов TCP и MQTT, параметры скорости 
соединений, статистические данные по заголов-
кам пакетов, свойства полезной нагрузки и объ-
емные характеристики при массовой передаче 
данных [22]. Требуется построить устойчивые 
классы сетевой активности, которые можно ис-
пользовать для разметки данных и последую-
щего анализа новых наблюдений в целях выяв-
ления сетевых аномалий. Эта задача сводится 
к задаче кластеризации — автоматического раз-
биения объектов на группы на основе схожести 
их признаковых описаний. 
Пусть n mX   — матрица наблюдений, где 

каждая строка соответствует объекту, а каждый 
столбец — признаку. Обозначим I = {1, 2, …, 
n} — множество индексов объектов, J = {1, 2, …, 
m} — множество индексов признаков, xi j — зна-
чение j-го признака для i-го объекта, где iI, 
jJ. Каждый объект iI описывается вектором 
xi = (xi1, xi2, …, xim)ℝm. Каждый признак jJ 
описывается вектором pi = (x1j, x2j, …, xmj)ℝn. 
Матрица наблюдений может быть представлена 
через множество объектов или множество при-
знаков:

 

1
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n

x
x

p p p
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 
 
      
 
 

X 
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  (1)

Обозначим множество объектов как  = (xi| 
iI), множество признаков как P = {pj | jJ}. 
Задача кластеризации заключается в разбиении 
множества объектов  на K непересекающихся 
подмножеств: 

  1
,

K

k
k

      (2)

где k, k  , k1k2 =  для  k1  k2. k — 
множество объектов, отнесенных к k-му класте-
ру, k = [1, K].
Такое разбиение выполняет соответствующее 

разбиение множества индексов I на подмноже-
ства
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 Ck = {iI | xik}  (3)

такие, что

1
,

K

k
k

I C   (4)

где Ck  , Ck1Ck2 = для  k1  k2.
Для построения такого разбиения было рас-

смотрено несколько методов кластеризации, 
представляющих разные подходы к группиров-
ке данных [23]:

— метод K-средних эффективен для компакт-
ных, сферических кластеров, но чувствителен 
к выбросам и может не находить сложные струк-
туры; 

— метод агломеративной иерархической клас-
теризации (Hierarchical Agglomerative Clustering) 
позволяет выделять кластеры произвольной фор-
мы и анализировать иерархию группировок; 

— метод спектральной кластеризации (Spect-
ral Clustering) основан на спектральном разло-
жении матрицы сходства, эффективен для клас-
теров с нелинейной структурой, но чувствителен 
к начальным параметрам; 

— модель гауссовых смесей (Gaussian Mixture 
Model) позволяет представить данные как смесь 
многомерных распределений, за счет чего приме-
нима при наличии перекрытий и сложной вну-
тренней структуры.
Оптимальное число кластеров определяется 

на основе вычисления внутрикластерной дис-
персии, коэффициентов силуэта и оценки ста-
бильности кластеризации на бутстрэп-выборках 
по скорректированному индексу Ренда (Adjusted 
Rand Index, ARI [24]) при различных значени-
ях K. Результаты и визуализация кластеров че-
рез t-SNE [25] приведены на рис. 1.
Как видно из рисунка, рекомендованное коли-

чество кластеров различается для разных мето-

 Рис. 1. Выбор оптимального количества кластеров
 Fig. 1. Determining the optimal number of clusters

−

−



ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ№ 6, 2025 19

ОБРАБОТКА ИНФОРМАЦИИ И УПРАВЛЕНИЕ

дов. Применение оценок компактности и разде-
ленности кластеров тоже не позволяет однознач-
но сделать выбор K. Все методы демонстрируют 
низкую стабильность при увеличении числа кла-
стеров. Коэффициент устойчивости ARI близок 
к нулю или отрицательный для всех методов. 
Это указывает на то, что признаковое простран-
ство избыточно, структура данных не выражена 
явно, кластеры не компактны и не разделены.
Для уменьшения размерности признакового 

пространства применен метод PCA. Построена 
система обобщенных признаков в виде линей-
ных комбинаций исходных переменных, объяс-
няющих заданную долю общей дисперсии дан-
ных (не менее 95 %). На основе полученного сжа-
того представления выполнена кластеризация 
с использованием описанных выше алгоритмов 
(рис. 2).
Анализ результатов кластеризации (после 

