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Introduction

Consider the boundary value problem of the type
Bu =Au - gF(Au) = f, D(B) = {u € D(A):
dw)=N¥w)}ueX,fey, (1)

where A is an ordinary differential operator;
F(Au) = col(F;(Auw), ..., F,(Au)) is a functional vector
representing the integral part of the integro-differen-
tial equation; g = (g3, ..., £,) is a vector; N — a constant
m x I matrix; @ = col(®y, ..., D, ); ¥ = col(¥y, ..., V) are
functional vectors with W(u) standing for the multi-
point or integral part of the boundary conditions.

Note that problem (1) describes the particular
case of the multipoint boundary value problem with
integro-differential equation (IDE) (see [1]) given
below

WM (x)+ 3" py(2)u ™) () +
+ZZOI:Ki(x, y)u(m_i)(y)dy=f(x);

Yo ™ (x7)+ (w, 04) =0,

E=1,.,s5@=xy<x;<..<x,,=0), (2)
where (u, ¢) is an integral part of the boundary
conditions. IDEs like (2) are investigated also in
[2]. In [1, 2] the existence theorem for (2) has been
proved. This problem is reduced to problem (1) if

s=m, v=0, K,(x, y)=gx)(yp,(y), i=0, 1, ..., m,
Po(x) =1 and "aki(’":ti:l =I,.

Indeed, then we can take

Au=ul™(x)+ 37 p; (x)ul™ ) (2);

O,w) =utW(xy),i=1, .., m,

v _JuP@, =1 m
W @y @)y i=m 41, ..., 2m|’

F(Au)= Ijh(y)[u(m)(yHZﬁlpi (y)u(m_i)(y)}dy and

N =—|aps, dp; "Zfiﬂ , 8 is a Kronecker delta func-
tion.

In this paper, we study the solvability of problem
(1) and analytically construct its solution. The pres-
ent work lies in the field of boundary value problem
for linear integral equations [3, 4]. In this setting,
problems are often too complex to be solved analyti-
cally and therefore numerical solutions are proposed
[5, 6]. Analytical solutions of a class of boundary
value problems, involving the governing differen-
tial equation or slight generalizations of the one
considered in (1), but with different and/or simpler
differential operators, have been proposed in [7—10].
Existence theorems for nonlocal multipoint bound-
ary value problem and IDEs via analytical methods
are given in [11-13]. Boundary value problems B:
X — X of the type of (1) for the specific case of [=n
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have been studied by Vassiliev, Parasidis, Providas
in [14, 15], using the extension method. The exten-
sion method is a generalization of the direct method,
which is presented in [4]. Here, problem (1) is inves-
tigated and solved for the case [#n, X # Y mainly
by functional transformations and by employing the
properties of linear operators. The results of this
method coincide with the results of [14, 15] for [ = n.

The novelties of the present paper are the fol-
lowing. First we address the local boundary value
problem of the type of (1) without restrictions to the
dimensions [, n, m; second, we assume multipoint
or nonlocal integral boundary conditions, which al-
lows us to consider a very large class of problems
for the equation (1). The ultimate result is the exact
solution of problem (1).

We describe now the setting of our approach. Let
X, Y be complex Banach spaces and X* the adjoint
space of X, i. e. the set of all complex-valued line-
ar and bounded functionals on X. We denote by f(x)
the value of f on x. D(A) and R(A) are, respectively,
the domain and the range of the operator A. The fol-
lowing definitions are extremely important in the
analysis of the next section.

Definition 1. An operator A, is said to be an ex-
tension of an operator A,, or A, is said to be a re-
striction of A,, in symbol A; c A,, if D(A,) > D(4,)
and A;x = Ayx, for all x € D(A,).

Definition 2. An operator A: X —» Y is called
closed if for every sequence x, € D(A) converg-
ing to x, with Ax, — f,, follows that x;, € D(A) and
Axy =1,

Definition 3. A closed operator A is called maxi-
mal if R(A)=Y and kerA #0. _

Definitign 4. An operator A: X - Y is called cor-
rect if R(A) =Y and the inverse A~ !exists and is
continuous on Y. .

