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Introduction

The construction of symmetric Hadamard ma-
trices was stagnating for long time while that of
skew-Hadamard matrices advanced rapidly. The
reason for this discrepancy was the fact that for
the latter we had a very versatile tool, namely the
Goethals — Seidel (GS) array, while for the former
such tool was missing. The new tool for the con-
struction of the symmetric Hadamard matrices, so
called propus array, was discovered recently [1] by
J. Seberry and the first author. It was already used
in [2—4] to construct many propus Hadamard ma-
trices (such matrices are always symmetric) includ-
ing some having new orders.

The authors of [1] observed that the well known
Turyn series of Williamson quadruples (of sym-
metric circulant blocks) gives the first infinite se-
ries of propus Hadamard matrices. They also give
a variation of the propus array in which they plug
symmetric and commuting Williamson type quad-
ruples to construct another infinite series of sym-
metric Hadamard matrices. Yet another infinite
series of propus Hadamard matrices was identified
in [4, Theorem 5].

In this paper we continue our previous work [2,
3] where we used the propus construction to find
new symmetric Hadamard matrices. We refer to
these papers and [5] for the more comprehensive
description of this construction and the definitions

of the GS-array and GS-difference families. As the
propus difference families play a crucial role in the
paper, we shall define them precisely in the next
section and specify the propus array that we use.

The first Hadamard matrix of order 4-67 = 268
was constructed by Sawade in 1985 [6]. The first
skew-Hadamard matrix of the same order was con-
structed in 1992 by one of the authors [7]. However
asymmetric Hadamard matrix of order 268 was not
discoverd so far. We present in Sect. 3 six propus
difference families in the cyclic group Zg; which
we use to construct six symmetric Hadamard ma-
trices of order 268. Moreover, in the same section
we also construct the first examples of symmetric
Hadamard matrices of orders 412, 436 and 604.
Examples of symmetric Hadamard matrices of or-
der 4v are now known [2—4, 8] for all odd positive
integers v < 200 except for

59, 65, 81, 89, 93, 101, 107, 119, 127, 133, 149,
153, 163, 167, 179, 183, 189, 191, 193.

The binary sequences, i.e., {+1}-sequences, of
length v=1 (mod 4) are called optimal if the off-
peak values of its periodic autocorrelation function
are +1 or —3. Such sequence is balanced if its sum
is +1. A computer generated list of binary balanced
optimal sequences of length v =1 (mod 4) is given in
[9] for v < 47. As a byproduct of our computations
of propus difference families we have obtained bi-
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nary balanced optimal sequences of lengths 49 and
61. They are presented in Sect. 4.

In addition to the propus difference families
used in Sect. 3, we give a more extensive list of such
families in Sect. 5.

While trying to verify the proof of [1, Corollary
1] we observed that this corollary is stated incor-
rectly. The second sentence of the corollary should
read: “Then there exist symmetric Williamson type
matrices of order ¢ + 2 and a symmetric propus-type
Hadamard matrix of order 4(q + 2)”. Consequently,
4(2q + 1) should be replaced with 4(q + 2) in the ab-
stract as well as in line 3 on p. 351. Further, the two
lists, one on p. 352 and the other on p. 356 should be
corrected. The integers 59, 67, 81, 89, 105, 111, 119,
127 should be removed from the former, while 97,
99 should be removed from and 59, 67, 89, 119, 127
inserted into the latter. (The cases 59, 89, 119, 127
are still unresolved.)

Preliminaries

Let G be a finite abelian group of order v> 1. Let
X),i=1, 2, .., m, be a difference family in G. We
fix its parameter set

(U; kla k2, eeey km; }\')7 ki = |XL| (1)

Recall that these parameters satisfy the equation
t

Do ki(k—1)=2(v-1). @

i=1

The set of diference families in G having this
parameter set is invariant under the following ele-
mentary transformations:

a) for some i replace X; by a translate g+ X,
geG;s

b) for some i replace X; by —X;;

c) for all i replace X, by its image o(X;) under an
automorphism a of G;

d) exchange X; and X; provided that | X,/ = |X]|.

