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Introduction: Hadamard matrices and weighing matrices share the same family. The latter can fill up voids in the matrix
space by setting some elements to zero, but this feature has not been properly studied yet. Purpose: To study how the orders
of orthogonal matrices used in information processing can affect their structure. Results: For Ryser's conjecture about orders
critical for cyclic Hadamard matrices, an extension has been suggested, covering Hadamard matrices and weighing matrices
which consist of two cyclic blocks. We give examples of Hadamard matrices extended to the newly revealed critical order
equal to 32, with symmetrical blocks or, on higher orders, with unsymmetrical blocks. We also present two-circulant weighing
matrices which replace Hadamard matrices and alternate with them. There is an exceptional case related to the order 24
on which two-circulant Hadamard matrices or weighing matrices do not exist, forcing you to search for a solution among
four-block constructions. A special set of Hadamard matrices of 20- and 52-fold orders is pointed out, as their blocks are
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Introduction

The practical interest to orthogonal (quasi-or-
thogonal) matrices is attributable to their features
which make them highly popular in digital pro-
cessing and data conversion systems. Orthogonal
matrices, including Fourier matrices, Hadamard
matrices, and their most close even-order interpre-
tations which are Belevitch matrices and weighing
matrices, are used in noise-proof coding, spectral
expansion, image processing, code division of com-
munication channels, security masking, etc.

The orthogonality of these matrices enables their
congruent transformation. The possible orthogonal
bases, including symmetrical, circulant, two-cir-
culant and other matrix constructions, consider-
ably expand the ways of optimization for certain
data conversion problems [1, 2]. In coding theory,
Hadamard matrix columns are used to build codes
with large code distances [3, 4]. The special way to
number the columns of such matrices in digital sig-
nal processing, image compression and masking is
interpreted as a two-level representation of Walsh
function.

The features of such matrices assume special im-
portance when these conversions are implemented
in specialized processors at hardware or firmware
level. Since the form of the matrices, their orders
and values of their elements significantly affect the
choice of the corresponding filters, cost of hard-
ware and speed of conversion, it is especially im-

portant to properly choose orthogonal matrices out
of their vast variety when developing a processor.

Some modern practical applications of orthog-
onal matrices in genetics, biomechanics, medical
technology, crystallography, video data conversion,
etc. [6—7] require the fundamentals of the current
digital methods to be reconsidered. From this point
of view, integer values of matrix elements are not as
important as the extremal properties of the matri-
ces and their existence for all possible orders.

The theory of Hadamard matrices H, with or-
thogonal columns of elements 1 and —1 was devel-
oped from simple manual calculation methods sup-
plementing the initial sequence of Silvester matri-
ces towards more sophisticated ones with the use of
nested matrices by Scarpis method or finite fields
used by Paley [8—10].

As time elapsed, the researchers’ interest moved
from unstructured or semi-structured matrices to
those with a clearly pronounced structure [11, 12].

Ryser was the first who noticed that the exist-
ence of orthogonal circulant matrices had a limita-
tion. He formulated a conjecture that there were no
circulant Hadamard matrices of orders n > 4. Turin
proved in his work [2] that the conjecture was true
for matrices of 8-fold orders. The trials to prove
this statement for a more general case are still a
subject of profound theoretical research in the area
of high-order matrices, though far from any practi-
cal application. More practically essential were the
suggestions to go beyond the accepted limitation at
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the cost of some minor concessions. For example,
Barker introduced so called Barker codes which are
a source for circulant matrices of orders not high-
er than 13. When the order is higher than 4, they
are not orthogonal but close to that in a strict sense
pointed out by Barker himself: he noted that their
autocorrelation function has a spike at the begin-
ning but then deviates from zero by no more than 1,
oscillating with the values 1 and —1.

Thus, the subject of circulant matrices became
exhausted and the interest gradually moved to the
area of two-circulant structures which had been
poorly studied until recently. Note that a circulant
structure is symmetric about the secondary diag-
onal, therefore Barker’s conjecture actually de-
scribes a limitation for symmetric matrices.

Two-circulant Hadamard matrices are built on
the base of two monocirculant matrices A and B of
twice smaller order. A and B can be either circulant
or backcirculant. Note that when applied to two-cir-
culant Hadamard matrices, an extended interpreta-
tion of Ryser’s conjecture becomes possible [13—15].