Definition 5. An operator A is called a correct
restriction of the maximal operator A if it is a cor-
rect operator and A c A.

Basic notations. If ¥, € X, i=1, ..., [, then we
consider the functional vectors ¥ = col(¥;, ..., '¥)
and ¥(x) = col(¥;(x), ..., ¥)(x)). Let g =(gy, ... g,) be
a vector of X”. Hereafter we will denote by W¥(g) the
! x n matrix whose i, j-th entry ‘I’i(gj) is the value of
functional ¥, on element g Note that W(gC) = ¥(g)C,
where C is a n x k constant matrix. We will also de-
note by I, the identity n x n. By 0 we will denote the
zero column vector. We will denote by kerA the ker-
nel of an operator A.

Exact solution method for Fredholm IDEs

Suppose that A: X — X is an ordinary m-order
differential operator

Au(x) = agu™(x) + a,u™ V() + ... + a,,u(x), a, € R, (3)

X=Cla, blor X :LpA(a, b, p=1,z2=(21, 29, s 2,)) 2
basis of kerA and A be a correct restriction of A
defined by

AcA, D(A)={ueD(A):®(u)=0},

where the components of the f}_mctional vector
@ = col(®, ..., D), belong to [X w J and are biortho-
gonal to z4, ..., z,,. Everywhere below we denote by
X} =C™"[a, b] if X =C[a, b], or X =W,"(a,b) if
X =L,@a, b) and by [XZL T we denote the adjoint
to X Zf space, i. e. the space of all linear bounded
functionals defined on X'y. It is a well-known fact

that the operator A:C[a,b]—C[a,b] defined by

Au(x) = agu!™ (x)+ au ™V (x) +...+ apu(x) =1,
a; € R, x €[a, b], (6)]
D(A)=
:{u(x)eCm[a, b]:u(a):u’(a):...:u(mfl)(a):O},
ag#0

is a correct restriction of A and the unique solution
of ) forag=1,a;,=..=a,=0,a=0is

u(x):Alf(x):ﬁj.;(x—t)m_lf(t)dt,

f(x) € C[O, b]. (6)

Before we address the issue of finding the ex-
act analytic solutions of the Fredholm IDE, we will
mention briefly some properties of the linear opera-
tors of these equations.

Lemma 1. Let A be a differential operator de-
fined by (3), z=(2;, ..., 2,,) a basis of kerA, N a
m x | matrix with constant elements, the compo-
nents of a vector ¥ = col(¥;, ..., ¥) be functionals
on X, the matrix V= I,— ¥(z)N and the operator
C: X} — X} be defined by

Cu=u- zN¥Y®).

Then:

(i) The operator C is invertible if and only if
detV = 0;

(ii) the inverse operator C1v = v + zZNV 1¥(v).

Proof: Let detV+0 and u < kerC. Then
u—zN¥Yw)=0 and Wu-zN¥Yw)=0, Y@ -
- Y@NYw) =0, [I,- Y@N]¥®w)=0. From the
last equation since detV # 0 follows that ¥(u) = 0.
Substituting this value into u-— zN¥@w)=0 we
get u=0. Consequently, kerC = {0} and C is inver-
tible.
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Conversely, let detV = 0. Then there exists a vec-
tor ¢ # 0 such that Ve =0.

Consider the element u, = zNe. Note that uy = 0,
otherwise the linear independence of the com-
ponents of the vector z implies Ne=0 and then
Ve=[I,- ¥(z)N]c=c - W(@z)Nc=c—- 0=c=0. This
contradicts the hypothesis that ¢ #0. So, u,#0. We
will show that u, € kerC. Observe that Cu,=1u,—
— zN¥(uy) = zNc — zN¥(z)Nc = zN[I, - ¥(z)N]c =
=zNVe=2zN0=0. Thus u, € kerC and kerC = {0}.
Hence C is not invertible. So C is invertible if and on-
ly if detV # 0. Let Cu =v, i. e. u — zNW¥(u) = v. Then
Y(w) — Y(@N¥(w) =¥(v), or [I,- Y@@)N]¥() =¥(),
which implies ¥(u) = V" ¥(v). From the last equation
and u— zNW(u) = v follows that u=v +zNV¥(@v),
which yields u = C1v. The lemma is proved.