обработки данных методом PCA) показал пере-
сечение кластеров и их низкую стабильность 
(оценки ARI на бутстрэп-подвыборках близки 
к нулю). Разные алгоритмы кластеризации де-
монстрировали значительное расхождение в ре-
зультатах: то, что один метод выделял как от-
дельный кластер и формировал компактные и 
изолированные группы, другой объединял с со-
седними группами, выделяя более протяженные 
структуры. Такая несогласованность затрудняет 
выбор единого, предпочтительного разбиения. 
Для оценки качества кластеризации выделен-
ные группы проецировались обратно в исходное 
признаковое пространство, и их содержатель-
ная однородность анализировалась эксперта-
ми предметной области. Семантическая оценка 
осмысленности кластеров показала, что схожие 
с точки зрения предметной области сессии не-
редко оказывались в разных кластерах, в то 
время как существенно различающиеся сетевые 
события объединялись в один класс. Причиной 
этого эффекта является высокая степень зави-

симости между признаками, включая корреля-
цию, мультиколлинеарность и функциональную 
взаимозависимость. Такие признаки вносят из-
быточный вклад в отдельные направления при-
знакового пространства, что искажает его гео-
метрию и приводит к формированию некоррект-
ных кластеров.
Для устранения этого эффекта автором пред-

ложен новый метод отбора признаков PFF-SS 
(PF2S), основанный на оценке стабильности и 
значимости (вклада) признаков в структуру дан-
ных. В методе введены метрики, которые позво-
ляют последовательно исключать избыточные 
признаки при минимальной потере информа-
тивности, обеспечивая сохранение ключевых 
свойств признакового пространства на каждом 
этапе преобразования. 

PF2S — метод сокращения размерности 
признакового пространства 

Цель метода PF2S — пошагово сократить мно-
жество признаков P = {pj | jJ} до подмноже-
ства PHP, удовлетворяющего критериям ин-
формативности, устойчивости и независимости. 
Для его применения необходимо обеспечить вы-
полнение в матрице наблюдений X (1) следую-
щих условий.

1. Все элементы матрицы X являются число-
выми и определенными:

 
1 1

0,
n m

i j
i j

x
 

     (5)

где (·) — индикаторная функция; xi j — (i, j) зна-
чение в матрице X.

2. Все признаки имеют дисперсию, превыша-
ющую заданный порог:

 j j(pj)  ,  (6)

 Рис. 2. Результат кластеризации в пространстве главных компонент
 Fig. 2. Clustering results in the principal component space
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где j — стандартное отклонение;  — порог дис-
персии. 

3. Матрица является центрированной. Для 
этого построим матрицу 1 2   ( , , ..., ),nx x xX     

 1 2   , , , ,i i i imx x x x     .ij j
ij

j

x x
x





  Это требо-

вание позволит построить ковариационную ма-
трицу 

1
1n

 
X X X   и вычислить собствен-

ные числа 1, 2, …, m, собственные векторы 
v1, v2, …, vm и сингулярные числа 1, 2, …, m 
( ).i i    
Введем целевую функцию оценки признако-

вого пространства

     1 2 3
1

, ,( ) ,
L

l
l

L K I R


        X X X F X   �   (7)

где K — число обусловленности матрицы ,X  
отражающее степень мультиколлинеарно-
сти; I — средняя взаимная информация меж-
ду признаками, оценивающая нелинейную за-
висимость; R — мера cложности для семейства 
функций F; 1, 2, 3, …, l — весовые коэф-
фициенты, позволяющие настраивать прио-
ритеты между компонентами (по умолчанию 
i = 1). 
Минимизация L соответствует улучшению 

структуры признакового пространства за счет 
снижения зависимости между признаками и 
повышения устойчивости результата. Распи-
шем каждое из слагаемых в L. Число обуслов-
ленности матрицы X  вычисляется как K =
= max/min, где max — наибольшее сингулярное 
число, max  0 — наименьшее сингулярное чис-
ло. K показывает, насколько данные устойчивы 
к малым изменениям (для линейной зависимо-
сти). Средняя взаимная информация I отвечает 
за оценку меры нелинейной зависимости и избы-
точности признаков:

 
 

1 1

2
1

,
( )

m m

jk
j k j

I I
m m   


  X

 

 (8)

где элемент Ijk определяет величину взаимной 
информации между Pj и Pk:
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 (9)

где  ( , )i j ikf x x    частота совместного появле-
ния значений признаков pj и pk

 для i-го объек-
та; ( )i jf x  и ( )ikf x   частота появления каждо-
го значения признака в отдельности. Данная 
формула определена для эмпирических частот 
[26].