Definition 1. We say that two difference families
with the same parameter set are equivalent if one
can be transformed to the other by a finite sequence
of elementary transformations.

Definition 2. Let (X;) be a difference family in G.
We say that an automprphism o of G is a multiplier
of this family if each set o(X;) is a translate of X;.

If a positive integer m is relatively prime to v then
the multiplication by m is an automorphism of G.
If this automorphism is a multiplier of a difference
family, then we also say that the integer m is a mul-
tiplier or a numeric multiplier of that family.

The multipliers of a difference family in G form
a subgroup of the automorphism group of G. All
difference families that we construct in this paper

have nontrivial multipliers. This follows from the
fact that we use only the base blocks X; which are
union of orbits of a fixed nontrivial subgroup H
of the automorphism group of G. We refer to this
method of constructing difference families as the
orbit method.

We are only interested in GS-difference families
formally introduced in [5] and [10]. They consist of
four base blocks (X7, X3, X3, X,) and their parame-
ter sets, also known as the GS-parameter sets, satis-
fy besides the obvious condition (2) (with m = 4) also
the condition

4
D ki =hk+v. 3)
i=1

By eliminating the parameter A from the equa-
tions (2) and (3), we obtain that

4 2
D (v-2k)" =4v. )

i=1

If k;=E; for some i#j in a GS-parameter set (v;
k1, ko, B3, ky; A) then we say that this parameter set
is a propus parameter set.

In fact we shall use only a very special class of
GS-difference families known as propus difference
families. We adopt here the following definiton of
these families.

Definition 3. A propus difference family is a GS-
difference family (X)), i=1, 2, 3, 4, subject to two
additional conditions:

a) two of the base blocks are equal, say X; = X; for
somei < j, which implies that k; = kj;

b) at least one of the other two base blocks is sym-
metric.

(We say that a subset X &G is symmetric if
X =X.)

Unless stated otherwise, we shall assume from
now on that G is cyclic. We identify G with the ad-
ditive group of the ring Z, of integers modulo v.
We denote by Z, the group of units (invertible ele-
ments) of Z,. We identify the automorphism group
of G with Zlf . Thus, every automorphism o of Z, is
just the multiplication modulo v by some integer &
relatively prime to v.

To any subset X < Z, we associate the binary se-
quence (i.e., a sequence with entries +1 and —1) of
length v, say (xg, x1, ..., X,-1), Where x; =-1 if and
only if i € X. By abuse of language, we shall use the
symbol X to denote also the binary sequence associ-
ated to the subset X.

Let (X;) be a GS-diference family in Z,. Further,
let A; be the circulant matrix having the sequence
X; as its first row. Then the A, satisfy the equation
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where I, is the identity matrix of order v. This
equation guarantees that, after plugging the (A))
into the GS-array, we obtain a Hadamard mat-
rix.

If (X)) is a propus difference family, we say that
the corresponding matrices (A;) are propus matri-
ces. By plugging these (A)), in suitable order, into
the propus array

“A; AR AsR AR
AsR RA;, A, -RA,
AR A; -RA, RA; |
AR -RA; RA, A

6

where R is the back-diagonal permutation matrix,
we obtain a symmetric Hadamard matrix of order
4v. The ordering should be chosen so that A; is
symmetric and Ay = Ag.

We construct the base blocks X as unions of cer-
tain orbits of a small nontrivial subgroup H < Z
(mostly of order 3 or 5). When recording a base
block, to save space, we just list the representatives
of the orbits which occur in the block. As a repre-
sentative, we always choose the smallest integer of
the orbit.

The Cases v =67, 103, 109, 151

In this section we list six non-equivalent ex-
amples of propus difference families in Zgy;, three
such families in Zyy3, two in Z;g9, and a single one
in Zy5;. By using the propus array, they provide the
first examples of symmetric Hadamard matrices of
orders 268, 412, 436 and 604, respectively.

In the case v =67, up to a permutation of the &;s,
there are three feasible propus parameter sets for
the subgroup H = {1, 29, 37} = Zg;. For each of them
we have found several propus difference families.
We list only two families per parameter set. The
block X, is symmetric in the first two families while
X is symmetric in the remaining four families.