The next theorem is analogous to theorem which
has been proved in [8] when Fy, ..., F, are linearly
independent. This theorem is already proved for the
linearly independent set gy, ..., g,, though using a
different method. In addition, it is proved here that
the criterion for correctness of the operator B in [8]
coincides with the criterion for injectivity of B.

_ Theorem 1. Let X, Y be complex Banach spaces,
A: X —Y beacorrect linear operator, the function-
al vector F = col(Fy, ..., F,) € [Y']", a vector g = (g,
.., &) € Y" and gy, ..., g, is a linearly independent
set. Then:

(i) The operator B defined by

Bu :Au—gF(Au):f, D(B):D(A), feY (7)
is injective if and only if
detW =det[I, — F(g)] = 0. ®)

(ii) If B is injective, then B is correct and the
unique solution of (7) is given by

u=Bf =A’1f+(2f1g)[ln ~F(g)] 'F(f), fe Y.9)

Proof: (i) Let detW =0 and u=kerB, i. e.
Bu=Au —gF(Au) =0. Since g;e R(A) =Y, i=1,
..., 1, by using (7) we have F(Au)—F(g)F(Au =0
and [I,, —F(g)]F(Au) =0. Taking into account that
detW =0, frf)m the last equation we get F(Au) =0.
Then Bu=Au=0 and u=0. The last follows from

ker A = {0}. So kerB = {0} and B is an injective op-
erator.

Conversely. Let detW =0. Then there exists
a vector c=col(c;, .., ¢,)#0 such that We=0.
Note that gec#0 because g, .., g, is a linear-

ly independent set. Then uO:A_lgc;tO and
Bug = Aug —gF(AuO) =ge-gF(g)e=g[I,-F(g)]c=
=gWe=g0=0.

Hence up=A 'geekerB={0} and B is not in-
jective. So statement (i) holds.
(ii) Let detW = 0. Then from (7) we get

F(Au)—F(g)F(Au):F(f),

(1, -F(g)]F(Au)=F(F),
F(Au)=W'F(f) forall f e Y; (10)

u—A‘lgF(Au)=A—1(f). (11)

Substituting (10) into (11), we obtain the unique
solution (9) of (7) for all f € Y. Then R(A)zY. The

boundedness of B! on Y results from the bound-

edness of the operator A71 and the components of
vector F. Hence, B is correct.

Now we generalize this theorem for the case of
perturbed boundary conditions and dim kerA = m.
The next theorem is a generalization of the Theo-
rem 1 of [14] for the casel#nand X # Y.

Theorem 2. Let X, Y be complex Banach spac-
es, A: X - Y be an operator from (3) with finite di-
mensional kernel z = (21> > 2,,) which is a basis of
kerA, the operator A defined by (4) and the compo-
nents of the functional vectors @ = col(®, ..., D,),
Y= col(?l, .., ¥), and F = col(F, ..., F,) belong to

[XX} and Y* respectively. Suppose also that @,

..., ®,, are biorthogonal to z;, ..., z,, and the compo-
nents of vector g = (g3, ..., g,) € Y" are linearly inde-
pendent and N is a m x [ matrix.

Then: (i) The operator B defined by

Bu=Au- gFAu) =1, f e Y;
D(B) = {u € D(A) : ®(u) = N¥(w)} 12)
is injective if and only if
detV = det[I,~ ¥(z)N] = 0; (13)
detW = det[I, — F(g)] # 0. (14)

(i) If B is injective, then B is correct and for all
f € Y the unique solution of (12) is given by

u=Blf=Alr+ [A‘lg + zNV_l‘I‘(A_lg)} x
xWIR(F)+ 2NV (A7), (15)
Proof: (i) The problem (12) can be rewritten as

Bu=A(u - zN¥Y@)) - gFA[u - zNYW)]) =1, f <Y,
D(B) ={u € D(A) : ®(u — zN¥(u)) = 0}. (16)
Then u—-zN¥(u)e D(A), Bu= A(u - zN‘I’(u)) -

