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Introduction

In this paper we investigate some special fea-
tures of symmetric Hadamard matrices. Let us
recall that a Hadamard matrix is a {1, —1}-matrix
H of order n whose columns (or rows) are mutually
orthogonal

HTH = HHT = I, @

where I is the identity matrix. This definition is
due to Hadamard [1], who pointed out the extremal
property of the solutions of this quadratic equation
(these matrices have the maximal possible absolute
value of determinant among all complex matrices
whose entries have modulus at most 1), and also the
possibility that such matrices exist for all orders
n = 4v, v integer.

As a rule, the search for Hadamard matrices is
simplified by using special arrays, built from circu-
lant blocks, i. e., matrices generated by cyclic shifts
of the top row. As an example, we can mention the
Williamson array [2] which makes use of four cir-
culant matrices A, B, C, D and their negatives as
blocks inside the globally non-symmetric array. The
requirement that the blocks be symmetric works in
some cases but not always. The first failure of sym-
metry occurs for size v = 35 [3]. More such examples
were found later, see the paper [4].

Purpose: To investigate more fully, than what was done in the past, the construction of symmetric Hadamard matrices
of “propus type”, a symmetric variation of the Goethals — Seidel array characterized by necessary symmetry of one of the
blocks and equality of two other blocks out of the total of four blocks. Methods: Analytic theory of equations for parameters
of difference families used in the propus construction of symmetric Hadamard matrices, based on the theorems of Liouville
and Dixon. Numerical method, due to the authors, for the search of two or three cyclic blocks to construct Hadamard matri-
ces of two-circulant or propus type. This method speeds up the classical search of required sequences by distributing them
into different bins using a hash-function. Results: A wide collection of new symmetric Hadamard matrices was obtained and
tabulated, according to the feasible sets of parameters. In addition to the novelty of this collection, we have obtained new
symmetric Hadamard matrices of orders 92, 116 and 156. For the order 156, no symmetric Hadamard matrices were known
previously. Practical relevance: Hadamard matrices are used extensively in the problems of error-free coding, compression
and masking of video information. Programs for search of symmetric Hadamard matrices and a library of constructed matri-
ces are used in the mathematical network “Internet” together with executable on-line algorithms.

Keywords — Symmetric Hadamard Matrices, Goethals — Seidel Array, Propus Construction, Cyclic Difference Families.

This problem was circumvented by Goethals and
Seidel [5] who invented a new array, now known as
Goethals — Seidel array or just GS-array, see (5)
below. This array does not require any of the four
circulant blocks to be symmetric. That is its major
advantage. If at least one of the blocks is of skew
type, then one can rearrange the blocks to obtain a
skew-Hadamard matrix. Ever since this array has
played a very important role in the construction of
Hadamard matrices and skew-Hadamard matrices.

However, a tool of similar nature for the construc-
tion of symmetric Hadamard matrices was lacking.
Such a tool was invented recently by J. Seberry and
N. A. Balonin [6]. They introduced a simple varia-
tion of the GS-array to which we refer as the Propus
array, see (6) below. In the paper [6] it is shown that
the symmetry of the array can be easily achieved by
demanding that the block A be symmetric and that
among the remaining three blocks two of them are
equal, say B=C (an analog of partial symmetry).
This tool has been already used to construct sym-
metric Hadamard matrices of new orders [6, 7].

Since the size of a Hadamard matrix or a skew or
symmetric Hadamard matrix can always be doubled,
while preserving the type of the matrix, it suffices
to construct these matrices for orders 4v with v odd.
We show (see Theorem 1) that for every odd integer
v there exists at least one propus parameter set.
Taking this into account, the Propus array can be
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used, conjecturally, to obtain symmetric Hadamard
matrices of order 4v for all odd v. However there
exists a propus parameter set for which there is no
cyclic propus family. So far we have only one such ex-
ample namely (25; 10, 10, 10, 10; 15).

Our purpose is to develop effective numerical
algorithms for the search of symmetric Hadamard
matrices and subsequent analysis of them and to ob-
tain new orders of such matrices. All matrix solu-
tions are classified by using the table of all feasible
parameter sets in the range of odd v < 50. We point
out some peculiarities arising from this table. For
instance, apart from the Turyn infinite series in
which all four circulant blocks are symmetric, there
is only one case known so far (namely v = 13), where
there exist a propus family with both blocks A and
D symmetric, and satisfying B = C as well.

This paper continues the investigation of the
theme of symmetry, considered in the papers [8, 9],
and in particular we present for the first time sym-
metric Hadamard matrices of order 156. In this way,
the orders 92, 116, 156, 172 listed as exceptions in
[10, Table 1.52, p. 277] are all covered by the propus
construction. The next unsolved case is the order 188
which is the object of our further research.

Preliminaries

Let G be a finite abelian group of order v written
additively. A sequence (X, X, ..., X)) of subsets of
G is a difference family if there exists a nonnegative
integer A such that for any nonzero element a € G
there are exactly A triples (x, y, i) € X; x X; x {1, 2,
..., m} such that x — y = a. In that case we say that
this difference family has parameters (v; ky, kg, ...,
k,; 1), where k;=|X/ is the cardinality of X, and
that the X, are its base blocks. A simple counting
argument shows that the parameter set of a differ-
ence family must satisfy the equality

Zki(ki -1)=n(v-1). 2)

If G is a cyclic group, we say that the difference
families of G are cyclic.

Although the concepts defined below can be de-
fined over arbitrary finite abelian groups, we shall
assume in this paper that G is a cyclic group of or-
der v and we identify it with the additive group of
the ring of integers Z, =Z/vZ ={0, 1, ..., v — 1} mod-
ulo v. We are interested in the difference families
consisting of four base blocks having the parameter

families having these parameters as GS-difference
families. It is a folklore conjecture that for each GS-
parameter set there exists a cyclic difference fami-
ly with these parameters.

There is a close relationship between GS-
difference families and the quadruples of {+1}-se-
quences (also known as binary sequences) of length
v whose periodic autocorellation functions add up
to 0 (except at the origin). Let us recall some rele-
vant definitions.

