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Introduction: The olfactory system in chronic animal experiments is studied according to the records of bioelectric activity
recorded with microelectrode arrays located on the dorsal surface of the olfactory bulb. It is believed that the response of the
olfactory bulb bioelectric activity to the odorant presentation is associated with fluctuations synchronized by respiration and
belonging to the range of so-called gamma rhythms. Purpose: To develop a method of automatic search for time boundaries of
odor-induced gamma rhythm patterns in the bioelectric activity of an olfactory bulb. Results: The complexity of automatic search
for odor-induced patterns are due to masking them by spontaneous oscillations of gamma rhythms unrelated to the olfactory
system activity. Besides, the modal frequency of the patterns is a priori unknown and changes dynamically during an experiment
on an anesthetized animal. The Hausdorff distance is used as a cost function of the search. In order to increase its sensitivity,
an adaptive band-pass filter was synthesized based on a multichannel singular spectrum analysis. Its passband in the analyzed
time sample corresponds best to the spectrum of the required patterns. The results of experiments on rats are presented. The use
of band-pass filters based on the Fourier transform with parameters unchanged during the experiment due to the non-stationary
nature of the frequency characteristics of the desired patterns does not ensure their effective search. In particular, when using the
Butterworth band-pass filter in the search algorithm, significant errors were observed in determining the time boundaries of the
epochs of patterns, and omissions of patterns. But the use of a synthesized adaptive band-pass filter provided reliable automatic
search for patterns and determination of their time boundaries with a high accuracy. Algorithm failures in this case were observed
only in rat motion artifacts. Practical relevance: The developed method extends the existing tools used to study the olfactory
system of a living organism.
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Introduction

Experimental studies of the olfactory system in
chronic animal experiments presume the analysis of
multidimensional time records of bioelectric activ-
ity (BEA) of the olfactory bulb (OB), recorded with
microelectrode arrays. The observed BEA reflects
the averaged aggregates of synaptic, neuronal, and
axonal activities of neuron groups which represent
the functioning of the neural network in the volume
of tissue [1, 2]. The difficulties of the research in
this case are mainly due to the fact that the appli-
cability of the event-related potentials (ERPs), a
well-proven method in studying other sensory sys-
tems, is fundamentally limited here. Classically,
the ERPs method is based on a dogma that there is
a certain synchronizing factor, a stimulus label. In
experimental studies of the somatosensory, visual
or auditory system of a living organism, the time
moments of their external influences are known
quite accurately. This allows us to reasonably sum-
marize a large number of EEG fragments which

immediately follow the presentation of a stimulus,
reflecting a weak BEA response from the organ-
ism. Thus, averaging the selected epochs by their
implementations makes it possible to pick out ERPs
components in the EEG against the background of
other oscillations unrelated to the BEA response of
the sensory system under study.

In the olfactory system, the main synchronizing
factor is the moment of inhalation. Normally, respira-
tion is characterized by variability in frequency and
depth of inhaling [3]. Respiratory activity patterns
affect the temporal structure of the sensory input and
subsequent processing in the brain [4], amplifying
the modulation of the incoming sensory signals [5].
Such variability, especially taking into account the
weak reaction of the olfactory system to a low concen-
tration of odorants makes it impossible to accurately
determine the initial moment of the organism’s reac-
tion and, thus, to perform multiple summation of the
response ERPs. Besides, the latency (duration) of a
reaction to the presentation of odorants in the BEA
structures of an OB is still unclear; this reaction is
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determined both by changes in the air concentration
of the odorant and by the adaptation of the olfactory
system to the presented odorant at different levels of
its organization, or by other reasons.