Let us explain how we record the base blocks. As
an example, we take the block X, of the first family
in Table 1. It is the union of ten H-orbits whose rep-
resentatives are the integers 0, 2, 4, 6, 16, 17, 25,
27, 30, 41. As each nontrivial orbit has size 3, the
block X, has the size 1 + 9-3 = 28. The blocks X; and
X, are given similarly. In all difference families
listed in this and the next section we have X, = X3
and we record only the blocks X7, X5 and X, in that
order. The families having the same parameter set
are separated by a semicolon.

B Table 1. Propus difference families in Zgy, Z1¢3, Z199 and Zq5;

(67; 33, 28, 28, 31; 53), H ={1, 29, 37}

[1, 3, 4,10, 12, 15, 17, 30, 34, 36, 41], [0, 2, 4, 6, 16, 17, 25, 27, 30, 41], [0, 1, 4, ,8, 10, 16, 18, 30, 32, 36];

[1, 2, 8, 15, 16, 18, 25, 30, 32, 34, 36], [0, 2, 3,6, 8,9, 17, 18, 34, 36],

(67; 30, 31, 31, 27; 52), H = {1, 29, 37}

[1,5, 6, 15, 16, 17, 27, 30, 34, 41], [0, 2,4, 9, 10, 12, 16, 23, 30, 36, 41], [5,8,9
6,9, 12, 15,16, 17, 23, 27,30], [1, 2,3,

[3, 5,8, 10, 12, 16, 23, 25, 32, 36], [0, 5

[ ’ 7 7 ’ 5’ 9’ 167 17, 18, 30, 41]

, 12, 16, 17, 23, 25, 41];
4,8, 27, 30, 32, 36]

(67; 30, 30, 30, 28; 51), H = {1, 29, 37}
[3,4, 5,8, 10, 16, 18, 23, 32, 36], [3, 6,9, 10, 12, 15, 17, 23, 25, 41], [0, 5, 9, 10, 12, 15, 17, 27, 30, 41];
[2,3,4,9,10,17,18,23,32,41], [1,2,9, 16, 17, 23, 27, 32, 34,41], [0, 3, 10, 15, 16, 17, 23, 27, 32, 34]
(103; 48, 51, 51, 42; 89), H = {1, 46, 56}
[3, 4, 14, 17, 19, 21, 29, 30, 31, 33, 38, 40, 49, 51, 55, 62], [2, 3, 4, 6, 7, 14, 15, 22, 29, 30, 31, 38, 42, 44, 47, 49, 62],
[3, 6, 8, 10, 15, 17, 21, 31, 33, 38, 42, 44, 55, 60];
[1,3,6,8, 10, 11, 21, 30, 33, 40, 44, 47, 49, 51, 55, 62],  [5, 6, 7, 11, 12, 14, 19, 23, 29, 30, 38, 40, 47, 51, 55, 60, 62],
[4, 6, 7,38, 10, 12, 17, 20, 22, 33, 42, 44, 49, 55]
(109; 52, 49, 49, 48; 89), H = {1, 45, 63}
[0, 3,4, 6,9, 10, 11, 12, 18, 19, 20, 24, 31, 36, 43, 48, 50, 60], [0, 1, 2, 3, 5, 9, 10, 16, 19, 20, 23, 25, 41, 46, 55, 57, 62],
[1,2,4,86,09,10,15, 19, 20, 24, 31, 36, 38, 46, 48, 57];
[0, 3, 5, 8, 11, 12, 13, 15, 18, 20, 30, 31, 41, 43, 46, 53, 55, 57], [0, 1, 2, 3, 5, 8, 11, 12, 13, 16, 29, 31, 38, 41, 48, 50, 57],
[3, 6, 8, 10, 18, 20, 23, 24, 25, 29, 41, 48, 55, 57, 60, 62];
[0,1,2,3,6,9, 10, 12, 15, 18, 24, 25, 36, 41, 43, 48, 53, 57], [0, 1, 3,6, 8,9, 11, 12, 13, 18, 23, 29, 31, 36, 41, 43, 57],
[1,3,9,11, 13, 16, 18, 29, 30, 31, 43, 46, 50, 53, 62, 67]
(151; 71, 71, 71, 66; 128), H ={1, 8, 19, 59, 64}
[0, 2, 5,6, 7, 11, 15, 17, 23, 27, 30, 34, 37, 51, 68], [0, 1, 2, 3, 4, 14, 17, 23, 27, 28, 34, 47, 51, 68, 87],
[0,1,2,3,4,5,7, 10, 29, 34, 46, 47, 51, 68]
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For the cases v=103 and v =109 we use again
the subgroups H of order 3, namely {1, 46, 56} Z](3
and {1, 45, 63}cZ79. For v=103 we found two
non-equivalent propus difference families having
the same parameter set and for v =109 we found
three such families. In all six families the block X
is symmetric.