The goal of this work is to describe the struc-
tures of two-circulant Hadamard matrices found by
the algorithm of search for local determinant max-
imum [16], different from all the above-listed clas-
sical methods, and to study in more details the pe-
culiarities of the extended Ryser’s conjecture about
Hadamard matrices with two-circulant structure.

Alteration of Hadamard Matrices and
Weighing Matrices

For the sake of convenience, we will consider
two-circulant matrices built on a circulant A and
backcirculant B matrices. Ryser’s limitation is also
valid for matrices of orders smaller than the criti-
cal order 4. A circulant Hadamard matrix of second
order H, does not exist [2].

A two-circulant structure considerably ex-
pands the opportunities for combining. A circu-
lant Ryser’s matrix of order 4 can be treated as a
two-circulant matrix built of monocirculant blocks
A =H, and B = J, where J is a block of ones.

Fig. 1 shows an additional structure obtained
by doubling a circulant diagonal Ryser’s matrix
H, by Silvester’s rule. The shown two-circulant
Hadamard matrices are symmetric and doubly sym-
metric by blocks, but so far they just slightly move
Ryser’s bound from order 4 to 8.

Paired elements 1 and —1 of Hadamard matrices
are traditionally depicted on matrix portraits as
white and black cells respectively.

The next non-trivial generalization of Ryser’s
rule is that an order-12 two-circulant matrix, though
still doubly symmetric, is “forced” to have zeros on
both the diagonals of blocks A and B. Such matri-

ces were first introduced by professor J. Seberry
from Wollongong Science Centre in Australia. She
dubbed them “weighing matrices” and denoted as
W [1]. Later it became common to formally denote
such matrices by specifying not only the order but
also the number of non-zero elements in the rows. In
our case, it is W(n, n—2). Elements with value O are
usually depicted on matrix portraits in gray.

From a weighing matrix W(n, n—2) you can go
to a Hadamard matrix of a twice higher order H,,
whose blocks will coincide with those of the weigh-
ing matrix, having the same signs and values of
the diagonal elements, which is a generalization
of Silvester’s order duplication algorithm. Fig. 2
shows both these matrices. The first of them,
weighing matrix W,,, was found by a determinant
optimization program [12, 16].

Hadamard matrices are strictly optimal by de-
terminant. Hence, an order-12 weighing matrix
which differs from them and has a simple two-cir-
culant structure exists in the secondary maximum
which is the local maximum of the determinant.
This means that any sufficiently small change in
the matrix elements not making the absolute value
of an element higher than 1 decreases the determi-
nant. Therefore, the determinant optimization al-
gorithm can be used to find and analize weighing
matrices in the case when two-circulant Hadamard
matrices do not exist and the absolute maximum
of the determinant belongs to more complex struc-
tures.

A weighing matrix W, replaces a two-circulant
Hadamard matrix which doesnot exist for thisorder.
Weighing matrices alternate with Hadamard ma-
trices in two-circulant form. On order 16, we again

% A

B Fig. 1. Portraits of a circulant H, and two-circulant
Hg matrices

B Fig. 2. Portraits of matrices W, and H,,
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meet a doubly symmetric structure (Fig. 3) which
moves Ryser’s bound still farther from order 4.
This result argues against Ryser’s conjecture.

We can presume that this rule is general for all
two-circulant matrices of orders 12, 20, 28, 26, etc. On
these orders, Hadamard matrices replace weighing
matrices which have two zero diagonals. Hadamard
matrices of orders n =2* have structures belonging
to the general sequence of Silvester’s orders; howev-
er, as we will see later, they do not keep a double-axis
or ordinary symmetry. In particular, unsymmetric
two-circulant Hadamard matrices produce codes of
Mark Golay who used them to continue his search for
Barker’s monocycles, not orthogonal but close to that.
On the other hand, Golay’s codes do not support sym-
metry, so the structure we found for order 16 belongs
to a different family, not yet described.

Symmetric order-16 Hadamard and Golay matri-
ces precede the doubly symmetric weighing matrix
W,, shown in Fig. 4 along with a Hadamard matrix
of a doubled order, according to our presumptions.