В качестве меры cложности R будет приме-
няться оценка Радемахера

 
   

1

1
, sup ,,

i

n

i i
F i

R E
n

F F
 

 
  

  
X

F
X X    (10)

где i — случайная величина (переменная Раде-
махера, принимающая значения +1 и –1 с веро-
ятностью 1/2); FF — функция, Fl — семейство 
функций; E — среднее по всем i и .X  R — теоре-
тическая мера, которая показывает способность 
аппроксимировать данные и избегать переобуче-
ния. В работе [27] обосновано применение меры 
сложности Радемахера (Rademacher complexity) 
для оценки обобщающей способности моделей, 
обученных на немаркированных данных. 
Для метода PF2S необходимо определить, 

какие признаки рассматривать в качестве кан-
дидатов на удаление и по каким критериям де-
лать выбор. Для каждого признака pjP, где 
jJ, определим три типа подмножеств, вклю-
чающих признаки, связанные с pj различными 
видами зависимости: CjP — коррелирующих 
с pj признаков, Vj P — мультиколлинеарных 
с pj признаков и IjP — взаимозависимых с pj 
признаков. Для каждого признака pj формиру-
ется подмножество: Dj = (Cj, Vj, Ij), включающее 
все признаки, находящиеся в зависимости с pj. 
Объединенное множество всех признаков ис-
пользуется для последующей фильтрации: 

 1
.

m

j
j

D D   (11)

Ниже описаны правила построения каждо-
го из этих подмножеств. Коррелирующими с pj 
считаются признаки, коэффициент корреляции 
с которыми превышает заданный порог:

 
 \ { }| | ,j k j jkp p     C P   (12)

где jk — коэффициент корреляции между при-
знаком pj и pk; [0, 1] — пороговое значение 
корреляции. 
Для оценки мультиколлинеарности призна-

ка pj выполняется построение линейной модели 
его восстановления по всем остальным призна-
кам: ,j k k jk jp p     где pj — вектор значе-
ний j-го признака; k — коэффициенты, найден-
ные методом наименьших квадратов; pk — векто-
ры значений остальных признаков; j — вектор 
остатков. Поскольку данные предварительно 
центрированы, свободный член модели 0 отсут-
ствует. 
Признак pjP мультиколлинеарный, если 

коэффициент инфляции дисперсии (Variance 
Inflation Factor, VIF [28]) Vifj превышает порого-
вое значение V, т. е.
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  (13)

где 2
j  — коэффициент детерминации призна-

ка pj, который вычисляется по формуле
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где ijx   истинное значение j-го признака у i-го 
объекта; ij k ikk jx x     предсказанное значе-
ние, ikx   значение k-го признака у i-го объекта;

1
1 n

j ijix x
n     среднее значение.

Для каждого признака, удовлетворяющего 
условиям (13), (14), анализируется структура за-
висимости. Выбираются признаки pk, входящие 
в модель (13) с коэффициентами k, превышаю-
щими заданный порог. Формируется подмноже-
ство таких признаков

 Vj = {pk  P\{ pk } | k > },  (15)

где   0 — порог учета признака.
Взаимозависимыми считаются признаки, 

между которыми коэффициент взаимной инфор-
мации превышает заданный порог. Для каждо-
го pj определим множество, отражающее нели-
нейные зависимости между признаками:

 Ij = {pk  P\{ pk } | Ijk > I},  (16)

где Ijk — величина взаимной информации меж-
ду pj и pk, вычисляемая по (8); I — порог сильной 
зависимости.
Для принятия решения об исключении при-

знака, входящего в множество D, для каждого 
множества DjD сформируем расширенное 
множество Dj = Dj {pj} и введем метрики ста-
бильности и значимости. 
Стабильность признака pkDj оценивается 

через его воспроизводимость на случайных под-
выборках:
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 (17)

где T — количество случайных выборок, полу-
ченных из X ; 1( ) ( )( , )t t

k kM p p   взаимная инфор-
мация, вычисленная по (9) для признака pk на t-й 
и (t + 1)-й подвыборках. Чем выше S(pk), тем ста-
бильнее признак.
Значимость признака pkDj вычисляется 

как вклад в объясненную дисперсию:
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 глубина редуциро-