The activation mechanisms and information
coding principles used in the olfactory system are
not fully understood yet, unlike the other sensory
systems. At present, it is generally accepted that an
OB, when an odorant is presented, produces a BEA
response associated with fast gamma oscillations
synchronized with the respiration and related to the
frequency range 30—-150 Hz[1, 2, 6]. The difficulties
in the automatic search for epochs containing such
odor-induced gamma rhythm patterns are caused
by the following reasons. The activity pattern has
a narrow-band spectrum within 30-150 Hz, and
at certain moments of observation the spectrum
width can be only 20—-35 Hz. Moreover, its modal
frequency is not only a priori unknown; it is also not
constant, dynamically changing during the experi-
ment, in particular, on an anesthetized animal. The
pattern duration is 20-25% of the respiration peri-
od, falling on the final phase of the inhalation, and
the amplitude is only 10-30% of the recorded BEA
record amplitude. Thus, odor-induced patterns are
masked by other rhythms of a close frequency range
which have a significantly higher amplitude, and by
spontaneous gamma oscillations of a strong intensi-
ty with close frequency spectra.

The existing approaches to solve similar prob-
lems of search and time-axis localization of a pri-
ori undefined structures of unknown frequency
oscillators are well developed. For example, there
is a widely used technique which, through win-
dowed Fourier transform, or through discrete or
continuous wavelet transforms, turns a temporal
representation into a time-frequency one, and runs
a search based on various entropy criterion func-
tions. Such methods were used in the problems of
identifying the effects of alcohol on EEG [7], as-
sessing cardiac rhythm irregularities by ECG [8],
diagnosing epilepsy [9], and others.

However, it is the temporal non-stationarity in
the frequency characteristics of gamma rhythm
patterns that makes it impossible to use many of
the existing approaches for their search. For exam-
ple, the authors of [10, 11] discuss methods which
allow you to detect low-intensity gamma oscilla-
tions in EEG when their frequency spectra are al-
so unknown and close to the characteristics of the
noise components. But the additional criterion
functions introduced here in order to select the fre-
quency range most suitable to the spectrum of the
sought patterns can be used only if the frequency
characteristics of the patterns are stationary over
the observation interval.

Therefore, in order to expand the available tools
for studying the olfactory system by a recorded

BEA, we need a method of automatic search for the
time boundaries of odor-induced gamma rhythm
patterns.

Formalization of the problem

Using the microelectrode array on the dorsal sur-
face of an OB, at time moments ¢ € [t,; T'] we record
a multidimensional time series of BEA S(¢) = (S,(?),
Sy(@), ..., S;(E)T, where tyis the initial moment equal
to zero by default; T is the current sampling inter-
val; J is the number of electrodes in array; and Tis a
transpose operator. Thus, for a sampling interval T

at each jth ( j :I,_J) channel of array, the observed
BEA can be presented as a one-dimensional time se-

ries S; (T)= {sj,k }kK=1 as large as K = T'/ At numbers,

where At is the discretization interval. At short
time intervals significantly smaller than the sam-
pling interval T, the presence of periodic odor-in-
duced BEA is assumed, manifested in the form of
low-amplitude patterns. The frequency spectrum of
the narrow-band patterns is unknown beforehand;
it refers to the range of 30—150 Hz, changing dy-
namically during the experiment. The problem is to
find temporal epochs in the recorded signal which
would contain such patterns.

Synthesis of an adaptive narrow-band
band-pass filter

To solve the problem, it is reasonable to use the
traditional approach when the search is performed
within a certain sliding time window, much smaller
than the sampling interval T. The criterion function
for that should reflect the presence or absence of the
desired gamma rhythm patterns in the current win-
dow. Apparently, ensuring a sufficient sensitivity of
such a function when searching for low-amplitude
patterns is possible on the basis of preliminary fil-
tering of multidimensional BEA records in order to
select the frequency range of interest. Experimental
studies have shown that due to the presence of noise
in the BEA records with frequency spectra close to
the spectra of the sought patterns, the use of band-
pass filters (BPF) with a priori specified parameters
does not ensure that the criteria search functions
are sensitive enough. In the multidimensional signal
S(#), we need to pick out a narrow frequency range
which would most closely match the spectrum of the
sought patterns. Besides, it should be taken into ac-
count that the synthesized BPF must be adaptable to
temporary fluctuations in the frequency character-
istics of the sought patterns.