~gF(A[u-2N¥(u)])=f for every u € D(B). We in-
troduce the substitution v=u - zNW¥([u) or since
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Lemma 1, v = Cu, where we take C: X —» X, D(C) =
= D(B). It is evident that C is a linear operator and
R(C)c D(A). From (16) it follows that problem (12),
by the substitution v = Cu, is reduced to the problem

Bu=Bjv=Av —gF(Av) —f, veD(By)= D(A). an

Since v =Cu, from (17) we get Bu = B,Cu for all
u € D(B). Then B is injective if and only if B; and C
arealsoinjective. Note that the operator C, by Lemma
1, isinjective if and only if detV = det[I,— ¥(z)N] = 0.
The operator B;, by Theorem 1, where instead of B, u
we have By, v respectively, is injective if and only if
(8) holds. So the operator B is injective if and only if
(13), (14) hold true.

(ii) The unique solution of (17) by (9) forallf e Y
is given by

v :A‘1f+(A‘1g)W‘1F(f). (18)
Then
¥(0)=¥(A77)+¥(Ag)WTIR(F)  (9)

and since detV # 0, v = u — zN¥(u), by Lemma 1, we
get

u=Clv=v+zNV1¥(v)=
—Alfy (A’lg)W’lF(f) +

+ZNV! [‘P(A_lf)+‘P(A_1g)W_1F( f)} (20)

The last equation easily implies the unique solu-
tion of (12) defined by (15). The operator B;, by
Theorem 1, is correct. Then R(B;) =Y, whiqh since
Bu = Byv gives R(B) =Y. Since the operator A7l and
the functionals Fy, ..., F,, ¥y, ..., ¥, are bounded, the
boundedness of B! follows from (15). Hence, the
operator B is correct. This completes the proof of
Theorem 2.

Now, we implement the solution method of Theo-
rem 2 on two numerical examples, the first involving
a linear second order differential operator and the
other a linear forth order differential operator A.

Example 1. Consider the multipoint problem for
loaded differential equation on C[O0, 1]

u" — (3t3 — 20[w'(1) — u(l) + w(0)] =
= 613+ 4t + 4, 1)
u(0) = 2u(l) + u(0.5) — 2u'(1),
w'(0) = —u(l) — 2u(0.5) + 3u/(1).

All the assumptions of Theorem 2 hold and the
unique solution of (21) is

u(t) = 2¢2 — 5t + 3. 22)

Proof: If we compare (21) with (12), it is natural
to take X =Y =[O0, 1],

Bu=u"- (3t3 —Zt)[u’(l) —u(1)+ u(O)] =

=u" —(3t3 —2t)j;xu"(x)dx,

D(B)=
e (3 2 e

Au =u"(t), D(A) = {u € C?[0, 1]},
X% =C?[0,1,X=C[0,1, m=2,1=3,n=1,
z=(21,29)=(1,1), Au= Au,
D(A)={ueD(A):u(0)=u'(0)=0}.

The operator A is correct and, since (6), its
. | t

solution is A f(t):jo(t—x)f(x)dx. Further com-

paring (21), (23) with (12), we take g(t) = 3t3 — 2¢,

2 1 -2
ft) =—6t3 + 4t + 4, Nz[ j F(Au):\

1 n
= .[0 xu'(x)dx.

The solution method of Theorem 2 for problem
(21) is implemented in computer algebra system
Mathematica (v. 11.3) [16]. The Mathematica note-
book containing the solution method is available
upon request.

Even though Mathematica has a dedicated func-
tion to symbolically solve an integro-differential
equation (solves also Fredholm integral equations),
DSolveValue (new feature in Mathematica v. 11, see
https://www.wolfram.com/language/11/symbol-
ic-and-numeric-calculus/solve-an-integro-differ-
ential-equation.html?product = language), in this
example fails to give an output. Trying to take the
analytic solution with NDSolveValue instead, the
procedure gave a bunch of errors. Built-in function
NDSolve failed also.