Let A =(ay, a;, ..., a,_;) be an integer sequence of
length v. We view the indices 0, 1, ..., v — 1 as ele-
ments of Z . The periodic autocorrelation function
of A is the function PAF,: Z — Z defined by

v-1
PAF, (s)= Y a;a;,5. @
i=0

(The indices should be reduced modulo v.) To A
we associate the cyclic matrix C whose first row
is A itself. We say that A is symmetric resp. skew
if a;=a,_; resp. a;=—a,_; for i=1, 2, .., v— 1.
Equivalently, A is symmetric if and only if C is a
symmetric matrix, and A is skew if and only if
C + CT=2q,]I,, where T denotes the transpose and
I, the identity matrix of order v.

To any subset X c Z, we associate the binary
sequence A = (ay, a;, ..., 4, 1), where a;=—1 if and
onlyif i e X. Let (X, X,, X3, X,) be a quadruple of
subsets of Z, with |X;|=%, and let (4, Ay, Ag, 4))
be their associated binary sequences, respectively.
Then it is well known that the X, form a difference
family whose parameter set satisfies the equation
(3) if and only if the periodic autocorrelation func-
tions of the A; add up to O (except at the origin).

Let (4, Ay, A, A)) be a quadruple of binary se-
quences of length v whose PAF-functions add up
to 0, and let (C;, C,, C3, C,) be their associated cyclic
matrices. Then by plugging these matrices into the
Goethals — Seidel array:

C, CR CsR C,R
C,GR  C; -RC; RC
“"|-Cc3R RC, C; -RCy/|
C4R -RC; RC, C;

H )

we obtain a Hadamard matrix of order 4v. The
matrix R in (5) is the back-circulant identity matrix
of order v:

set (v; &y, kg, k3, ky; M) such that 00 1
N b 00 1
= ZL“ . —D. 3) Ro . :
. 1 00
For convenience, we shall refer to these param-
eter sets as GS-parameter sets and to the difference 10 .. 0 0]
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This is a very powerful method of construction
of Hadamard matrices. If A; is skew then H will
be a Hadamard matrix of skew type (skew-Had-
amard matrix), i. e., a Hadamard matrix such that
H + HT=2I,,.

It was recently observed in [6] that (after a small
twist) one can make use of the GS-array to construct
also the symmetric Hadamard matrices. Namely, if
we multiply the first column of (5) by —1 and switch
the second and third rows then we obtain the new
array, to which we refer as the propus array:

—-C; CsR C3R  C4R
C;:R RC, C; -RC,
C;R C; -RC; RCs
C,R -RC; RCy, C

(6)

This is still a Hadamard matrix. In the special
case when A, is symmetric and A, = A this matrix
is a symmetric Hadamard matrix. We say that a
GS-parameter set (v; &y, ky, k3, By A) is a propus pa-
rameter set if ky = k5, and we say that a difference
family (X, X,, X5, X,) having such parameter set
is a propus family if X, = X; and the set X, or X, is
symmetric.

To summarize, in order to construct a symmet-
ric Hadamard matrix of order 4v it suffices to con-
struct a propus difference family (X, Xy, X3, X,) in
Z,. All symmetric Hadamard matrices constructed
in this paper use this method. We conjecture that
for v odd this method is universal, i. e., for each odd
v > 1 there exists a propus difference family in Z ..
Theorem 1 below made this conjecture possible.

Existence of Parameter Sets

In this section we prove the following theorem.

Theorem 1. For any odd positive integer v > 1
there exists a propus parameter set (; X, Y, Y, 2; N)
with x, y, 2 < v/2.

Let us first recall an old result of Liouville. If x
is an indeterminate, the polynomial T, = x(x + 1)/2
takes nonnegative integer values at integer points.
These values are known as triangular numbers.
The ternary triangular form is a polynomial
aT, + bTy + ¢T,, where the coefficients (a, b, ) are
positive integers and x, y, z are commuting indeter-
minates. Such form is said to be universal if it rep-
resents all positive integers, i. e., each positive in-
teger is the value of this form at some point (x,, y,,
Zg) € Z3. Since T ,.=T,, we can assume that x,
Yo» 2p are nonnegative. Liouville has proved in 1863
[11] that there are exactly seven universal ternary
triangular forms, assuming that a < b < c¢. These
forms have the coefficients

1,1,1),(1,1,2),(1,1,4),1,1,5),1, 2,2),(1, 2,
3), (1, 2, 4).

This theorem of Liouville generalizes a result
of Gauss who proved earlier the universality in the
case a =b=c=1. We shall use below the fact that
the triangular form with coefficientsa=b=1,¢c=2
is universal.

Proof: The block sizes x, y, z of our parameter set
satisfy the equation

xx—-1D)+2yy- D)+ z2-H=rv—-1). (7)

AsA=x + 2y + z— v this equation can be writ-
ten as

V- 2x)2 + 2(v — 2y)2 + (v— 22)2 = 4v. 8)

Since v is odd, we have v — 2x=2p + 1, v— 2y =
=2q + 1,v— 2z=2r + 1, where p, g, r are integers.
Then the above equation becomes

T,+ 2T, + T,=(@— 1)/2. 9)

By Liouville’s result mentioned above, there ex-
ist integers p, ¢, r satisfying this equation. Hence,
there exist integers x, y, z satisfying the equation
(8). If x < 0 then v— 2x> v and the equation (8)
implies that 4 > v—2x. This contradicts our hypoth-
esis that v > 3. We conclude that x > 0. Similarly,
we can show that y, z > 0. The equation (7) implies
now that x + 2y + z— v > 0. Hence the theorem is
proved.

In Appendix we list the propus parameter sets
w; x, Yy, Yy, 2; A) for odd v, 1 < v < 50. They are com-
puted by solving the equation (9) for each of these
values v. Since we can replace any base block by its
complement and permute the blocks, we shall as-
sume that x, y, z < (v— 1)/2and x > z.

For the sake of completeness, let us consider the
case when v is even. The result here is quite differ-
ent, there is an arithmetic condition which rules
out the existence of propus parameter sets for some
even values of v.

Theorem 2. For even positive integer v there ex-
ists a propus parameter set (v; x, Yy, Y, 2; \) with x,
Y, 2 < v/2 if and only if v does not have the form
22kt18m + 7), where k and m are nonnegative inte-
gers.

Proof: Theequation (8)isvalid alsoin thiscase,i.e.,
when v is even. Then we have v — 2x = 2p, v — 2y = 2¢,
v — 2z =2r, where p, g, r are integers. Hence, the equa-
tion (8) can be written as p2 + 2¢2 + r2=v. By a the-
orem of Dixon [12, Theorem V], this equation has
no integral solution if and only if v has the form
22k+1(8m + 7). One can now easily complete the
proof.