ванного пространства, содержащего  дисперсии 
исходных данных,  = (0, 1] — порог; 1, 2, …, 
d — собственные значения ковариационной ма-
трицы; vi(pk) — компонента собственного векто-
ра vi, соответствующая признаку pk. Чем выше 
W(pk), тем важнее признак с точки зрения струк-
туры данных. 
Для сложных структур данных предлагает-

ся дополнительно ввести метрику нелинейной 
значимости, которая включает веса, форми-
руемые с использованием моделей машинно-
го обучения (например, Lasso), оценивающих 
предсказательную способность признака отно-
сительно других признаков, рассматриваемых 
в роли целевых переменных по всем остальным 
признакам. 
Построим множество кандидатов на удале-

ние:

Gj = {pk  Dj | (S(pk) < S)  (W(pk) < W)},  (19)

где S, W — пороги стабильности и значимости 
соответственно. 
Если Gj = , группа Dj считается устойчивой 

и информативной — удаление признаков не про-
изводится. 
Если Gj   и существует p*Dj такой, что 
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 , 

  0, +  = 1 — веса, позволяющие настраи-
вать приоритет, то P = P \ p* и D = D \ Dj.
Алгоритм итеративной фильтрации призна-

ков заключается в пошаговом построении мно-
жества D, выборе признаков для удаления из 
признакового пространства P и его исключении 
при условии, что это не ухудшает целевую функ-
цию L. Пусть A — множество операций филь-
трации признакового пространства. На каждом 
шаге h = {0, 1, …, H} из множества A выбирается 
операция AhA исключения признака, удовлет-
воряющая условию

 
1(arg min ( )),h s

A
A L A 


 

A
P   (21)

где A — операция, для которой L(A(Ph–1)) 
 L(Ph–1).
Если такая Ah существует, она применяется 

к текущему множеству признаков:

 Ph = Ah(Ph–1).  (22)
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Пусть Ah выполняет исключение признака 
pPh–1 из признакового пространства, тогда 
Ph = Ph–1\p, A = A\Ah. Итоговое признаковое 
пространство на шаге H определяется компози-
цией всех преобразований

 PH = AH AH–1  … A1(P),  (23)

где P — исходное признаковое пространство; 
«» — операция композиции.
Фильтрация признакового пространства за-

вершается при выполнении хотя бы одного из 
условий

|Ph|  mmin, 

min ( ( )) ( ),h h

A
L A L


 

A
P P h = H.  (24)

Условия (24) определяют, что число призна-
ков достигло заданного минимума, или ни одна 
операция из A не приводит к улучшению L, или 
достигнуто максимальное число итераций H. 
Применение многофакторной целевой функции, 
включающей меры мультиколлинеарности, не-
линейной зависимости и сложности модели, по-
зволяет выявлять как явные, так и скрытые из-
быточности в данных. Благодаря гибкости в вы-
боре порогов и весов, PF2S может быть адаптиро-
ван под различные типы данных и задачи.

Применение метода PF2S 
для признакового пространства IoT

Для оценки эффективности метода PF2S про-
ведено сравнение с двумя базовыми подходами: 
методом PCA и методом RFE. Метод рекурсив-
ного исключения признаков применялся в двух 
конфигурациях: с фиксированным числом от-
бираемых признаков и с порогом объясненной 
дисперсии 95 %. После сокращения признако-

вого пространства выполнялась кластеризация 
с использованием четырех методов: K-средних, 
агломеративного, спектрального и модели гаус-
совых смесей. Для визуализации результатов 
применялся метод t-SNE (рис. 3). Стабильность 
кластеризации оценивалась с помощью скоррек-
тированного индекса Рэнда при бутстрэп-повто-
рениях. 
Значения ARI, полученные для методов клас-

теризации после преобразования признакового 
пространства методами PCA и RFE, не показы-
вают высокой стабильности, что характеризует 
низкую воспроизводимость кластеров и свиде-
тельствует о неустойчивости результатов при 
небольших изменениях в данных. 
Для сравнения методов PF2S и RFE были рас-

считаны ключевые характеристики: время вы-
полнения, итоговая размерность признакового 
пространства, число обусловленности, наличие 
коррелирующих и взаимозависимых призна-
ков, среднее значение силуэтного коэффициента 
и сложность по Радемахеру. Расчет сложности 
выполнялся для нескольких моделей, для срав-
нения выбраны значения, полученные на ли-
нейной модели со случайными весами, которые 
позволяют оценить склонность метода к переоб-
учению на шум.
Результаты, приведенные в таблице, пока-