In the Mathematica codes given below, we pro-
vide an overview of the symbolic computations we
employed for the illustrative Example 1. The com-
puter codes give to the reader a computerized ap-
proach along with the analytical one. All of the
commands have quite similar analogues in the case
of any order integro-differential equation. It is then
possible to create a script for solving this type of
integro-differential equations. Here, only the main
ideas and procedures for the solution are given and
the basic knowledge of how to use Mathematica is
assumed.

In Mathematica’s environment, we begin by
writing the functions that represent the structural
elements of the operator equation (21). Then we de-

-1 -2 3
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fine the functional vectors of the boundary condi-
tions. Functions and functional vectors are written
in a way to take various elements as arguments. In
Example 1, ¢t takes values from the interval [0, 1].
The criterion for injectivity of B that is tested and
verified is the only requirement to apply Theorem 2
and formulate the unique solution as in (15).

Mathematica code

in[*]: = (*definitions*)

in[*]: = (*Give the order m of the differential op-
erator A or the number of conditions or the dimen-
sion m of the functional vector ®%)

in[*:=m=2;

in[*]: = (*Give the dimension [ of the functional
vector W¥)

in[*: =1=38;
in[*]: = (*Give the dimension n of the functional
vector F¥)

in[*l:=n=1;

in[*]: = (*Define the structural elements of the
operator equation Au — gF(Au) = %)

in[*]: = (*F is the integral part of the IDE¥)

in[*]=F[function_|:= {Jﬁ x*functiond x

in[¥]: = fIt_]: = {~6%t3 + 4%t + 4}

in[*]: = g[t_]: = {8%t3 — 2%t}

in[*]: = (*Give the values of the variables in the
boundary conditions¥)

in[*]: =ti ={1, 0.5, 1};

in[*]: = (*Give the m x [ N matrix “nmatrix” such
that ®(u) = NVY(w)*)

in[*]: = nmatrix = {{2, 1, -2}, {-1, -2, 3}};

in[*]: = (*Give the functional vector ¥ such that
D) = NYw)*)

in[*]: = P[function_]: = {function/.t — ti[[1]],
function/.t — ti[[2]], D[function, t]/.t — ti[[3]]}

in[*]: = (*The solution method¥*)

in[*]: = W: = IdentityMatrix[n] — F[g[x]]

in[*]: = V: = IdentityMatrix[l] — Y[z].nmatrix

in[*]: = z: = Table[t!/il, {i, 0, m — 1}];

in[*]=inverse A[function_]:=

_ 1 It(t—x)m_l*functiondx
(m-1)170
in[*]: = (*Verify the assumptions of Theorem 2%)
in[*]: = (*Testing necessary and sufficient condi-
tions for operator Bu = Au — gF(Au) to be injective*)
in[*]: = Det[W]

out|*] :%
in[*]: = Det[V]
out[*]: =1.5

in[*]: = (*Testing the existence and uniqueness
criterion®)
in[*]: = If[Det[W]# 0 && Det[V]=0, “The IDE

has a unique solution”, “The solution is not unique”]
out[*]: = The IDE has a unique solution

2t2—5t+ 3
3.0

2.5
2.0
1.5
1.0

0.5

0.0 Ll P
0.6 0.8 1.0 ¢t

0 0.2

04

B Values for u(¢) over the domain [0, 1]

in[*]: = (*Here is the unique solution by the exact
solution method*)

in[*]: = solution: = Simplify[inverseA[f[x]] + (in-
verseA[g[x]] + z.nmatrix.Inverse[V].
YlinverseA[g[x]]]).Inverse[W].F[f[x]] + z.nmatrix.
Inverse[V].Y[inverseA[f[x]]1]

in[*]: = Print[“The exact solution of the IDE is”
Flatten[solution]]

{The exact solution of the IDE is (38.—5.t + 2t2)}

The graphical representation of the analytical
solution to this problem is shown in Figure:

in[*] = Plot[3 — 5t + 2t2, {¢, 0, 1}, AxesLabel — {t,
3 — 5t + 2t2)].

Example 2. Consider the multipoint problem for
differential equation on CJ[0, 1]

ul) (1) (¢ -4t +1)x
x_[;xu(4)(x)dx=—12t2 +48t+12, (24)
1(0) = 3u(1), w'(0) = —5u'(1) + u"(1),

U'!(O):—%u”(l), u"'(0) = 24u"(1) — 10u"(1).