For instance, this theorem rules out the integers
v =14, 30, 46, 56, 62, 78, 94, i. e., there are no pro-
pus parameter sets with these values of the param-
eter v.
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Symmetric Hadamard Matrices
of Order 4 - 39

The smallest order 4v for which no symmetric
Hadamard matrix was known prior to this work is
156 =4 - 39. There are two propus parameter sets
39; 17, 17, 17, 15; 27) and (39; 18, 16, 16, 16; 27) that
can be used to construct such matrices, as in Fig. 1.

We have constructed many such matrices, but
here we record only five pairwise non-equivalent
propus families for each parameter set.

For the first parameter set, the block A is sym-
metric in the first four families while D is symmet-
ric in the last family:

(39; 17, 17, 17, 15; 27)

[0,2,4,7,8,12,13, 18, 19, 20, 21, 26, 27, 31, 32,
35, 37],

[0, 1, 2, 3, 10, 14, 17, 18, 19, 21, 24, 26, 27, 30,
32, 36, 37],

[0, 1, 2, 3, 10, 14, 17, 18, 19, 21, 24, 26, 27, 30,
32, 36, 37],

[0,1,2,3,4,5,9, 11, 12, 15, 26, 29, 31, 33, 36];

[0, 2, 6,8,9,12, 13, 18, 19, 20, 21, 26, 27, 30, 31,
33, 371,

[0, 1, 2, 3, 5, 6, 8, 10, 14, 15, 17, 18, 19, 24, 28,
34, 37],

[0, 1, 2, 3, 5, 6, 8, 10, 14, 15, 17, 18, 19, 24, 28,
34, 37],

[0,1, 2, 3, 5, 10, 13, 16, 17, 18, 22, 24, 25, 28, 33];

[0, 3, 7, 8,9, 12, 13, 17, 19, 20, 22, 26, 27, 30, 31,
32, 36],

[0, 1,2, 5,7 8,12, 16, 20, 22, 23, 25, 32, 33, 34,
36, 38],

[0, 1,2, 5,7 8,12, 16, 20, 22, 23, 25, 32, 33, 34,
36, 38],

[0,1,2,3,6,9, 18, 20, 22, 23, 30, 32, 33, 34, 36];

[0, 3, 7,9, 13, 14, 17, 18, 19, 20, 21, 22, 25, 26,
30, 32, 36],

[0,1,2,3,4,7,8,9, 10, 15, 18, 20, 24, 28, 29,
31, 33],

N\

B Fig.1. Propus 156 with (39; 17, 17, 17, 15; 27) and
(39; 18, 16, 16, 16; 27)

[0,1,2,3,4,7,38,9, 10, 15, 18, 20, 24, 28, 29,
31, 33],
[0,1, 3,4,8,13, 14, 16, 17, 20, 23, 25, 28, 35, 37];

[0, 1, 2,3, 5, 10, 12, 14, 16, 17, 23, 24, 28, 30, 31,
36, 371,

[0,1,2,4,9, 10, 12, 13, 17, 18, 22, 24, 27, 30, 32,
33, 371,

[0, 1,2,4,9, 10, 12, 13, 17, 18, 22, 24, 27, 30, 32,
33, 371,

[0, 1,2, 3, 4, 8, 14, 18, 21, 25, 31, 35, 36, 37, 38].

For the second parameter set, the block A is sym-
metric in the first family while D is symmetric in
the other four families:

(39; 18, 16, 16, 16; 27)

[3,4,5,7,8,10, 12, 17, 18, 21, 22, 27, 29, 31, 32,
34, 35, 36],

[0,1,2,3,8,9,17, 19, 21, 23, 26, 29, 32, 35, 36, 37],

[0,1,2,3,8,9, 17, 19, 21, 23, 26, 29, 32, 35, 36,
371,

[0, 1, 2,4, 5,6, 10, 11, 13, 14, 21, 22, 27, 29, 33,
36];

[0,1,2,6,7 09,10, 12, 15, 17, 20, 21, 24, 28, 29,
31, 33, 37],

[0, 1, 2, 3, 7, 13, 18, 20, 21, 24, 27, 28, 32, 34,
36, 371,

[0, 1, 2, 3, 7, 13, 18, 20, 21, 24, 27, 28, 32, 34,
36, 37],

[2,7, 8,9, 15, 17, 18, 19, 20, 21, 22, 24, 30, 31,
32, 37];

[0, 1, 2, 6,8, 9, 10, 12, 14, 16, 18, 19, 27, 30, 32,
33, 36, 37],

[0, 1,2, 3,7 8,11, 19, 21, 24, 26, 27, 28, 31, 33,
361,

[0, 1,2, 3,78, 11, 19, 21, 24, 26, 27, 28, 31, 33,
361,

[2, 4, 5, 6, 7, 11, 17, 18, 21, 22, 28, 32, 33, 34,
35, 37];

[0,1,2,8,9,15, 16, 18, 19, 21, 23, 26, 28, 30, 31,
32, 34, 35],

[0, 1, 2, 5, 6, 14, 17, 20, 22, 24, 25, 27, 28, 29,
31, 35],

[0, 1, 2, 5, 6, 14, 17, 20, 22, 24, 25, 27, 28, 29,
31, 35],

[1,7, 10, 11, 12, 13, 17, 19, 20, 22, 26, 27, 28, 29,
32, 38];

[0,1,2,3,4,6,8,9, 10, 12, 18, 23, 24, 28, 30,
31, 32, 35],

[0, 1, 2, 5,6, 8, 11, 13, 15, 17, 24, 27, 29, 30, 36,
37],

[0, 1, 2, 5,6, 8, 11, 13, 15, 17, 24, 27, 29, 30, 36,
37],
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[4, 5, 8, 9, 10, 13, 15, 16, 23, 24, 26, 29, 30, 31,
34, 35].

Description of the Algorithm

Let us first describe the algorithm for the search
of periodic Golay pairs, a somewhat simpler prob-
lem. The search we have in mind is a non-exhaus-
tive search which uses a random number generator
to create the sequences.