зывают, что PF2S обеспечивает более высокое 
качество кластеризации (силуэтный коэффи-
циент — 0,82) по сравнению с RFE (силуэтный 
коэффициент — 0,68). Это объясняется тем, что 
PF2S выполняет поэтапное удаление признаков 
с контролем стабильности и значимости на каж-
дом шаге, что снижает риск переобучения и по-
вышает воспроизводимость результатов.
Полученное с помощью PF2S признаковое про-

странство является компактным (17 признаков) 
и обладает высокой численной устойчивостью 
(число обусловленности — 2,83), что указывает на 
отсутствие мультиколлинеарности. В отличие от 

 Рис. 3. Кластеризация в пространстве RFE
 Fig. 3. Clustering in the RFE feature space
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него, признаковое пространство, сформирован-
ное с помощью RFE, характеризуется высоким 
числом обусловленности (75,17), свидетельствую-
щим о сильной мультиколлинеарности и потен-
циальной неустойчивости модели.
К построенному PF2S признаковому про-

странству были применены методы кластери-
зации, выполнена визуализация t-SNE и расчет 
ARI, аналогично предыдущим подходам. Анализ 
количества кластеров и их структуры показал, 
что для нового признакового пространства эф-
фективным является разделение данных на 
пять кластеров (рис. 4).
Для оценки качества кластеризации была 

выполнена семантическая интерпретация вы-

деленных групп. В признаковом пространстве 
PF2S остались информативные и устойчивые 
признаки: минимальный размер пакета, интер-
валы между пакетами, скорости передачи дан-
ных, количество пакетов с флагами и другие, 
релевантные для анализа сетевого трафика.
Сравнение разбиений на пять и шесть класте-

ров показало, что 5-кластерная структура явля-
ется более интерпретируемой: каждый кластер 
четко соответствует определенному типу сете-
вой активности. В случае шести кластеров один 
из них оказывается малочисленным и дублирует 
другие, что указывает на избыточность разбие-
ния. Выделенные пять кластеров интерпретиру-
ются следующим образом: 0-й кластер содержит 

 Сравнение PF2S и RFE
 Comparison of PF2S and RFE

Выполненные действия Число признаков
Сложность 

по Радемахеру
Силуэтный 
коэффициент

Сбор, парсер, загрузка 347 – –

Предобработка, очистка 275 0,417 0,62

Метод прогрессивной фильтрации признаков
Progressive Feature Filtering with Stability and Significance (PF2S)

1. Коррелирующие, нестабильные 223 0,415 0,62

2. Коррелирующие, незначительные 79 0,233 0,64

3. Мультиколлинеарные, нестабильные 25 0,145 0,72

4. Взаимные, нестабильные 22 0,117 0,77

5. Взаимные, незначительные 17 0,087 0,82

Время выполнения: 6,72 с (~1000 строк), 58,46 с (~10 200 строк) Коррелирующие: 0 Взаимозависимые: 0 Число 
обусловленности: 2,83

Метод рекурсивного сокращения размерности (95 % дисперсии)
Recursive Feature Elimination (RFE)

Выбор подмножества признаков RFE 19 0,083 0,68

Время выполнения: 41,42 с (~1000 строк), 147,42 с (~10 200 строк) Коррелирующие: 8 Взаимозависимые: 5675,17
Число обусловленности: 75,17

 Рис. 4. Кластеризация в пространстве PF2S
 Fig. 4. Clustering in the PF2S feature space
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одиночные пакеты (SYN, ACK, RST) — сканиро-
вание портов и фоновый трафик, в 1-й кластер 
вошли средние сессии с двусторонним обменом, 
2-й кластер объединил высокоскоростные сессии 
(потоковые передачи), в 3-й кластер выделился 
трафик с признаками сетевой перегрузки (по-
тенциальные DDoS-атаки), 4-й кластер собрал 
очень короткие сессии.
Методы K-средних и агломеративной класте-

ризации показали схожие результаты: они эф-
фективно разделили трафик по объему данных, 
длительности сессий и наличию специфических 
флагов. Спектральный метод, чувствительный 
к глобальной структуре данных, выделил редкие 
и слабо выраженные события (например, сессии 
с флагом ECE). Метод гауссовых смесей проде-
монстрировал распределения данных по тем 
же типам трафика, что и в других методах. Его 
кластеры имеют четкую структуру и учитывают 
разделение по вероятностным признакам.