The unique solution of (24) is
ut) =4 — 2. (25)

We solve problem (24) using the previous
Mathematica script, by changing only the input pa-
rameters m, [, n, F, f(¢), g2(t), N, (). The program
checks if all the assumptions of Theorem 2 hold and
the unique solution is determined explicitly in fi-
nitely many steps of computation, following (15).

Mathematica code

in[*] = (*definitions¥*)

in[*] = (*Give the order m of the differential op-
erator A / number of conditions or the dimension m
of the functional vector ®%)

in[*]=m=4;

in[*] = (*Give the dimension [ of the functional
vector V%)

in[*]=1=4;
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in[*] = (*Give the dimension n of the functional
vector F¥)

in[*]=n=1;

in[*] = (*Define the structural elements of the
operator equation Au = gF(Au) = %)

in[*] = (*F is the integral part of the IDE*)

in[*]=F[function_]:= {J; x*functiond x

in[¥] = flt_]: = {~12%¢2 + 48*¢ + 12}

in[*]=g[t_ 1:={t2— 4%t + 1}

in[*] = (*Give the values of the variables in the
boundary conditions¥*)

in[*]=ti={1,1, 1, 1};

in[*] = (*Give the m x I N matrix “nmatrix” such
that ®(u) = NV(w)*)

in[*] = nmatrix = {{3, 0, 0, 0}, {0, -5, 1, 0}, {0, O,
-1/5, 0}, {0, 0, 24, —10}};

in[*] = (*Give the functional vector ¥ such that
D) = NY@)*)

in[*] = Y[function_]: = {function/.t — ¢i[[1]];
D[function, t]/.t — ti[[2]], D[function, {¢, 2}]/.t >
— ti[[3]], D[function, {¢, 3}]/.t — ti[[4]]}

in[*] = (*The solution method*)

in[*] = W: = IdentityMatrix[n] — F[g[x]]

in[*] = V: = IdentityMatrix[{] — W[z].nmatrix

in[*] = z: = Table[ti/i!, {i, 0, m — 1}];

in[*]=inverse A[function_]: =

:;r(t —x)m_l*functiondx

(m—1)1’0
in[*] = (*Verify the assumptions of Theorem 2%)
in[*] = (*Testing necessary and sufficient condi-

tions for operator Bu = Au — gF(Au) to be injective*)
in[*] = Det[W]

4 19
out[*]="—
12
in[*] = Det[V]
., 648
out[*] =

in[*]: = (*Testing the existence and uniqueness
criterion¥®)

in[*]: = If[Det[W]# 0 && Det[V]#0, “The IDE
has a unique solution”, “The solution is not unique”]

out[*]: = The IDE has a unique solution

in[*]: = (*Here is the unique solution by the exact
solution method¥*)

in[*] = solution: = Simplify[inverseA[f[x]] + (in-
verseA[g[x]] + z.nmatrix.Inverse[V].
Y[inverseA[g[x]]]).Inverse[W].F[f[x]] + z.nmatrix.
Inverse[V].Y[inverseA[f[x]11]

in[*] = Print[“The exact solution of the IDE is”
Flatten[solution]]

{The exact solution of the IDE is t2(—1 + ¢2)}

in[*] = Expand[solution[[1]]]

out[*]=—t2 + ¢4

Conclusion

In the paper, an analytical method for giving
exact solutions for Fredholm integro-differential
equations is presented. This analytical method is
constructive in the sense that it allows to study the
unique solvability of the problem and analytically
construct its solution. A couple of numerical ex-
amples were solved by this method in Mathematica
software. Reproducibility of the proof is possible
through the Mathematica script.
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MeTton TouHOrO0 penieHus A1 HHTErpo-guddepeHuaIbHbIX ypaBHeHU Ppearoarma

K. 1. Tcunuka?, PhD, noment, orcid.org/0000-0002-9213-3120, ktsilika@uth.gr
ayuuBepcuretr Peccanuu, 38221, Bosoc, I'pertua