The periodic Golay pairs of length v are pairs of
{£1}-sequences a = (a,, a;, ..., a,_;) and b=(b,, by,
..., b,_1) whose PAF functions have sum 0 except at
the origin. (We shall ignore the value of the PAF
functions at the origin.) These pairs exist only for
even values of v (excluding the trivial case v = 1).
The number of indices i such that a;=-1 is fixed,
and we denote it by k;. Similarly, &, is the number
of —1 terms in b. Since the PAF values of a sequence
are symmetric, i. e., PAF,(s) = PAF,(v — s) for s =1,
2, ..., v— 1, it suffices to compute and record these
values for 1 < s < v/2.

The very simple and time consuming algorithm
can be described as follows. First it generates just
one random a-sequence having exactly £, terms —1
and computes its PAF function. Next, it computes a
bunch of (say w) random b-sequences having exact-
ly ky terms —1. At the same time it computes their
PAF values and checks whether the sum of the PAF
functions of the a-sequence and the b-sequence is 0.
(The required memory for this is negligible.) This
complets one basic step. This step is then repeated
as long as desired.

A more effective algorithm generates a collec-
tion of, say, w binary sequences a having exactly &,
terms —1 and records them together with the PAF
values in a table. Another table also of size w is
used to generate and record a collection of binary
sequences b having exactly k, terms —1 and their
negated PAF values. The two tables of size w make
it possible to make quickly w? comparisons.

The second method performs faster because it
computes only 2w sequences (and their PAF values) in
order to check w? pairs for matching, while w steps of
the simple method has to compute w(w + 1) sequenc-
es to check w? pairs for matching. So, the saving is in
the number of sequences that one has to generate and
compute the PAF values: w(w + 1) for the brute force
method and 2w for the second method.

However, making two big tables is not feasible as
the active memory is limited. To handle this prob-
lem, one of the authors proposed and implemented
the following solution. The tables of data are re-
placed by trees having a fixed number of branch-
es. Each branch can hold at most w records of data
to which we refer as leaves of that branch (Fig. 2).
A random number generator is used to generate da-
ta and a hash-function, f, is used to distribute the

Tree a Tree b

Generator

Branches a Branches b
1 2 3 M 2 =

B Fig.2. Block-scheme of the algorithm

data and store them into the branches. After gen-
erating a sequence say a and computing its PAF
values, the hash function is evaluated at the PAF
values which gives the numerical label f(PAF,) of
the branch where the data will be stored. In the case
of the b-sequence, the PAF values are negated just
before storing them into the chosen branch.

If f takes different values at the functions PAF,
and —PAF, then PAF,# —PAF,, but the converse
fails. Consequently, no comparisons need to be
made between the a-leaves and b-leaves belonging
to branches having different labels. For that rea-
son, this third method is much more effective than
the second one.

Abig tree crown of size M = 2™ gives the function

f= ising(PAF(i))Qi’l
i=1

whose coefficients are the signatures sign(PAF()) <
€ {0, 1} of the first m PAF values. (We take,
that 1 corresponds to positive values of the PAF
function.) This definition can be modified by using
the ternary function sign(PAF()) € {0, 1, -1} which
distinguishes 0 and the signs of the nonzero PAF
values, and adding 2™ if necessary to make the
label positive.

Abstract “ideal” hash-function gives strictly
uniform distribution of leaves over the branches.

When using binary representation of integers in
computer’s memory it is beneficial to use logic oper-
ations of the iteration formula

F=(Fshll)or(Fshr3l)and1),i=1, .., v/2.

The symbols “shl” and “shr” denote left and right
shift of the binary code for the indicated amount,
the computations begin with the value F =0 and
terminate with the restriction f = F mod M, which
gurantees that the size of the crown will be M = 2™,
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Parameter Sets for Symmetric Hadamard (19;8,8,8,6;11) A, D (19;9,7,7,7;11) A, D
Matrices ©@1;9,8,8,8;12) AD, T 22;11;51)0’ 10,10, 4 p, x

We list here the propus parameter sets (v; x, y, 23; 9, 10, 10, 8; AD (23;10, 11,11, 7; A D
Y, 2; M) with v odd in the range v < 50 such that x, 14) ’ 16) ’
Y, 2 < v/2and x > z. The cyclic propus families con- 25; 9,12, 12, 9; AD (25; 10, 10, 10, No
sisting of four base blocks A, B, C, D c Z, having 17) ’ 10; 15)
sizes x, y, y, 2, respectively, and such that B=C 25;12,9, 9, 12; AD. T (25; 12, 10, 10, AD
and either A or D is symmetric give symmetric 17) ’ 9; 16) ’
Hadamard matrices of order 4v. If x = z# y then we (25;12,11,11,8; , o 27:11,13,13, , o
also include in our list the parameter set (v; y, x, 17) ’ 9; 19) ’
x, y; A) indicating that the two blocks of size x are @712, 11, 11, 27 12, 12, 12,
required to be equal. In that case we treat these two 10; 17) 4,D 9; 18) 4, D
parameter sets as different propus parameter sets. (27; 13, 10, 10, (29; 11, 13, 13,

The four base blocks are denoted by A, B, C, D. In 12; 18) AD, T, X 11; 19) 4,D
all propus families mentioned below we require that (29; 13, 11, 11, (31; 13, 13, 13,
B =C. If we know that there is such a family with 13; 19) 4, D 12; 20) AD, T
symmetric block A, we indicate this by the symbol (31; 13, 14, 14, (31; 15, 12, 12,
A, and similarly for the block D. If we know that 11; 21) A, D 13; 21) 4,D
there exists a family with both A and D symmetric, (31; 15, 15, 15, (33; 13, 16, 16,
then we write the symbol AD. If there are no fami- 10; 24) 4, D 12; 24) 4,D
lies with A or D symmetric, we write “No” after the (33; 15, 13, 13, (33; 15, 16, 16,
parameter set. Finally, the question mark means 14; 22) 4, D 11; 25) 4,D
that the existence of families with A or D symmet- (33; 16, 14, 14, (35; 16, 15, 15,
ric remains undecided. 12; 23) A,D, X 13; 24) 4,D