In order to synthesize a BPF that meets the for-
mulated requirements, it is a good idea to apply
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the technique of Singular Spectrum Analysis of
time series (SSA), also called “Caterpillar” in its
Russian version [12—14] or, in the multidimension-
al case, MSSA (Multichannel SSA). It allows you to
synthesize a set of one low-frequency filter (LFF)
and (M — 1) linear BPFs. After applying the MSSA
technique at a sampling interval T (see Appendix),
we can use a set of M filters to split a multidimen-
sional record S(T') into M time series, so-called re-
constructed components (RCs), of the same dimen-
sion J x N, as the original record S has:

$1(1)=(S11 San - Ssa) s o

Su(T)=(Sum Som Ssm )T . ey

The frequency spectra AFy, ..., AF;; of the RCs
(1) are sorted in ascending order, and the upper
boundaries of the spectra satisfy the inequality
i <fy <---<fyr, where fy; =0,5f;; f,=1/At is the
sampling frequency. The sum of the narrow-band
RCs is the initial multidimensional time series

S1(T)+Sa(T)+ ... +Sp(T)=S(T). 2)

Varying the number of filters M leads to chang-
es in their passbands. The frequency spectra AFy,
.., AF,; of the RCs change in a similar way (1).
Therefore, when varying M based on the features
of the signal under study and selecting the required
RCs (1), we can separate the harmonic components,
even those which intersect in the time-frequency
space [15-18].

In order to simplify the synthesis of the required
BPF, let us restore the narrow-band signal by just
one multidimensional reconstructed component
S (T) (m=1, M) from (1). In [12, 17, 18] it is
shown that the number M can be constrained by an
upper limit M, < 0,5N,,. Since it is known that the
largest possible width of the sought patterns cannot
exceed 35 Hz, we also can find a lower limit M, .
The following reasoning will help us reach our goal.

It is known that M<J counts of the eigenvector V,,
of the averaged sample correlation matrix C (A.2)
formed from the trajectory matrix X(T') (A.1) for
S(T) are MdJ counts of the impulse response func-

tion h,, of the non-recursive mth (m=1, M ) fil-

ter [18]. The frequency response H,, is a Fourier
transform of the impulse response function
Hy (€27 ) = 3 M0y e 27, where £ < [0; 0,5]
is a reduced frequency, and the frequency response
of this mth filter is a function of the number of fil-
ters M used in the MSSA:

A, :‘Hm (e727 )\ = A (f's M). 3)

Since for a given M the width of the effective
passband AF, (M) =fY — f!is the same for all the
BPFs [12-14], where f¥ and f/! are the upper and
lower cut-off frequencies of the frequency response
(3), the value of M, ; can be found from the condi-
tion

M i, =argmax{AF,, (M)<35}.
M

With the reduced frequency step ' = 1/f; chosen
in (3), we can calculate the values of the frequen-
cy response A, (f, M) in the actual frequency range
f € [0; 0.5f,] with 1 Hz resolution. Thus, when M is
selected in the range M, ; <M <M, _, the effec-
tive passband width of each BPF will approximately
correspond to the a priori known width of the gam-
ma activity pattern spectrum.

Due to the fact that the components S;(T), ...,
S;(T) of a multidimensional BEA S(T') measured on
aliving organism on J channels in array at the same
time moments are produced by the same physiolog-
ical process, it would be permissible to average the
corresponding counts of the power spectrum (PS)
for the channels in the frequency range of interest:

J
P(f)=§zle(f); fe[30; 1501 Hz,  (4)
]:

where Pj(f) are PS values of a one-dimensional
K
signal {s]-,k }k—l for each count of frequency f. It

should be noted that averaging over J channels of
the similar on time k*h counts of the components

K
{sf’k}k—l with the subsequent calculation of the PS

function is incorrect since, as we know, some of the
J one-dimensional time series of the BEA can be
recorded inverted.