Matrix H,, demonstrates a twister of Seberry
(nearly symmetric Hadamard matrices): the ele-
ments of its second subblock form a circulating
structure. You can obtain it by unfolding the blocks
A and B of a weighing matrix during the transition
to a Hadamard matrix with circulating elements.
The twister is a model of standing waves in a square
pool with four oscillating areas described by the ma-
trices of nested blocks. Hence, Hadamard matrices
are a mathematical interpretation of resonances in
a closed cavity (standing waves). Pioneering works
in this area belong, among others, to professor
dJ. Seberry. According to Golay’s studies [2], on or-

der 20 a main maximum of the determinant exists,
producing an unsymmetric matrix H,, (Fig. 5).

Thus, unsymmetric Golay’s sequences for a side
branch of orthogonal codes starting on order 20
complement symmetric sequences of weighing ma-
trices. This fact has never been pointed out in sci-
entific literature. Three Golay’s side branches are
known; the next one starts on order 52. So, order
20 is an order on which symmetry becomes the cost
of an attainable absolute maximum. If you focus on
symmetric structures, it makes more sense to use
open weighing matrices.

Note that the period on which you meet a two-cir-
culant Hadamard matrix grows as the problem size
increases. This feature is also shared by weighing
matrices. For example, on order 24 we failed to find a
weighing two-circulant matrix, which happened for
the first time. Instead of it, we found a more complex
structure which consisted of not two but four blocks
and inherited a pair of blocks from W, ,. Accordingly,
it produces a matrix H,, without the need to double
the order, which is demonstrated in Fig. 6.

The advantage of complicating is that a four-
block weighing matrix, during the transition to a

B Fig. 5. Unsymmetric matrix Hy,,

s 24

B Fig. 3. Portraits of two matrices H;g with symmetric

B Fig. 6. Portraits of matrices W,, and H,,

B Fig. 4. Portraits of matrices W,,and H,

B Fig. 7. Portraits of matrices Wyg and Hyg
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Hadamard matrix, does not require that the order
is doubled. Actually, it is a general rule, because
when the order is doubled, we go exactly to a four-
block structure, found here in a slightly different
form with respect to Wy,. It is followed by a weigh-
ing matrix Wyg which does not contain anything
new or unexpected; by doubling the order, it pro-
duces a Hadamard matrix Hyg. These two matrices
are shown in Fig. 7.

Extended Ryser’s Bound and
its Generalizations

The episode with critical order 24 shows that
matrix structures can become more complex. In
what follows, we confirm the result obtained in
[13] as on order 32 we again meet a doubly sym-
metric Hadamard matrix of an order of Silvester’s
sequence. For reference, a structure which is not
doubly symmetric is shown next to it in Fig. 8.
Remember that the known two-circulant Golay’s
matrices are not symmetric.

Analysis has shown that order 32 describes the
generalization of Ryser’s conjecture for two-circu-
lant structures. Beyond this order, it is impossible
to obtain a Hadamard matrix in two-circulant form.
Nevertheless, our experience with searching for
symmetric structures by a determinant optimization
program shows that symmetric codes still have some
safety margin: a doubly symmetric weighing ma-
trix Wy, By doubling its order, you can turn it into
a symmetric Hadamard matrix H;, shown in Fig. 9.

This additional experience supplements the esti-
mation of Ryser’s bound for two-circulant orthogo-

nal matrices performed in [13] by new details about
weighing matrices.

Two-circulant matrices H,, and Hy, are not ma-
trices of Silvester’s type. They belong to sequences
of unsymmetric matrices of 20-fold and 52-fold or-
ders (Fig. 10).

The new doubly symmetric weighing matrix W;,
we have found can produce, through doubling its
order, a nearly symmetric Hadamard matrix H,,
shown in Fig. 11. In other words, from the viewpoint
of searching for symmetric matrices, this family is
preferable, being considerably different from Mark
Golay’s two-circulant matrices. Golay’s sequences
of orders 2, 10 and 26 producing Hadamard ma-
trices of orders 4, 20 and 52 yield unsymmetric
codes, so their practical alternative can be sym-
metric codes of weighing matrices of respective or-
ders.

The symmetry of orthogonal matrices on the
specified orders and the very fact of their exist-
ence is a subject of modern studies. According to a
new assumption which resulted from considering a
chain of two-circulant Hadamard matrices, order
64 is a key for checking the extended conjecture.