The symbol T indicates that the parameter set (35; 17, 16, 16, (37; 15, 16, 16,
belongs to the Turyn series of Williamson matri- 12; 26) 4, D, X 15; 25) 4,D
ces. We note that T implies AD. Further, the sym- @37 15, 17, 17, (37; 16, 15, 15,
bol X indicates that the parameter set belongs to 14; 26) AD, T 16; 25) 4,D
another infinite series (see [7, Theorem 5]) which is (37; 16, 18, 18, (37; 17, 17, 17,
based on the paper [13] of Xia, Xia, Seberry, and 13; 28) 4, D 13; 27) 4,D
Wau. In our list below X implies D. More precisely, (37; 18, 15, 15, (39; 17, 17, 17,
for a difference family A, B, C, D in the X-series 15; 26) A, D 15; 27) 4,D
two blocks are equal, say B =C, and one of the re- (39; 18, 16, 16, (41; 16, 20, 20,
maining blocks is skew, block A in our list, and the 16; 27) 4, D 16; 31) 4,D
last one is symmetric, block D. We remark that a (41; 18, 19, 19, (41; 20, 16,16, AD, T,
difference family in the X-series gives a skew and 15; 30) 4,D 20; 31) X
a symmetric Hadamard matrix of order 4v (Table). 43; 18, 21, 21 43; 19, 18, 18

For odd v less than 42 there are only two propus 16;’33), U7 18;,30)’ T
parameter sets, (5; 1, 2, 2, 1; 1) and (25; 10, 10, 10, @3; 21, 17, 17 43; 21, 19, 19
10; 15), having no cyclic propus difference families. 20;’32)’ T2 16;,32), T2
While for the former set this claim can be easily @3; 21, 21, 21 @5; 18, 21, 21
proved, for the latter set it was checked by perform- 1 5;’3 5)’ 77D 18;’33)’ U7
ing an exhaustive computer search. There is a pos- . .
sibility that a propus family with parameters (25; (1485;’312%’ 20, 20, AD, T (2415;’3231)’ 18,18,
10, 10, 10, 10; 15) may exist in Zy x Zs. (5; 21, 20, 20, , 4521, 22,22,
B Table of propus paramater sets with odd v < 50 17; 33) 16; 36)

45; 22, 19, 19, 47; 20, 22, 22,

(3;1,1,1,0;0) AD,T,X (5:1,2,2,1;1) No 18; 33) D, X 18; 35) ?
(;2,1,1,2;1) AD,T,X (7;3,2,2,2;2) AD,T 47,22, 20,20, (47,23,19,19,
(7; 3, 3,3,1; 3) D, X 9;3,3,3,3;3) A,D 19; 34) : 21; 35) :
9:3,4,4,2;4) AD, T (11;5,4,4,3;5) A,D, X @47, 23,22,22, 49; 21, 21,21,
(13;4,6,6,4;7) A, D (13;5,5,5,4;6) AD, T 17; 37) ‘ 21; 35) ‘
(13;6,4,4,6;7) AD (13;6,6,6,3;8 A,D “9; 22,22,22, 49; 22, 24,24,
(15;6,7,7,4;9) A,D (15;7,5,5,6;8) AD, T, X 19; 36) ’ 18; 39) :
(17;6,7,7,6;9) A,D (17;7,6,6,7,9 A,D (49; 23, 20, 20, AD. T (49; 23, 23, 23, )
17 8,7,7,5;10) A,D, X (19;7,9,9,6;12) AD,T 22; 36) ? 18; 38) :
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Appendix

In order to justify our claims made in section 6
regarding the propus parameter sets, we give the
examples of the propus families having the re-
quired properties. In all cases the blocks B and C
are equal, and to save space we omit the block C. The
families are terminated by semicolons.

(9;3,3,3,3;3)
[0, 1, 8], [0, 2, 5], [0, 1, 4];

(11; 5, 4, 4, 3; 5)
[0, 2, 5, 6, 9], [0, 1, 2, 8], [0, 2, 8];

(13;4,6,6,4;7)
[3, 5,8, 101, [0, 1, 2, 3, 6, 10], [0, 1, 5, 7];

(13;6,4,4,6; 7)
[2, 5, 6’ 7’ 87 11]’ [O’ 1’ 4’ 6]’ [17 3’ 4’ 9’ 10’ 12];

(13; 6, 6, 6, 3; 8)
[1,4,5,8,9,12],[0, 1, 2, 4, 6, 7], [0, 2, 5];
[0,1,3,4,6,9],[0,1, 2,8,9, 11], [0, 4, 9];

(15;6,7,7,4;9)
[1’ 6’ 7’ 8’ 97 14]’ [O’ 1’ 2’ 4’ 5’ 7’ 11]’ [0’ 37 6, ]‘O];
[0, 2, 4, 5, 10, 12}, [0, 1, 2, 4, 9, 10, 13], [5, 6, 9, 10];

(17;6,7,7,6;9)

[2, 5, 6, 11, 12, 15], [0, 1, 2, 3, 5, 8, 13], [0, 1, 7,
9, 11, 15];

[0, 6, 7, 8, 9, 10, 11], [0, 1, 5, 7, 10, 13], [0, 1, 2,
6,8, 11, 15];

(17: 8, 7, 7, 5; 10)
[2, 8, 5, 6, 11, 12, 14, 15], [0, 1, 3, 4, 11, 13, 15],
[0, 1, 5, 6, 12];

(19; 8, 8, 8, 6; 11)
[1,2, 3,9, 10, 16, 17, 18],
[0, 1, 3,9, 12, 13, 15, 17],
[0, 1, 6, 7, 10, 15];
,4,6,9,12, 13],
,5,6,12, 15, 17],
12, 13, 15];

[0, 1, 2
[0, 1, 2
[4,6,7

’ b

(19;9, 7,7, 7 11)
[0,1,2,3,7, 12, 16, 17, 18],

[0, 1,3, 7, 11, 12, 14],
[0, 1, 3, 6, 9, 13, 15];
[0, 1, 2, 7, 12, 15, 16, 17, 18],
[0, 1, 4, 6, 11, 13, 14],
[0, 2, 6, 9, 10, 13, 17];

(1; 10, 10, 10, 6; 15)
[1,2,3,5, 10, 11, 16, 18, 19, 20],
[0,1,3,4,6,8,11,12, 13, 18],
[0, 1,2, 6,12, 19];

(23; 9, 10, 10, 8; 14)
[0, 2, 3, 6, 10, 13, 17, 20, 21],

[0, 2,4, 5, 6, 7, 12, 13, 18, 21],
[2, 3, 6, 11, 12, 14, 15, 16];

[0, 1, 4, 9, 14, 17, 19, 21, 22],

[0, 5,9, 11, 12, 13, 14, 16, 20, 22],
[2, 5, 6, 11, 12, 17, 18, 21];

(23; 10, 11, 11, 7; 16)

[1, 3, 4,9, 10, 13, 14, 19, 20, 22],
[1,3,4,6,78,9, 15, 18, 19, 22],
[1, 3, 4, 5, 10, 18, 20];