Frequency responses of the BPF (3) have a Gaus-
sian shape [13]. Apparently, for an adaptive BPF,
the frequency f'#* corresponding to the maximum
of its frequency response AM2* at every moment of
the observation should be close to the current mod-
al frequency fymax = argmax{P(f); 30<f< 150}

f
of the sought gamma activity pattern. Hence, the
characteristics of the required mt* BPF should be
such that the averaged PS function

. 1.
Pm(f)zjzpm,j(f) ()
j=1

of the RC S,, (T) comes nearest to the PS function
P(f) (4), where f € [30; 150] Hz.

Based on the presented reasoning, we can make
a final conclusion that if the optimal values of M,
and Mt should be chosen from the condition
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5 2
min P(f)-P,(f, M)| +;
My SM<My {3037‘3150[ " ]
nr;1aX —> fymax ’ (6)

then the spectrum of the BPF output signal S, (T)
most closely matches the spectrum of the sought
gamma activity patterns.

Criterion function and algorithm
of search for gamma activity epochs

Within the reconstructed narrow-band compo-
nent S, (T), the search for epochs with gamma ac-
tivity patterns can be based on the comparison of
two adjacent non-overlapping time samples N and
N+ 1 (where N=1, 2, ..., K/n is the sample num-

ber), equal in volume and each containing n << K
Nxn
similar on time counts {(§m ) k} and
(N+1)><n I k:(Nfl)xn
{(§m) k} from each j** channel. If a pattern
DR p=Nxn

is present in any of these samples, this fact should
be reflected by a corresponding criterion function.
Thus, with the resolution of n counts, you can de-
termine the time boundaries of a pattern begin-
ning or end. The choice of a criterion function is
determined by the choice of a metric. For example,
Hausdorff distance (HD) dj [19-21] is used quite
efficiently for the purposes of this kind. We will use
this metric here.

The algorithm for search and time-axis local-
ization of epochs containing low-amplitude nar-
row-band BEA patterns will finally be as follows.

1. On the sampling interval T with a sampling
frequency f, on J channel in array, we observe BEA

T
S(T):({sl,k}szl {32,k}kK=1 {SJ,k}szl) , which

is a multivariate time series of the dimension J x K.
The interval T is chosen to satisfy the hypothesis
that the frequency characteristics of the sought
patterns are stationary. Then we calculate the cur-
rent modal frequency fymaX(T) of the gamma activity
pattern.

2. With MSSA technique and a solution of the op-
timization problem (6), from the original record we
extract a narrow-band signal S, (T) of the same di-
mension J x K counts, whose spectrum most closely
matches the spectrum of the sought patterns.

3. The multidimensional series S,, (T) is divided
into K/n non-overlapping time samples of the same
dimensions J x n, and for all the adjacent time sam-
ples the Hausdorff distance d;; is calculated. The
size n << K of the sliding time window is chosen so
that the a priori known duration of the gamma ac-

tivity pattern is guaranteed to exceed the value of
nAt. Then, if any of the adjacent samples contains
an initial or final pattern border, the criterion func-
tion dj will have a local maximum.

4. Next, the subsequent K measurements of the
BEA S(T) are accumulated on the same interval T,
and the algorithm is repeated.

Experiments on rats

The experiments are carried out on sexually ma-
ture adult rats about 10 months old and 300—400 g
of weight, under xylazin-zoletil anesthesia at the
rate of 0.6 and 30 mg/kg respectively. 10—14 days
before the experiment, in the course of a surgical
operation, J =16 microelectrodes are implanted
into their olfactory analyzer structures. The mi-
croelectrodes are made of glass-insulated tungsten
alloy with a tip diameter of about 5 uym and resist-
ance 0.5 MQ. The BEA is recorded with respect to
two reference electrodes which are microscrews in
the skull bones. The microelectrode matrix is fixed
with six 0.7 mm bolts screwed into the skull bones.

The experiments are started after a complete
postoperative rehabilitation of the animal. Under
anesthesia, it is placed in a shielding chamber
eliminating background electromagnetic interfer-
ence. The BEA is recorded by a 32-channel MAP
(Multichannel Acquisition Processor) from Plexon
Inc. with a recording frequency of 10 KHz. After
that, the records are decimated by a factor of 10 to
the sampling frequency f, = 1 KHz. The duration of
the experiment is about 2 hours, during which the
16-channel BEA is continuously recorded. Olfactory
stimuli are given by spraying various odorants at
the animal’s nose. After the experiments are com-
pleted, the animal is carried back to the vivarium
for recovery.