For the case v = 151 we use the subgroup of order
five. Only one propus difference family was found.
The symmetric block is Xj;.

Some New Balanced Optimal Binary
Sequences

In this section we list some balanced optimal
binary sequences of lengths 49 and 61. They arose
as a byproduct of our search for propus difference
families. We say that a binary sequence of length v
has three-level autocorrelation function if this func-
tion takes exactly three distinct values, including
the value v at shift 0.

Up to a permutation of the &;s, there are three fea-
sible propus parameter sets for the subgroup H = {1,
18, 30} of Zy9. We discard the one with all k; = 21 as it
probably does not admit any propus difference fam-
ily, see [3]. In Table 2 we list five propus difference
families for v =49 and a single family for v = 61.

The block X,, of cardinality 24, in the first ex-
ample is

X,=13,5,7,8,9, 13, 14, 15, 16, 21, 25, 28,
29, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47}.

The values of the periodic autocorrelation func-
tion of the corresponding sequence X,, for the
shifts in the range 0, 1, ..., 24, are:

49,1,-3,-3,1,-3,1,1,-3,-3,1,-3, -3, 1,
-3,1,-3,1,1,-3,1,1, 1, -3.

Thus the correlation values of X5 occupy just
three levels 49, 1 and —3. In the terminology of [9,

p. 144] (see also [11]) the sequence X5 is a balanced
optimal binary sequence of length 49. Such se-
quences of lengths v =1 (mod 4) are listed there on
the same page for v < 45. Our sequence X, extends
that list one step further. The meaning of the word
‘balanced’ in this context is that the sum of the se-
quence is 1 or —1.

The sequences X, in the second and third exam-
ple also have only 3 correlation values but this time
these values are 49, 1 and —7 and so they are not
optimal.

The block X, in the fourth example

X5,=1{0,1,6,7,9, 10, 12, 14, 15, 16, 17, 18,
20, 25, 28, 29, 30, 32, 33, 37, 39, 43}

has cardinality 22. Consequently, its binary
sequence is not balanced. The correlation values of
the sequence X, for the shifts in the range 0, 1, ...,
24 are:

s 1a _3’

49,1,1,1,1,1,1,-3,1,-3,1,1, -3
1 1,1, -3.

1, -3
_3, ]-’ _39 > 1, _3’ _37 s 1y

Thus the correlation values of X, occupy only
three levels, 49, 1 and —3. Hence, this sequence is
optimal but not balanced. The same is true for the
fifth example.

The block X, in the last example

X,=11,2,3,9, 12, 13, 15, 19, 22, 26, 27, 28,
31, 33, 34, 35, 36, 37, 39, 41, 42, 45, 46, 47,
49, 54, 56, 57, 58, 59}

has cardinality 30 and so its binary sequence X,
is balanced. The correlation values of the sequence
X, for the shifts in the range 0, 1, ..., 30 are:

61,1,-3,-3,-3,-3,1,1,1,-3,1,-3,1,1, 1, 1,
-3,1,1,-3,-3,-3,-3,1,1,-3,-3,1,-3, -3, 1.

Hence, X, is a balanced optimal binary sequence
of length 61.