[1,2, 5,11, 12, 15, 16, 18, 19, 20],
[1,3,4,5,6, 17,13, 16, 18, 20, 21],
[0, 5, 7, 11, 12, 16, 18];

(25; 9, 12, 12, 9; 17)
[0, 1, 5, 8, 10, 15, 17, 20, 24],

[0, 1, 3,9, 12, 13, 14, 16, 17, 19, 20, 24],
[1, 7,13, 14, 15, 17, 18, 20, 24];

(25; 12, 10, 10, 9; 16)
[1,2,3,4,10,12, 13, 15, 21, 22, 23, 24],
[0, 5, 10, 14, 15, 17, 18, 21, 23, 24],

[2, 4, 8, 12, 14, 16, 19, 20, 24];

[0, 1,7, 12, 14, 15, 17, 18, 20, 21, 22, 23],
[2,3,4, 6,11, 12, 13, 16, 18, 24],

[0, 2, 6, 9, 10, 15, 16, 19, 23];

(25; 12, 11, 11, 8; 17)

[3, 4,5, 6,9, 11, 14, 16, 19, 20, 21, 22],
[0, 1, 9, 10, 13, 14, 17, 19, 20, 21, 23],
[2, 9, 13, 15, 17, 20, 22, 23];

[0, 4, 5, 8, 11, 12, 13, 14, 15, 16, 17, 22],
[3,4,7,8,10, 13, 15, 19, 21, 22, 23],
[2, 3, 5, 7, 18, 20, 22, 23];

(27,11, 13, 13, 9; 19)

[0, 1,2, 4,8, 12, 15, 19, 23, 25, 26],
4,5,6,8,9, 11, 15, 16, 18, 20, 24, 25],

0,8,9,10, 13, 16, 18, 19, 22];

2,3,4,8,9,12, 13, 15, 17, 19, 22],

2,3,6,9

0,1,3,8

Yy

, 13, 14, 19, 24, 26];

2 2

,6,9,11, 17, 18, 19, 20, 21, 23, 25, 26],
1
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(27,12, 11, 11, 10; 17)

[1,4,5,6,8,9, 18, 19, 21, 22, 23, 26],
[5, 6,9, 11, 14, 16, 17, 18, 20, 25, 26],
1, 2, 4, 5, 6, 10, 12, 18, 22, 26];

[0, 1, 2,5, 6, 8, 11, 15, 16, 17, 20, 22],
1,2,7,9, 15,17, 18, 19, 21, 22, 26],
[1, 2, 3, 6, 12, 15, 21, 24, 25, 26];

’ b ’

(27; 12, 12, 12, 9; 18)
[1,7,9,10, 11, 13, 14, 16, 17, 18, 20, 26],
[0, 2,3,4,7, 8,9, 14, 18, 19, 21, 22],

[0, 2, 4, 6, 9, 12, 15, 20, 26];
[2,3,6,7,8,9, 12, 14, 15, 20, 24, 26],
[1, 3, 4, 8, 11, 12, 19, 20, 22, 24, 25, 26],
[0, 2, 5, 12, 13, 14, 15, 22, 25];

(29; 11, 13, 13, 11; 19)

[0, 2, 5, 7, 13, 14, 15, 16, 22, 24, 27],
[3,6,7,8,9, 10, 13, 14, 17, 18, 20, 22, 26],
[0,1,3,4,9,12, 15, 17, 22, 23, 28];

(29; 13, 11, 11, 13; 19)

[0, 2, 8,9, 12, 13, 14, 15, 16, 17, 20, 21, 27],
1, 2, 3, 10, 12, 16, 19, 20, 22, 25, 27],
[0,1,2,4,5,7,8,9, 13, 17, 18, 20, 23];

(31; 13, 14, 14, 11; 21)

[0, 1, 2,5, 8,11, 12, 19, 20, 23, 26, 29, 30],

[0, 3, 8, 14, 15, 16, 17, 19, 21, 22, 25, 27, 29, 30],
[0, 1, 4, 6, 11, 15, 16, 20, 22, 24, 30];
[2,8,5,7,09, 10, 12, 15, 16, 17, 28, 29, 30],

[0,1, 3, 4,8, 12, 15, 16, 18, 24, 25, 26, 27, 29],
[0, 1, 6, 10, 12, 15, 16, 19, 21, 25, 30];

’ ’

(31; 15, 12, 12, 13; 21)

[0, 2, 4, 7,10, 11, 12, 15, 16, 19, 20, 21, 24, 27, 29],
[2, 3, 5, 12, 14, 15, 19, 20, 25, 26, 27, 30],

[6, 8,9, 11, 12, 13, 14, 15, 16, 18, 24, 26, 28];
[0, 1, 6,9, 13, 14, 15, 16, 17, 18, 22, 25, 30],

[2, 4, 6, 9, 10, 13, 15, 20, 23, 25, 26, 29],
[0,1,2,4,5,6,9,10, 11, 12, 22, 23, 24, 28, 30];

(31; 15, 15, 15, 10; 24)

[o,1,2,7, 10,11, 14, 15, 16, 17, 20, 21, 24, 29, 30],
[0, 3,5,7,10,12, 13, 14, 15, 16, 18, 19, 23, 24, 30],
[0, 2, 4, 6, 12, 14, 22, 25, 26, 28];

[0, 4, 6, 8, 10, 11, 15, 16, 18, 20, 21, 23, 24, 26, 28],
[2,4,5,6,8,11, 12, 13, 16, 20, 24, 25, 26, 27, 30],
2,11, 12, 13, 14, 17, 18, 19, 20, 29];

(33; 13, 16, 16, 12; 24)

[0, 1,2,4,7 12, 14, 19, 21, 26, 29, 31, 32],

[1,2,3,6,9,10,12,13, 14, 17, 18, 19, 23, 24, 26, 32],

[1, 4,5, 11, 13, 14, 15, 17, 19, 20, 28, 32];

[0, 1, 4, 8, 10, 14, 16, 18, 19, 25, 27, 30, 32],

[0, 5, 7, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 27,
28, 30],

[2, 3, 4, 6, 13, 16, 17, 20, 27, 29, 30, 31];