Beenenmne: 1rHeHbIe KpaeBhIe 3aJaUl ¢ HHTErPATLHLIMY TPAHUYHBIMY YCIOBUAME A8 Au(depeHnualbHbIX U HHTerpo-guddepen-
LUAJbHBIX ypaBHeHUI PpeAroabMa PeKO PACCMaTPUBAIOTCA B guTeparype. [lpeacrasiseTcs BaXHBIM UCCJeJOBaHUE UHTErpo-audde-
PeHIIUAJTBbHBIX ypaBHeHHﬁ C MHOTOTOYEYHBIMU UJIN HEJIOKAJIBHBIMU NHTEI'PAJIBHBIMYU I'DAHUYHBIMU YCJIOBUAMMU. I[ame AJIA z[mbd)epenun-
aIbHLIX yPaBHEHUI HOJyYeHNe TOYHBLIX PellleHHui ¢ MOJZ0OHLIMU TPAHUYHBEIMY YCJIOBUSAMHU ABJSeTCA HempocTol 3agaueil. Ilens: mouck
KPUTEPUsA CYII[eCTBOBAHUS U €IUHCTBEHHOCTU PEIIeHUN A OObIKHOBEHHBIX MHTErpo-auddepeHnna bHbIX ypaBHeHnT Ppearoabrma c
CeHapa6eJILHI;IM AAPOM W MHOTOTOUEUYHBIMU WJIN HEJOKAJIBHBIMU HMHTErpaJlbHBIMU I'DAHUYHBIMU YCIIOBUAMMU; pa3pa60'r1ca MareMarunue-
CKOH MeTOAWKH, Beqyllell K TOUHBIM aHAJIUTAYECKUM PelleHUAM 3aJaHHOTO ypaBHeHUA. Pe3yabTaThl: IJIA OJHOTO KJacca aGCTPAKTHBIX
OIEePATOPHBIX YPABHEHUT, YACTHBIM CJIy4aeM KOTODBIX ABJIAIOTCSI HHTErpo-auddepeHinaabHble ypapHeHus Ppearosbma ¢ MHOTOTOUEY -
HBIMU WUJIW HEJIOKAJIBHBIMU MHTETPAJbHBIMU I'DAHUYHBIMU YCJIOBUAMMU, IIOJIyUYEHBI KpHTepHﬁ CYIIIECTBOBAHUA U ETUHCTBEHHOCTHU TOUHOT'O
pellleHus U ero aHAJIUTHYeCKoe IpeCTaBIeHNe; IpeI0KeH IPAMON MeTO I, CAMBOJIMYECKH PeIIaoIii HoK06HbIe 3aJ1aUl, B KOTOPOM BCe
BBIUYMCJIEHUA BOCIIPOU3BOAVMEI B JIIOﬁOﬁ IIporpaMme CMMBOJIBHBIX BI)I‘{I/ICJIeHl/Iﬁ. ECJII/I II0JIb30BAaTEJIb YCTAaHABJIIMBAET BXOAHbIE IIapaMeTpPhL
" HAYaJIbBHBbIE YCJIOBUA 3aavul, BbIJEeJIEHHbIE€ KOMIIBIOTEPHBIE KOIABI IIPOBEPAIOT YCJIOBUA CYIIIECTBOBAHUA U €IUHCTBEHOCTU U '€HEPUDPYIOT
aHAJUTHAYECKOe pellleHue 3aaui. DTallbl PellleHUA IPOULIIOCTPIPOBAHEL IBYMS IIPpUMepaMu. B cTaThe HCIOJb30BAHO IPOrpaMMHoOe obe-
cneuenne CAS Mathematica.

KaroueBsie cioBa — KpaeBble 3afiaul, OOBIKHOBEHHBIE U depeHnalbHble YpaBHEHN, HHTErpo-quddepeHInajbHble YPaBHEHU A
®pearoabpMa ¢ cenapabelbHBIM SAPOM, MHOTOTOUYEUHbIe TPAHUYHBIE YCIOBUSA, HeJIOKAJbHEIe MHTerPAJbHbIe TPAHUYHEBIE YCIOBHUA, KOP-
PEeKTHBIE OIIepaTOPhI, TOUHbIE PEIIEeHUs.
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