B Table 2. Three-level autocorrelation functions from propus difference families

(49; 22, 24, 24, 18; 39), H = {1, 18, 30}

[0,1,6,738,9,13,16],[3, 7, 8, 9, 13, 16, 21, 29], [3, 6, 8, 12, 16, 29];
[0, 2,7, 8,13, 16, 19, 26], [2, 6, 9, 12, 16, 24, 26, 29],[1, 3, 7, 8, 19, 21];
[0, 1, 3, 4, 12, 13, 16, 24], [1, 6, 8, 13, 16, 19, 24, 29], [1, 4, 6, 16, 19, 26]

(49; 22, 22, 22, 19; 36), H = {1, 18, 30}

[0, 4,6, 7,9, 13, 19, 26],[0, 1, 6, 7, 9, 12, 16, 29], [0, 1, 6, 7, 16, 19, 21];
[0, 3, 4,6, 7,12, 19, 29,0, 1, 2, 4, 7, 8, 13, 19], [0, 1, 3, 7, 8, 19, 21]

(61; 25, 30, 30, 25; 49), H = {1, 13, 47}

[0, 6, 8, 11, 16, 18, 23, 32, 36], [1, 2, 3, 9, 12, 22, 27, 28, 31, 36],

[0,4,7,8,9, 11, 16, 27, 28]
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B Table 3. Propus difference families with v = 1 (mod 6) a prime

(7:3,3,3,1;3), H={1, 2,4}
[3], [3] [0]

(13; 6, 6,6, 3;8), H={1, 3,9}
(1, 4],[4, 7], [4]

(13;6,4,4,6;7), H={1, 3, 9}
[2, 71,10, 4], [1, 7]

19;7,9,9,6,12), H={1, 7, 11}
[0, 4, 101, [2, 4, 5], [1, 10]; [0, 1, 8], [1, 4, 10}, [1, 8]

(19;9,7,7,7; 11), H =11, 7, 11}
[2, 4, 8], [0, 5, 10, [0, 1, 8]

(31; 15, 15, 15, 10; 24), H ={1, 2, 4, 8, 16}
[3,7, 151, 1, 3, 15, [1, 15]

(31; 15, 12, 12, 13; 21), H ={1, 5, 25}
[1,2,4,8,12],[2, 4, 8, 11], [0, 2, 4, 11, 12]

(31; 183, 13, 13, 12; 20), H ={1, 5, 25}
[0, 1,2,6,12}10, 2, 6, 8, 11}, [2, 4, 12, 16];
[0, 2, 4, 11, 17], [0, 3, 8, 11, 17],[1, 4, 6, 11]

(37; 18, 15, 15, 15; 26), H = {1, 10, 26}
[2,38,5,7,17, 18], [1, 3, 7, 17, 211, [6, 7, 14, 17, 21]

(37; 16, 18, 18, 13; 28), H = {1, 10, 26}
[0, 1,7, 14, 17, 211, [1, 2, 6, 9, 14, 21}, [0, 1, 2, 11, 17]

“43; 21, 21, 21, 15; 35), H ={1, 4, 11, 16, 21, 35, 41}
[6,7, 91,11, 6, 9], [0, 3, 6]

(43; 19, 18, 18, 18; 30), H = {1, 6, 36}

[0, 2, 4, 9, 14, 19, 20], [2, 3, 10, 13, 20, 26],

[3, 4, 10, 13, 20, 21];

[0, 5, 7,9, 10, 20, 21], [1, 3, 4, 10, 14, 21], [1, 3, 5, 7, 13, 21]

(43; 18, 21, 21, 16; 33), H = {1, 6, 36}
[1, 5,7, 10, 13, 261, [2, 3, 5, 13, 14, 20, 26],
[0,1, 7,9, 19, 20]

(49; 22, 24, 24, 18; 39), H ={1, 18, 30}
[0,1,6,78,9,13,16],[3, 7, 8, 9, 13, 16, 21, 29],

[3, 6,8, 12, 16, 29];

[0, 2,7, 8,13, 16, 19, 26], [2, 6, 9, 12, 16, 24, 26, 29],

[1,3,7,8,19, 21];
[0, 1, 3, 4, 12, 13, 16, 24], [1, 6, 8, 13, 16, 19, 24, 29],
[1, 4, 6, 16, 19, 26]