(33; 15, 13, 13, 14; 22)
,5,9,10, 13, 14, 19, 20, 23, 24, 28, 30, 31],
8, 14, 17, 20, 24, 26, 28, 29],
, 6,7, 14, 19, 20, 22, 25, 27, 29];
, 7,11, 13, 16, 18, 26, 27, 28, 29, 30, 32],
, 9,10, 11, 15, 16, 19, 22, 29, 32],
11, 13, 16, 17, 20, 22, 24, 28, 29, 32];

(33; 15, 16, 16, 11; 25)
[0,1,4,7 8,9, 10, 13, 20, 23, 24, 25, 26, 29, 32],
[0,1,4,6,8,10,11, 12, 15, 17, 18, 19, 22, 23, 24, 31],
[1,6, 7,8, 10, 11, 14, 16, 26, 29, 31];

[0, 1, 5, 8, 12, 14, 15, 17, 18, 20, 22, 25, 26, 29,

32],

[0, 1, 3, 8, 13, 14, 15, 19, 21, 22, 23, 25, 27, 30,

31, 32],

[0, 3, 10, 13, 14, 15, 18, 19, 20, 23, 30];

(33; 16, 14, 14, 12; 23)

[1, 2, 4, 6, 10, 14, 15, 16, 17, 18, 19, 23, 27, 29,
31, 32],

[0, 2, 9, 10, 11, 13, 15, 16, 19, 20, 21, 22, 25, 28],

[1, 4, 8,9, 11, 15, 16, 18, 25, 26, 30, 31];

(35; 16, 15, 15, 13; 24)
[1, 3,4, 7,9, 10, 11, 15, 20, 24, 25, 26, 28, 31,
32, 34],
[0,2,6,7,9,11, 14, 17, 18, 19, 28, 29, 32, 33, 34],
[0, 1, 3, 4, 10, 15, 17, 23, 26, 28, 29, 30, 32];
[0, 6, 9, 11, 14, 16, 18, 21, 22, 25, 26, 27, 29, 32,
33, 34],
[0, 2, 4, 8,11, 12, 13, 18, 23, 26, 29, 30, 31, 32, 33],
[0, 1,9, 10, 13, 14, 16, 19, 21, 22, 25, 26, 34];

(35; 17, 16, 16, 12; 26)

[0,1,2,6,9,12, 14, 16, 17, 18, 19, 21, 23, 26, 29,
33, 34],

[1, 5,12, 13, 14, 15, 17, 20, 21, 23, 25, 26, 27, 30,
31, 34],

[4, 10, 11, 15, 16, 22, 23, 24, 25, 27, 31, 34];

(37; 15, 16, 16, 15; 25)

[0, 2, 3, 5, 10, 11, 12, 16, 21, 25, 26, 27, 32, 34,
35],

[0, 1, 2, 5, 9, 10, 12, 13, 15, 16, 22, 28, 30, 33,
34, 35],

[0, 2, 4, 6, 10, 11, 12, 13, 16, 19, 20, 22, 30, 31, 33];

(37; 16, 15, 15, 16; 25)

[1, 4,5, 6,9, 12, 13, 14, 23, 24, 25, 28, 31, 32,
33, 36],

[0, 2, 3, 4,6, 7,13, 14, 16, 19, 24, 28, 30, 35, 36],

1,5, 7 8, 11, 13, 14, 15, 19, 26, 28, 30, 32, 33,
35, 36];

(37; 16, 18, 18, 13; 28)
1, 3, 6, 11, 12, 16, 17, 18, 19, 20, 21, 25, 26, 31,
34, 36],

NeS, 207 N\
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[1, 2, 7, 11, 14, 15, 17, 18, 23, 25, 26, 27, 28, 29,
31, 32, 34, 36,

[1,2,3, 4, 11, 15, 17, 21, 22, 26, 29, 32, 33];

[1, 2, 4, 6, 9, 11, 12, 14, 18, 19, 20, 21, 22, 23,
24, 36],

[2,3,5,6,9, 10, 11, 12, 16, 17, 19, 20, 21, 22, 27,
31, 33, 35],

[0, 2, 6, 7, 11, 14, 17, 20, 23, 26, 30, 31, 35];

(37; 17, 17, 17, 13; 27)

[0, 2, 3, 5, 6, 8, 9, 15, 16, 21, 22, 28, 29, 31, 32,
34, 35],

[2,4,5,7 8,9, 15, 16, 18, 19, 20, 23, 24, 25, 27,
29, 33],

[2, 3, 10, 12, 19, 20, 22, 24, 27, 29, 31, 34, 35];

[1,2,3,4,9,11, 13, 15, 16, 19, 20, 21, 22, 24, 25,
27, 28],

[2, 6,9, 10, 13, 15, 19, 24, 25, 26, 28, 29, 31, 33,
34, 35, 36],

[0, 3, 5, 11, 12, 13, 17, 20, 24, 25, 26, 32, 34];

(37; 18, 15, 15, 15; 26)

[3,4,5,6,709,11, 13, 16, 21, 24, 26, 28, 30, 31,
32, 33, 34],

[0, 4, 7,13, 16, 17, 18, 19, 22, 23, 24, 29, 30, 32, 33],

[1, 5,9, 10, 12, 15, 18, 22, 23, 24, 26, 28, 30, 31,
33];

[0, 2, 4, 6,9, 11, 12, 13, 15, 16, 17, 18, 22, 24, 25,
30, 35, 36],

[1, 4,9, 13, 16, 17, 20, 21, 22, 23, 24, 31, 32, 33,
36],

[0, 6, 8, 10, 11, 14, 16, 17, 20, 21, 23, 26, 27, 29, 31];

(39; 17, 17, 17, 15; 27)
[0, 5, 6, 8, 10, 14, 15, 17, 18, 21, 22, 24, 25, 29,
31, 33, 34],
[0, 3, 5, 6, 12, 13, 14, 16, 17, 18, 22, 27, 30, 33,
35, 37, 38],
[1,2,3,5,6,8,12, 13, 14, 15, 26, 31, 32, 34, 38];
[2, 3,7 9,10, 15, 16, 18, 19, 20, 21, 23, 28, 30,
32, 34, 35],
[0, 3, 5, 6, 10, 12, 13, 14, 16, 21, 22, 24, 25, 29,
30, 34, 36],
[0,1,2, 3, 4, 8, 14, 18, 21, 25, 31, 35, 36, 37, 38];

(39; 18, 16, 16, 16; 27)