B Fig.8. Two matrices Hgy

B Fig. 9. Portraits of matrices Wyg u Hyy

B Fig. 12. Symmetric and unsymmetric matrices Hg,
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Order 64 is the simplest one for search and sym-
metry check of Hadamard matrices from Silvester’s
sequence. For this order, we have identified the
symmetric four-circulant matrix shown in Fig. 12.

If a symmetric two-circulant matrix Hg, does
not exist (which is confirmed by our experiment
on searching, with a formal algorithm, for matri-
ces optimal by determinant), then on higher orders
there are no symmetric two-circulant matrices.

Chains of Golay’s matrices Hyy — H,y —... and
H,, — H,,, —... of 20-fold and 52-fold orders are ap-
parently unsymmetric.

Algorithm Scheme

Fig. 13 shows a simplified scheme of the algo-
rithm developed by the authors. It consists of three
sequentially performed blocks (from left to right):

— two-circulant matrix generator;

— cross-accumulator which provides the possi-
bility for the matrices to swap their parts A and B;

— two-circulant matrix determinant optimizer.

With software implementing the proposed algo-
rithm, you can control the optimized determinant
and visually control the structure of the resulting
matrix.

The determinant optimizer is fully considered
in [16] and will not be discussed here. We will only
note that it is a novel scheme, not like any other one
widely known from the numerical analysis litera-
ture. It optimizes not the determinant calculation
algorithm, but a matrix with n2 elements.

A matrix with a two-circulant structure has a
stable local determinant, because to let the itera-
tions go to the absolute maximum, you would have
to rebuild the rigidly specified initial structure. It
is much easier to convert the matrix elements 1 to 0
or —1, providing that the result is fixed in the form
of a Hadamard matrix or weighing matrix if they
exist. This scheme can easily be transformed for
tetracycle search.

The cross-accumulator is a block which signifi-
cantly reduces the time cost of generating the nec-
essary initial matrices. At this stage, the blocks A
and B can be relatively random, and the combina-
tional circuit which allows the initial matrices to
swap their already generated parts saves the com-
puting resources. Besides, the matrices accumulat-

Matrix
of the optimal
determinant

B Fig. 13. Algorithm scheme

ed in the database can be cached, being spread over
buffer zones according to the value of a certain
cache function. Blocks which considerably differ
from each other are filtered and never come to the
cross-accumulator input together.

These preliminary measures enrich the output
of the cross-accumulator, giving the optimizer the
material it needs. Such an algorithm can be imple-
mented in several languages. We have developed
software versions in C++, Pascal and Javascript.
Each of these versions has its advantages.

The implementation in C++ is the fastest one
but needs a heavy compiler and is not suitable for
all computers. The Pascal implementation is slower
but more universal; it can be run under any version
of Windows starting from XP. The Javascript im-
plementation within mathscinet.ru international
mathematical network is available for wide circles
of scientists and researchers from different coun-
tries, as well as for students studying orthogonal
transformations.

Javascript software has another implicit advan-
tage: it provides the opportunity for a wide circle of
users to modify the underlying algorithm. This is
very valuable in a research when you need to mod-
ify both the algorithm and the construction of the
calculated matrix.

Apart from the cyclic array form, there is its neg-
acyclic form, when during a shift of a block row its
last pushed-out element is carried to the beginning
with its sign inverted. Besides, the size of a two-cir-
culant matrix can be reduced by several elements
using the matrix border distinctive in its wide vari-
ety of implementation. Most commonly, Hadamard
and weighing matrices have structures with unary
or binary border, leading to a multi-block imple-
mentation of the matrix core. Studying the cores
can explain on which structure the absolute deter-
minant maximum is attainable and where it goes to
from a two-circulant structure with buffer zeros.
However, the search for universal cores of orthog-
onal matrices is beyond the scope of this research.

The Novelty of the Results

Hadamard and weighing matrices are an object
of intensive studies because of their application in
information processing; in particular, image pro-
cessing. New facts are regularly discovered: for
example, an exhaustive search for rows in weigh-
ing matrices with a single zero (Belevitch matrices)
showed recently that these matrices do not exist in
a two-circulant form on order 66. The same, accord-
ing to some experimental results, if true for order
86. These orders follow each other with a step of 20.