Two time samples of BEA were obtained during
the same experiment but at its different stages and
their fragments for some of the J = 16 channels are
shown in Fig. 1, a and b. Each time sample contains
4 patterns associated with the activity of the olfac-
tory system structures. The graphs of d; search
functions calculated using the developed BPF or us-
ing the Butterworth BPF (BBPF) for the both time
samples of BEA are shown at the same figures. The
interval for analysis and the sliding time window
size are chosen equal to T=6 s, n = 100 ms.

Results and conclusions

Figure 1 shows that the sought patterns are
masked by spontaneous oscillations of the gamma
rhythm range and by high-amplitude alpha and be-
ta rhythms similar in their frequency spectra and
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B Fig. 1. Two time samples (a) and (b) of the bioelectric activity of an olfactory bulb and Hausdorff distances using BPF

and BBPF calculated for the both samples

unrelated to the olfactory system activity. These
facts, as well as the inversion of the multichannel
BEA signal in some channels, explain the low sensi-
tivity of the search function.

The research has confirmed that the use of band-
pass filters with parameters unchanged during the
experiment does not provide an effective search,

because the frequency characteristics of the sought
patterns are non-stationary in time. For example,
in Fig. 1 (the graphs “HD with BBPF”) you can see
that when the BBPF is used in the search algorithm,
there are gaps in patterns, and errors in determin-
ing the epoch boundaries. BBPF parameters (its
order and cut-off frequencies) were chosen in the
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beginning of the experiment. The “best on average”
BBPF in the experiment under discussion, using
which the time boundaries of the gamma rhythm
patterns were found with the least number of er-
rors, had an order 6 with cut-off frequencies 50 and
120 Hz.

For the two samples of the original BEA shown
in Fig. 1, a and b we calculated PS function P(f).
In Fig. 2, a the solid line shows the graph of PS
function calculated for the time sample of the BEA
from Fig. 1, a and in Fig. 2, b the solid line shows
the graph of the same PS function calculated for the
time sample of the BEA from Fig. 1, b. The graphs
show the PS components caused by the above-men-
tioned spontaneous gamma rhythms which are not
associated with the olfactory system activity. It can
alsobe seen how much, during the same experiment,
the modal frequencies f™2%(T') of odor-induced pat-
terns differ, equal to 106 and 83 Hz respectively for
the considered time samples.

On the other hand, the use of a developed adap-
tive BPF provides a reliable automatic search for
odor-induced patterns (see, for example, the graphs
“HD with the developed BPF” in Fig. 1). The time
boundaries of the gamma rhythm epochs are de-
termined with an accuracy not worse than 0.5nAt.
Algorithm failures in the experiments are observed
only in cases of motor artifacts, which significantly
distort the BEA records and are usually excluded
from the analysis.

The obtained effect can be explained by the fact
that a developed BPF provides filtering of S(T') so

that the output signal S, (T) has a spectrum on the

lated to the olfactory system activity. Due to this,
the search function has the required sensitivity.

A final conclusion can be drawn that the devel-
oped method provides a reliable real-time automatic
search for the time boundaries of odor-induced pat-
terns in a recorded BEA of an OB. The method can
be used in the studies of information coding in an
animal’s olfactory system.

Appendix. M SSA algorithm

1. By a measured multidimensional time series

T
S:({sl,k}iikl {Sz,k}kN:kl {SJ,k}kN:kl) of the di-

mension dim(S) = J x N,, you build a block trajecto-
ry matrix

X=(X; Xy .. X; .0 Xy), (A
where
Sj,l Sj,z sj,k Sj,K
S; S; S; S;
_ 7,2 7,3 j,k+1 7, K+1
Xj - : : : :
Si,M  Sj,M+1 Sj,M+E Sj,N,,

isaHankel matrix of thedimensiondim(X;) = M x K,
built for each j*® component separately; M is the
caterpillar length (embedding dimension); K =
=N, - M+ 1.