[3,4,5,7 8,10, 12, 17, 18, 21, 22, 27, 29, 31, 32,
34, 35, 36],

[0,3,4,5,7,8,9, 10, 15, 16, 24, 26, 28, 30, 33, 36],

[2,3,4,6,7 8,12, 13, 15, 16, 23, 24, 29, 31, 35,
38];

[1, 2, 3, 9, 10, 16, 17, 19, 20, 22, 24, 27, 29, 31,
32, 33, 35, 36],

[1, 5, 6, 7, 10, 11, 19, 22, 25, 27, 29, 30, 32, 33,
34, 36],

[1,7, 10, 11, 12, 13, 17, 19, 20, 22, 26, 27, 28, 29,
32, 38];

(41; 16, 20, 20, 16; 31)

[1, 2, 3,9, 11, 15, 19, 20, 21, 22, 26, 30, 32, 38,
39, 40],

[0, 3, 9, 11, 14, 15, 16, 19, 22, 23, 24, 25, 26, 28,
29, 30, 32, 35, 37, 40],

[0, 4, 5, 7, 14, 16, 18, 19, 21, 23, 24, 31, 32, 37,
38, 40];

41; 18, 19, 19, 15; 30)
[4, 5, 7, 8, 10, 11, 15, 16, 17, 24, 25, 26, 30, 31,
33, 34, 36, 37],
[3, 5, 8,9, 11, 12, 16, 17, 18, 19, 21, 22, 23, 26,
28, 30, 33, 34, 36],
[0, 2,3, 5, 6, 11, 15, 20, 22, 24, 26, 27, 34, 35, 39];
[3, 5, 6, 9, 10, 11, 13, 15, 16, 26, 27, 31, 33, 35,
36, 38, 39, 40],
[1,2,5,8,9,11, 13, 14, 15, 16, 18, 20, 23, 24, 29,
30, 31, 32, 40],
[0, 2, 4, 5, 10, 15, 18, 19, 22, 23, 26, 31, 36, 37, 39];

43; 21, 21, 21, 15; 35)

[0,1,2,3,4,8,9, 12, 14, 19, 22, 23, 26, 28, 29,
31, 32, 34, 38, 39, 41],

[1,4,6,9,10,11, 13, 14, 15, 16, 17, 21, 23, 24, 25,
31, 35, 36, 38, 40, 41],

[0,7,9,13, 14, 15, 17, 18, 25, 26, 28, 29, 30, 34, 36].

The last example consists of a D-optimal design
(blocks A and D) and two copies of the Paley differ-
ence set in Z,5 (blocks B =C). It is taken from the
paper [7].
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aCaukT-IleTepOyprcKuii rocyfapcTBeHHBIN YHUBEPCUTET a9POKOCMUUECKOro npudopocrpoenusa, Caukt-Ilerepbypr, PP
6YVuusepcurer Barepioo, Barepnoo, Ourapuo, Kanana

Ilens: uccienoBaTh 60Jiee IOJHO, YeM 9TO OBLIO M3BECTHO paHee, ceMeicTBa CUMMETPUYHBIX MaTpuIll AzaMapa KOHCTPYKIIUH IIPO-
MyCOB — CUMMETPUUYHOI Pa3HOBUAHOCTU MaccuBa I'eTxanbca — 3eiiess, oTandaloleiicsa 0043aTeJTbHO CuMMeTpuei 04HOTo 13 6JIOKOB
U PaBEHCTBOM JBYX APYTUX, BCETO YeThIpeX 6JI0KOB. MeToasl: aHaIuTHUYEeCKAsl TeOPUSA YPABHEHUH AJIA IapaMeTpoB AuddepeHnaaibHbIX
CceMeNCTB, UCIOJIb3YEeMbIX B TEOPUU CUMMETPUYHBIX MaTpull Aframapa, 6asupyromiasacsa Ha TeopeMax JInmysuund u [lukcona. ABTOPCKUM
YUCJIEHHBIN METOJ MOVCKA ABYX WM TPEX IUKJINYECKUX OJIOKOB [JIS IOCTPOEHUA MaTPpuUIl AjamMmapa ONIUKINUYECKOT0 TUIIA, UJIN IIPOITY-
COB, KOTOPBIH YCKOPAET KJIACCHUIECKUH IIepebop HCKOMBIX ITOCIeL0BATeILHOCTEH IPeJBaPUTEIHHOM COPTUPOBKOM UX Ha HEllePeCeKaIoIu-
ecsi COMHOXKECTBA IIOTEHITNAIBHBIX PEIeHHUI ¢ IOMOIIBIO XdII-(PYHKIINYN. Pe3yapTaThl: MOJyUeHO U KIACCH(DUIIPOBAHO B TAOIUIIBI 00-
MIMPHOE MHOYKECTBO HOBBIX CHMMETPUYHBIX MaTpUIl AraMapa, OTINYAOIINXCA MKy CO00i MHANBUAYATbPHBIMI HA60paMU IapaMeTpPOB.
IToMurMO HOBUBHBI YKa3aHHBIX MHOKECTB, JOCTUTHYTA HOBU3HA CUMMETPUYHBIX KOHCTPYKIUIT HA mopaakax 92, 116, 156, nyia KoTopbIx
TaKkue pelleHusA ObLIM HemsBecTHHI. [na mopagka 156 cuMMeTpuyHBIe MATPHUILI HaliZieHbl BIepBhle. IIpakTMuecKas 3HAYUMOCTH:
MaTpuisl AzaMmapa UMeT HeIIOCPEeACTBEHHOE IIPAaKTUUECKOe 3HAUECHNE JIJIs PEIIeHN 3a4a4 IOMEX0YCTONYNBOI0 KOJUPOBAHU A, CIKATUA
U MacKH-poBaHus BuAeonmHGpopMmanuu. IIporpaMMHOe obecreueHMe HAXOMKJEHUA CHMMETPHUYHBIX MaTpul, Amamapa u OubJaHOoTeKa
HaWJeHHBIX Ma-TPUI] UCIOIL3YIOTCA B MaTeMaTHIeCKOI ceTu VIHTEepHET ¢ UCIOJIHAEMbIMU OHJIAWH aJITOPUTMaMU.

KaroueBsie cI0Ba — CHMMeETPUYHBIE MaTPUIBI Aamapa, MmaccuB I'eTxanbca — 3eiifiesns, IPONyCc-KOHCTPYKIIUA, ITUKJINUYeCKUe qud-
(epeHIIUANBHBIE CEMENCTBA.
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