On order 46, Maton’s result is widely known. He
found a solution in the form of a five-block matrix:
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in two of these five, not elements are shifted but en-
tire sequences of elements. These results are very
valuable because forms of matrices with an abso-
lute determinant maximum are not theoretically
known, and the discovery of Belevitch matrices of
orders 66 and 86 stimulates the research in this
field. So far, the question about what Maton’s struc-
ture turns into when the order increases by 20 has
no answer, either.

Studies of weighing matrices have been focused
mostly on forms with many zeros. Considering
them a natural supplement to two-circulant
Hadamard matrices when the latter do not exist
is a new approach. Especially new is the idea that
they expand symmetric structures, because the
extended Ryser’s bound as such, up to order 32,
was discovered and studied quite recently, with
the use of supercomputers in a scientific centre
in Canada. Hence, the results of our experiment
introduce a significant correction to this knowl-
edge of two-circulant matrices, showing what a
symmetric structure turns into when it cannot be
embodied in the form of matrices with elements 1
and —1.

The discovery of symmetric two-circulant weigh-
ing matrices W(n, n—2) on orders of Hadamard
matrices n = 4t makes them available for practical
applications and poses new theoretical problems:
in particular, what Ryser’s bound is for weighing
matrices. Symmetric weighing matrices with two
zeros supplement symmetric Belevitch matrices in
the sense that in both cases they are a source for
Hadamard matrices of a doubled order. Finite field
theory receives a new application domain here, as
we have to find out how to calculate these new ma-
trices; sometimes, for very high orders.

For video information coding systems, the
two-circulant scheme is good because it is relative-
ly simple to implement. Omissions of two-circulant
Hadamard matrices caused unnecessary problems
for the applications in passing to tetracyclic con-
structions. In other words, the results of the re-
search in this area seriously affects the efficiency
of the applications.

Some Applications for Visual Information
Transmission Systems

The transmission of visual information, i.e. im-
ages or frame-by-frame video, is an integral fea-
ture of territory monitoring systems, multifunc-
tional registration systems, distributed industrial
systems, security surveillance systems, and other
systems which use open networks to build their in-
frastructure. The information transmitted in such
distributed video systems, even not top-secret in-
formation, needs to be protected from unauthor-

ized access, distortion in the communication chan-
nels or substitution.

Generally, the process of protecting visual in-
formation goes as follows. At the transmitting
side of a distributed system, the protected infor-
mation is shaped. Then it is directed to a commu-
nication channel where it may become a target for
the above-mentioned threats. At the receiving side,
the protected information is recast into the initial
form, along with finding out whether it has been
distorted by noise or deliberately changed by a third
party. Depending on the implementation of the
method and circuitry, the visual information can
come to the receiving side either with or without
losses.

An effective way to protect visual information
from unauthorized usage is the method of bilater-
al matrix masking [17]. According to it, an image
(frame) P at the transmitting side is masked by an
orthogonal Hadamard matrix as Y = H'PH. Such a
transformation visually destroys the image down to
a level similar to noise, with computing cost much
smaller compared to coding methods. This allows
you to mask images (video frames) in real time, as
fast as they come from the video camera matrix.

The shaped and masked image Y is passed
through the communication channel to the re-
ceiving side where it undergoes a reverse bilateral
transformation in order to obtain the initial image
according to the expression P = (HY) 1'YH 1.

The use of orthogonal Hadamard matrices
H (H!=H") simplifies the computing down to
P =HYHT. In this case, the reverse transformation
repeats the direct one with a precision of transpos-
ing the masking matrix; also, there is no need to
separately store or calculate the reverse matrix:
this saves memory when the method is implement-
ed within the system. The next advantage can be
provided by switching to Hadamard matrices with
symmetric structures [18] for which the amount of
the stored data to produce an order-n Hadamard
matrix of circulant or two-circulant structure can
be no more than n elements, as many as one row of
a matrix.

In a similar way, we can implement the method
of noise-proof image coding used in data trans-
mission systems when the ratio signal/noise is low,
known as strip transformation [19]. However, for
this transformation two different orthogonal ma-
trices are used (those of premultiplication and post-
multiplication), and the multiplication itself yields
Kronecker product, adding small extra computing
cost with software implementation of the method,
as compared to masking.