2. You calculate the restored matrix

analyzed time sample which most closely matches X(T)= % X,, (T), (A.2)
the current spectrum of the sought patterns. In mel
Fig. 2, a the dotted line shows the graphs of PS func- here
tion P, (f) calculated for the BEA from Fig. 1, a w
and in Fig. 2, b the dotted line shows the graphs X :( 5 P B )
of the same function calculated for the BEA from 1 L1 1.2 FALT )
Fig. 1, b. You can see that the developed BPF ad- X, =( o1 Xoo X, J)’ ,
justs itself to the current spectrum of odor-induced ’ ’ ”
patterns and excludes the signal components unre- X :( X M1 X2 X M, J)
a
’ 1RO B (1) . PSofaBEA Y
% pattern, and PS
BEA PS components | / of RC
caused by spontaneous
oscillations ;
30 50 70 91 111 131 f, Hz 30 50 70 91 111 131 f, Hz
fmax fmax

Y

B Fig. 2. Functions P(f) (solid lines) and ﬁm(f) (dashed lines) both calculated for the bioelectric activity shown in
Fig. 1, a (a) and for the bioelectric activity shown in Fig. 1, b (b)
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are block Hankel matrices generated by the
corresponding eigenvectors V, of an averaged
sample correlation matrix C = 1/K(XXT); V=(V; ...
V., « V) is an orthogonal matrix of eigenvectors
V., (dim(V,)) = (MJ)x 1) of the matrix C, built as a
result of ordering the eigenvectorsV,, indescending
order of their eigenvalues A; >%ky2>.. 2k, ;> 0;
C=VAVT is a singular value decomposition of
the matrix C; A =diag(X; A, ... A,;;) is a diagonal
matrix of eigenvalues. The blocks X , of the
restored matrices from (A.2) are calculated as
follows:

UMJ-M+1,MJ-M+1 P1L,MI-M+1 !
XLJ(T)z UMJ—M+2:,MJ—M+1 Pz,MJ:—M+1 :
UMJ,MJ-M+1 Pr,MJI-M+1
UMJ-M+1,MJ P1,mg
XM,J(T): UMJ—J\/:I+2,MJ _ Pz,:MJ ,

UMJ,MJ Pg,MJ
where p; 1, Pg1> - Pp oy are elements of a non-
centered principal components matrix.

3. The application of antidiagonal averaging
procedures to each of the matrices Xy, ..., Xy
(A.2) allows you to form M multidimensional nar-
row-band RCs S{(T), ..., Sy (T) (D).