Заключение

Описанный в работе метод PFF-SS (PF2S) 
представляет собой систематический подход к со-
кращению признакового пространства, сочетаю-
щий анализ линейных и нелинейных зависимо-
стей с оценкой стабильности и информативности 
признаков. В отличие от традиционных методов, 
например метода PCA, новый метод не преобразу-
ет исходные признаки, а последовательно исклю-
чает избыточные, коррелирующие, мультиколли-
неарные и нестабильные компоненты, сохраняя 
семантическую интерпретируемость оставшегося 
набора. Это особенно важно в прикладных зада-
чах, таких как анализ сетевого трафика, где фи-
зический смысл признаков критичен для интер-
претации выделенных паттернов.
В сравнении с методом RFE предложенный 

подход продемонстрировал существенно лучшие 
характеристики результирующего признакового 

пространства. PF2S обеспечивает более высокое 
качество кластеризации (видно из расчета силу-
этного коэффициента), значительно меньшую 
сложность модели (по Радемахеру) и формиру-
ет численно устойчивое пространство с низким 
числом обусловленности. Благодаря поэтапно-
му контролю над стабильностью и значимостью 
признаков на каждом этапе отбора PF2S снижает 
риск переобучения и повышает воспроизводи-
мость результатов анализа.
Полученное признаковое пространство ком-

пактно и позволяет четко интерпретировать 
кластеры в соответствии с типами сетевого тра-
фика: фоновые сессии, сканирование портов, 
веб-запросы, DNS-трафик и признаки сетевой 
перегрузки. Применение методов K-средних и 
агломеративной кластеризации показало схожие 
результаты, что подтверждается высокой ста-
бильностью разбиений на бутстрэп-подвыборках 
(ARI близок к 1,0).
Таким образом, PF2S представляет собой эф-

фективный, быстрый и интерпретируемый ин-
струмент для подготовки данных в задачах, для 
которых важны как качество кластеризации, 
так и понимание природы выделенных событий. 
Дальнейшее исследование будет направлено на 
выбор оптимального метода кластеризации для 
полученного признакового пространства и ис-
пользование построенных меток для классифи-
кации трафика в сетях интернета вещей, а так-
же на адаптацию PF2S для потоковой обработки 
данных в реальном времени.
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Introduction: Network traffic analysis in the Internet of Things (IoT) is complicated by high dimensionality, feature redundancy, 
and instability. Strong correlation, multicollinearity, and noise degrade clustering quality and hinder interpretation. Moreover, legitimate 
and anomalous traffic often overlap, making it difficult to formalize class boundaries. Therefore, a feature selection method that ensures 
stability, compactness, and semantic interpretability is required. Purpose: To develop and experimentally evaluate a new method for 
constructing a stable and interpretable feature space in network traffic clustering tasks — Progressive Feature Filtering with Stability 
and Significance (PFF-SS, PF2S). Methods: We describe a step-by-step PF2S algorithm that combines analysis of linear dependencies 
(correlation, VIF) and nonlinear dependencies (mutual information) with assessment of feature stability and significance. At each stage, 
redundant, weakly significant, or unstable features are removed. Results: Applying PF2S to an IoT network traffic dataset has reduced the 
number of features from over 300 to 17 while preserving high informativeness. The comparison with feature spaces reduced by Principal 
Component Analysis (PCA) and Recursive Feature Elimination shows that PF2S achieves higher metrics in stability, interpretability, 
and clustering quality. Unlike Principal Component Analysis, PF2S does not transform features but preserves their original semantics. 
Compared to Recursive Feature Elimination, PF2S eliminates multicollinearity, reduces model complexity, and achieves a silhouette 
coefficient 17.6% higher. Clusters built on the PF2S-derived feature space are stable (high Adjusted Rand Index) and semantically 
interpretable. Practical relevance: PF2S produces a compact and robust feature space suitable for anomaly detection systems in IoT 
network traffic. Discussion: Promising directions include adapting PF2S for streaming data processing and integrating it with signature-
based anomaly detection methods and network traffic ontologies.

Keywords — Internet of Things, feature stability, feature significance, K-means clustering, agglomerative clustering, spectral 
clustering, Gaussian Mixture Model, Principal Component Analysis, Recursive Feature Elimination, network traffic analysis, anomaly 
detection.
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