In order to prevent image substitution or chang-
ing, the procedure of introducing digital water-
marks can be applied, with the use of Hadamard
transformation [20].

Ne3,2008 N\

VNHOOPMALIVIOHHO-YMNPABASIIOLLIVE CUCTEMBI N\ 7



4 TEOPETVHECKAS! Y NPUKAAAHASI MATEMATUKA /

Conclusion

The principal question of Ryser’s theory about
two-circulant Hadamard matrices is determin-
ing the maximum achievable order of symmetry
and the form of symmetric matrices which are ex-
ceptions. For example, the conference matrices of
Maton’s construction found for order 46 already
have non-circulant blocks in their structure.

If there are no symmetric two-circulant struc-
tures, and Golay’s codes produce only unsymmetric
blocks, then the source for symmetric Hadamard
matrices of orders higher than 32 will be two-circu-

lant and four-circulant weighing Seberry matrices
with two zeros on their diagonals.

The extension of Ryser’s conjecture can explain
the peculiarities of the order alteration followed
by Hadamard matrices and weighing matrices. It
can also explain the difficulties experienced when
searching for matrices of Hadamard family and
symmetric conference matrices.

The work has been carried out with the sup-
port of Ministry of Education and Science of the
Russian Federation for research within the devel-
opment part of the scientific governmental task
#2.2200.2017/4.6
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JAByIuKJINYeCKUe MaTPUIbl AfaMapa, B3BelIeHHbIe MaTPUILBI U runore3a Paiizepa
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Beemenne: maTpuIbl AfaMapa u B3BeIlIeHHbIE MATPUILLI 00Pa3yIoT eJUHOe CEMEHCTBO, IPUUYEM CBOMCTBO IIOCIEIHUX 3aIl0JHATD IIYCTO-
THI MATPUYHOI'O IIPOCTPAHCTBA ITOCPEACTBOM O0HYJIEHUS YaCTH 3JIEMEHTOB U3YYEeHO HeJ0CTaTOUHO moaHO. Ilens: vuccieqoBanme BINSHUS
TMOPAAKOB OPTOTOHAJIBHBIX MAaTPUIL, UCIOJIb3YEMBIX I 00pab0TKY MHGOPMAINY, HA UX CTPYKTYPY. Pe3yabTaThi: pACCMOTPEHO pacIIupe-
HUe runoTess! Paiizepa, TPaKTYyIOIE KpUTHUECKHUE AJIs IUKJINUECKUX MaTPUIl AfamMapa opAgKY, Ha MAaTPUITLI AjaMapa 1 B3BeIlleHHbIe
MATPHUIILI, COCTOSAIME U3 JBYX UKJINYECKUX 6JI0KOB. IIprBeeHbl IpuMepbl MaTpull AramMapa, PaciInpeHHbIX O BhISBJIEHHBIX HA HOBOM
KPUTHUUECKOM IIOPSAAKE, pPABHOM 32, C CHMMETPUYHBIMU OJIOKaMu, U 60Jiee BBICOKUX IMOPSAAKAX — C HECUMMeTpUYHbIMU GoKamu. IIpex-
CTaBJIEHBI UepeAyIIrueca C MaTPpUIlaMu A/:[aMapa 1 3aMEeHAINNEe UX IBYIIUKJINYECKNE B3BEIIIEHHbIEe CUMMETPUYHbBIE 1 HECUMMETPUYHEBIE
marpuisl. [IpuBesier ciaydaii-ucKJIOUeHe — TOPALOK 24, Ha KOTOPOM HeT ABYIIUKJINUYECKUX MaTPUIl AgaMapa U B3BeIIIeHHbIX MaTPUII,
YTO BBIHYKJIEHHO IIEPEBOJUT PeIlleHe 3aJaut K YeThIPeX0JI0YHBIM KOHCTPYKIIUAM. OTMeueHa 0cobasd TnHUA MaTpuIl AfaMapa HOPALKOB,
KpaTHbIX 20 11 52, BEIZIEJIEHHBIX CPEIU OCTAJIBLHBIX MAaTPUI] aCUMMeTpueii cBoux 010K0B. CHOpMYTMPOBAaHO HOBOE IIPEAIIOIOKEHNE O KPU-
TUYECKOM mopsaake 64.
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