T
V1,1 P11
5 Va1 P21
X1,1 (T)= N LI
vl ) \PK,1
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Beenenue: nsyuenue 060HATEIHBHON CHCTEMbI B XDOHMYECKUX 9KCIEPUMEHTAX Ha KMBOTHBLIX IIPOBOAUTCS II0 BAMIHCAM OMOIEKTPU-
YeCKON aKTUBHOCTY, PETUCTPUPYEMON C MCIIOIb30BAHNEM MUKPO3JIEKTPOJHBIX MaTPUI], PACIOJOKEHHBIX Ha JOP3aJIbHOU IOBEPXHOCTH
060HATEIbHON JTYyKOBULEI. CUunTaeTCda, YTO OTBETHAA HA IPEIbABIEHNE 0JOPAHTa 6109IeKTPpUUeCKasd aKTUBHOCTb O0OHATEIBHON JTYKO-
BUIIBI CBABAHA C KOJIEOAHUAMYU, CHHXPOHU3UPOBAHHLIMY ABIXaHUEM U OTHOCAMIMMUCS K AUANAa30HY TAK HA3bIBAEMBIX I'aMMa-PUTMOB.
ITesas: pagpaboTaTh METOJ aBTOMAaTUUYECKOTO ITIOMCKA BDEMEHHBIX I'PAHUIL TOZOOHBIX OJOPOJOTHYECKY BBI3BBAHHBIX IIATTEPHOB raMMa-pPUT-
MOB B OMO3JIEKTPUYECKOH aKTUBHOCTY O00OHATEJbHOH JIYKOBHUIIHI. Pe3yabTaThl: CIOKHOCTHA aBTOMATHYECKOIO IIOMCKA OJOPOJIOTUYECKH
BBIBBAHHBIX IIATTEPHOB 00YCJIOBIEHB MACKUPOBAHNEM UX CIOHTAHHBIMY OCIULIAIUAMA TaMMa-PUTMOB, He CBABAHHBIMY C [eATEJIHHO-
CTHI0O OOOHATEJIBLHOU cucTeMbl. KpoMe TOro, MomaspHad 4acTOTa MATTEPHOB AIIDUOPHO HEM3BECTHA U JUHAMHYECKYU U3MEHSAETCH B XOJe
9KCIIEpUMEHTa, B YaCTHOCTHU, Ha HADKOTU3UPOBAHHOM KMBOTHOM. B KauecTBe KPUTEPUATbHON (PYHKIMY IIOMCKA MCIIOJb30BaHA METPU-
ka Xaycgopda. B 1ensax yBenmdueHusa ee UyBCTBUTEIHLHOCTY Ha OCHOBE alllapaTa MHOI'OMEPHOI'O CUHIYJIAPHOTO CIIEKTPAIbHOTO aHAIN3a
CHHTEe3UPOBAH aJalTUBHBIN II0JIOCOBOM (DUIIBTD, II0J0CA IPOIIYCKAHUA KOTOPOTO Ha aHAIM3UPYEeMOl BpDEMEHHOU BHIOOPKE MaKCUMAaJIbHO
COOTBETCTBYET CIIEKTPY MCKOMBIX IaTTepHOB. IIpencTaBieHbl pe3yIbTaThl 9KCIIEPUMEHTOB Ha KpbIicax. [IpruMeHeHMe MOJI0COBBIX (DUIIB-
TPOB Ha OCHOBe IpeobpasoBanus Pyphe ¢ HEU3MEHIEeMBIMY B X0/ie 9KCIIEPUMEHTa IIapaMeTpaMy B CUJIY HeCTAIlIOHAPHOCTH BO BPEMEHU
YaCTOTHBIX XaPaKTEPUCTUK MCKOMBIX IATTEPHOB He o0ecueunBaeT a)(eKTUBHOIO UX MOUCKa. Tak, IPU NCIOJIb30BAHUY B JITOPUTME 10~
HCKa 1oJIocoBoro huabTpa BarTepBopTa HAOII0AINCh 3HAUNTEIbHBIE OIITUOKY B OIIPeleJIEHUY I'PAHUI, BDEMEHHBIX 310X IIaTTEPHOB, IIPO-
nycKu maTTepHOB. Vcmonb3oBaHue JKe CHHTE3UPOBAHHOTO aJAalITHBHOTO II0JIO0COBOr0 (hUIHTPA 00€CIeUnIO HaLeKHbIH aBTOMATUIECKUIT
IIOWCK IIATTEPHOB U OIIPeJieJIeHNe UX BPEMEHHBIX I'DAHUII ¢ BBICOKOU TOYHOCTHI0. COOM aIropuT™Ma B 9TOM CJIydae HaOII0JaIUCh JIUIIb IPU
JBUTATEJBHBIX apredakTax Kpbic. IIpakTHyeckas 3HAUMMOCTbh: Pa3paboTaHHBIN METO/| PacCIlUpseT CYIIeCTBYIOINI NHCTPYMEHTapuii,
IPUMEHSEeMBbIH 1) N3yUeHns 000HATEIHHOM CUCTeMBbI JKUBOTO OpPraHu3Ma.

KaroueBsie c10Ba — 060HATEIbHAA JYKOBUIIA, OM03JIEKTPUUECKAA aKTUBHOCTD, OJJ0POJIOTUYECKY BhI3BaHHBIE IATTEPHBI, METPUKA Xa-
ycropda, MHOTOMEDHBIN CUHTYJIAPHBIN CIEKTPAIBLHBIN aHAJINS.
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