(49; 22, 22, 22, 19; 36), H = {1, 18, 30}
[0, 4,6,7,9,13, 19, 26],[0, 1, 6, 7, 9, 12, 16, 29],

[0, 1, 6,7, 16, 19, 21];
[0, 3, 4, 6, 7,12, 19, 291, [0, 1, 2, 4, 7, 8, 13, 19],
[0,1,3,7,8,19, 21]

(61; 30, 26, 26, 26; 47), H ={1, 9, 20, 34, 58}
[2, 6, 8, 10, 23, 26], [0, 1, 4, 5, 6, 8], [0, 3, 5, 6, 10, 12]

(61; 30, 25, 25, 30; 49), H = {1, 9, 20, 34, 58}
[4, 5, 10, 12, 13, 26], [1, 5, 6, 8, 261, [2, 4, 10, 12, 13, 26]

(61; 30, 25, 25, 30; 49), H = {1, 13, 47}
[1,4,6,8,9,11, 14, 18, 23, 32],
[0, 6,7, 8, 14, 22, 23, 27, 28], [1, 3,4, 6, 7, 8, 9, 11, 28, 36]

(61; 25, 30, 30, 25; 49), H ={1, 13, 47}
[0,3,6,7,8, 18, 22, 23, 31],

[1,2,9, 14, 16, 18, 22, 23, 31, 36],

[0, 1, 8,9, 18, 27, 28, 31, 36]

(61; 28, 28, 28, 24; 47), H ={1, 13, 47}
[0, 1, 3, 4, 14, 16, 18, 23, 31, 32],

[0, 3,4,9, 14, 16, 18, 22, 28, 32],

[2, 6,8, 11, 18, 23, 28, 32]

(61; 28, 27, 27, 25; 49), H = {1, 13, 47}
[0,1,2,4,7,8,16, 28, 32, 361, [1, 2, 7, 8, 9, 12, 16, 27, 36],
[0, 2,7, 12, 16, 27, 28, 31, 36]

(73; 36, 36, 36, 28; 63), H ={1, 8, 64}

[3, 5, 6,11, 12, 21, 25, 26, 27, 33, 35, 43],
[3,4,9, 14, 17, 18, 21, 26, 34, 35, 42, 43],
[0,1, 7,13, 18, 21, 25, 33, 35, 42]

(73; 36, 31, 31, 33; 58), H = {1, 8, 64}
[3, 4, 5,6, 13, 14, 25, 27, 33, 34, 36, 42],
[0, 2,3, 5,9, 18, 21, 26, 27, 35, 42],

[1, 5,7 11, 18, 21, 27, 33, 34, 42, 43]

(73; 31, 36, 36, 30; 60), H = {1, 8, 64}

[0, 2,7, 11, 12, 13, 17, 18, 26, 35, 42],

[3, 5, 6, 12, 14, 18, 21, 26, 27, 33, 34, 35],
[1,2,5,6,9,12, 26, 34, 36, 42]

(73; 31, 34, 34, 31; 55), H ={1, 8, 64}
[0,1,3,5,7,9,12, 17, 27, 33, 35],
[0,1,2,5,9,11, 12, 18, 21, 27, 36, 43],
[0, 1, 3,9, 18, 21, 26, 27, 35, 36, 42]
(73; 31, 36, 36, 30; 60), H ={1, 8, 64}

[0, 1,4, 14, 17, 21, 26, 34, 36, 42, 43],
2,3, 4,712, 14, 25, 27, 35, 36, 42, 43],
[1,4,9,11, 12, 13, 26, 35, 36, 42]

(73; 34, 33, 33, 30; 57), H ={1, 8, 64}
[0,2,3,4,6,7,9, 12, 13, 26, 27, 351, [1, 2, 5, 6, 7, 12, 17,
21, 25, 26, 35, [2, 4, 6, 7, 11, 17, 18, 25, 26, 36]

(157; 78, 78, 78, 66; 143), H = {1, 14, 16, 39, 46, 67, 75, 93,
99, 101, 108, 130, 153}
[2,3,7,9,11,13],[3, 5, 6, 11, 13, 15], [0, 3, 4, 5, 7, 13]

(307; 153, 153, 153, 136; 288), H ={1, 9, 81, 115, 114, 105,
24, 216, 102, 304, 280, 64, 269, 272, 299, 235, 273}
[2,3,4,5,6,7 14, 20, 30], [4, 5, 7, 12, 14, 28, 30, 31, 49],
[2, 6,7, 10, 21, 28, 30, 31]

1The binary sequence of this block has only four
correlation values 61, 1, -3, and —11.
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Propus Difference Families

In Table 3 we list propus difference families that
we constructed by using the method of orbits. We
only consider the cases where the subgroup H is non-
trivial. If each of the £, is the size of an H-invariant
subset of Z,, then we say that the parameter set is
H-feasible (or just feasible when H is known from
the context). The case v =67 is omitted as it was
treated separately in section 3.

We can permute the X; and replace any X; with
its complement. When listing the propus difference
families it is convenient to introduce some addition-
al restrictions on the propus parameter sets (1). We
shall assume that each k; <v /2, ks =k3 and that
k1>ky.

In Table 3 below we first record the propus pa-
rameter set, and the subgroup H of the multiplica-
tive group of the finite field Z,. Each of the three
blocks X7, X, = X3, X, is a union of orbits of H act-
ing on the additive group of Z,. In order to speci-
fy which orbits constitute a block we just list the
representatives of these orbits. As representative
we choose the smallest integer in the orbit. For
instance, 0 is the unique representative of the tri-
vial orbit {0}, and 1 is the representative of the or-
bit H.

When two or more difference families are listed
for the same parameter set, they are separated by a
semicolon. When k; > k4 we have tried to find pro-
pus difference families with X; symmetric as well
as those with X, symmetric. However, in some cases
we did not succeed.

The last two families have the same parameter
sets as the corresponding Turyn propus families
of the same lengths but they are not equivalent to
them.

Acknowledgements

The authors are indebted to an anonymous ref-
eree for his comments and to Tamara Balonina
for converting the manuscript into the printing
format. The research of the first author leading
to these results has received funding from the
Ministry of Education and Science of the Russian
Federation according to the project part of the
state funding assignment No 2.2200.2017/4.6. The
second author acknowledges generous support by
NSERC. His work was enabled in part by support
provided by the Shared Hierarchical Academic

Research Computing Network (www.sharcnet.ca)
and Compute/Calcul Canada (www.computecana-
da.ca).

References

1. Seberry J., and Balonin N. A. Two Infinite Fami-
lies of Symmetric Hadamard Matrices. Australasian
Journal of Combinatorics, 2017, no. 69(3), pp. 349—
35T7.

2. Balonin N. A., Balonin Y. N., Pokovié¢ D. Z., Karbovs-
kiy D. A., Sergeev M. B. Construction of Symmetric
Hadamard Matrices. Informatsionno-upravliaiush-
chie sistemy [Information and Control Systems], 2017,
no. 5, pp. 2-11 (In Russian). doi:10.15217/issn1684-
8853.2017.5.2

3. Balonin N. A., Pokovi¢ D. Z., and Karbovskiy D. A.
Construction of Symmetric Hadamard Matrices of
Order 4v for v=47; 73; 113. Spec. Matrices, 2018,
vol. 6, pp. 11-22. doi:https://doi.org/10.1515/spma-
2018-0002

4. DiMateo O., Pokovié¢ D. Z., Kotsireas I. S. Symmetric
Hadamard Matrices of Order 116 and 172 Exist. Spe-
cial Matrices, 2015, vol. 3, pp. 227-234.

5. DPokovi¢ D. Z., and Kotsireas I. S. Goethals-Seidel
Difference Families with Symmetric or Skew Base
Blocks. Math. Comput. Sci. https:/doi.org/10.1007/
S11786-018-0381-1

6. Sawade K. A Hadamard Matrix of Order 268. Graphs
and Combinatorics, 1985, vol. 1, iss. 1, pp. 185—-187.

7. Pokovié¢ D. Z. Construction of Some New Hadamard
Matrices. Bull. Austral. Math. Soc., 1992, vol. 45,
pp. 327-332.

8. Craigen R., and Kharaghani H. Hadamard Matrices
and Hadamard Designs. In: Handbook of Combina-
torial Designs. 2nd ed. C. J. Colbourn, J. H. Dinitz
(eds.). Discrete Mathematics and its Applications
(Boca Raton). Chapman & Hall, 2007. Pp. 273-280.

9. Arasu K. T. Sequences and Arrays with Desirable Cor-
relation Properties. Information Security, Coding Theo-
ry and Related Combinatorics, I0S Press, 2011, vol. 29,
pp. 136-171. doi:10.3233/978-1-60750-663-8-136

10. Pokovié¢ D. Z., and Kotsireas I. S. Algorithms for
Difference Families in Finite Abelian Groups. arXiv:
1801.07627 [math.CO], 23 Jan 2018.

11. Mertens S., and Bessenrodt C. On the Ground States
of the Bernasconi Model. Journal of Physics A:
Mathematical and General, 1998, vol. 31, iss. 16,
pp- 3731-3749. doi:10.1088,/0305-4470/31/16/004

Ne4,2018 N\

VNHOOPMALIVIOHHO-YMNPABASIIOLLIVE CUCTEMBI N\ 7



4 TEOPETVHECKAS! Y NPUKAAAHASI MATEMATUKA /

VIIK 519.614
doi:10.31799/1684-8853-2018-4-2-8

CummeTpuuHbie MaTpUIBI Anamapa mopanakos 268, 412, 436 u 604

Basorun H. A.2, 1oKTOp TexH. HayK, mpodeccop, korbendfs@mail.ru

Ixoxosuy IT. 3.5, PhD, npodeccop, djokovic@uwaterloo.ca

aCaukTr-IleTepOyprecKkuii rocyapcTBeHHBIN YHUBEPCUTET a9POKOCMUUECKOro mpubopocrtpoenus, B. Mopckas yi., 67,
Caukr-Iletepbypr, 190000, P

6YVuusepcurer Barepioo, Barepnoo, Ourapuo, N2L 3G1, Kanazga

ITexs: uccienoBaTh 60JI€€ MOJIHO, YeM 3TO ObIJIO U3BECTHO PaHee, BBIEJIEHHBIE CEMEMCTBAa CUMMETPUYHBIX MAaTpUIll Ajamapa MaJyIbIxX
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NAMATKA ANl ABTOPOB

ITocmynawuiue 6 pedakyuio cmamovu npPoxodam 06a3amenbHoe peyeH3uposaHue.

TIpu HATUYNY TTOJIOMKUTETHLHOM PEIEH3UN CTaThA PACCMATPUBAETCA PEJAaKIIMOHHOMN KOJIJIeTHeH.
IIpunaTas B meuyaTh CTaThsA HAIIPABJIAETCS aBTOPY [JIS COTJIACOBAHUSA PEJaKTOPCKUX IpaBoK. I1o-
cJIe COTJIaCOBAHUS aBTOP IIPEACTABJSAET B PeIaKI[NI0 OKOHUATEIbHBINA BAPUAHT TEKCTA CTATHU.

IIponenypsl cormacoBaHUA TEKCTA CTATHY MOTYT OCYIIIECTBIATHCA KaK HEIIOCPEeACTBEHHO B pe-
JaKIUK, Tak 1 o e-mail (ius.spb@gmail.com).

IIpu OTKJIOHEHUYU CTATHY PeJaKIIUs IIPEACTABIIAET aBTOPY MOTUBUPOBAHHOE 3aKJII0UeHNe U Pe-
IeH3UI0, IIPY He0OXOMMOCTH AOPA00TAaTh CTATHIO — PeIleH3U0. PYKOIICH He BO3BPAIIAIOTC.

Pe@arcuuﬂ HYpHAJLA HAnoOMUHAem, 4mo omeemcmeeHHOCMb
3a 0ocm06epHocmb U MOYHOCNb PEKJAAMHBLX Manmepuajios Hecym pemlamoaameﬂu.
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