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blocks and construct many examples of Hadamard matrices of this kind. In this paper we work with the cyclic group Zv of order v. 
For larger values of v we build the blocks Xi by using the orbits of a suitable small cyclic subgroup of the automorphism group 
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first examples of symmetric Hadamard matrices of order 236. A wide collection of symmetric and skew-symmetric Hadamard 
matrices was obtained and the corresponding difference families tabulated by using the symmetry properties of their blocks. 
Practical relevance: Hadamard matrices are used extensively in the problems of error-free coding, compression and masking of 
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mathematical network Internet together with executable on line algorithms.
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Introduction 

A Hadamard matrix is a {1}-matrix H of or-
der m whose rows are mutually orthogonal, i. e. 
HHTmIm, where Im is the identity matrix of or-
der m and T denotes the transposition. We say that 
H is a skew-Hadamard matrix if also H HT2Im. 
The smallest orders 4v for which skew-Hadamard 
matrices have not been constructed is 276. Since 
the size of a Hadamard, skew-Hadamard or sym-
metric Hadamard matrix can always be doubled, 
while preserving its type, we are interested mainly 
in the case where these matrices have order 4v with 
v odd.

One of the powerful constructions of Hadamard 
matrices is based on the well-known Goethals — 
Seidel (GS) array. For this construction we need a 
difference family (X1, X2, X3, X4) consisting of four 
subsets Xi of a finite abelian group G of order v. In 
addition to the basic condition    1 1– – ,i ik k v   
 ki|Xi|, which the parameters (v; k1, k2, k3, k4; ) 

of all difference families must satisfy, it is also 
required that .ik v    Following [1], we shall 
refer to the par ameter sets and the difference fam-
ilies satisfying this additional condition as GS-
parameter sets and GS-difference families, respec-
tively. By eliminating  from these two conditions, 
one obtains that
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If v is odd and one of the blocks Xi, say X1, is 
skew then we have k1(v – 1)/2. The meaning of 
X1 being skew is that G is a disjoint union of X1, 
–X1 and {0}. Given such a difference family we can 
construct skew-Hadamard matrix by plugging the 
matrices Ai associated with the blocks Xi into the 
GS-array. In the case when GZv, a cyclic group of 
order v, the Ai are circulant matrices. For instance 
the first row of A1 is the {1}-sequence (a0, a1, … , 
av–1) where ai –1 if and only if iX1.
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Constructing GS-difference families may be a very hard computational problem. For instance no such 
family is known when v167. However, the problem can be simplified to some extent by selecting a suita-
ble subclass of GS-difference families which possess more structure. One of such subclasses, known as pro-
pus difference families has been introduced recently [2] in order to construct symmetric Hadamard matrices. 
A GS-difference family (X1, X2, X3, X4) is a propus difference family if one of the blocks is repeated, say 
X2X3, and at least one of the other two blocks, say X1, is symmetric. Recall that X1 is symmetric if –X1X1.

In this paper we focus on a larger subclass of GS-difference families, namely the families having one re-
peated block. We shall assume that X2X3, and consequently k2k3. For convenience we may also assume 
that all ki  v/2. This is justified because replacing a block with its complement in Zv preserves the property of 
being a GS-difference family. One can impose further additional symmetry restrictions on some of the blocks 
in order to make the search easier. For instance we may ask that the block X1 be symmetric or skew, or that the 
repeated block X2 be symmetric or skew.

The existence question of propus difference families for odd sizes v  51 and all relevant parameter sets 
was addressed and resolved in the papers [3, 4]. The cases where all four kis are equal are exceptional and 
no propus difference families are known except when the kis are equal to 3 [4]. In the first section we ex-
tend these results to the case v53. The cases v55 and v57 have not been explored so far systematically. 
However, in both cases one propus difference family is known.

In the case v59 we have constructed six propus difference families. One of them has the parameter set 
(59; 23, 28, 28, 26; 46) and the other five nonnequivalent solutions have the parameter set (59; 27, 25, 25, 26; 
44). These solutions are presented in the next section. They are important because they provide the first ex-
amples of symmetric Hadamard matrices of order 236. The smallest order 4v for which symmetric Hadamard 
matrices are not yet known is now 260 (see [2]).

After that, in the subsequent three sections we consider the cases where the block X1 is skew, X2 is skew, 
X2 is symmetric, respectively.

Propus difference families for v53 

The class of cyclic propus difference families contains an infinite series to which, for simplicity, we refer 
as the X-series. It is based on the main result of the paper [6] of Xia M., Xia T., Seberry J., an d Wu J. These 
families exist when 4v – 13 (mod 8) is a prime power. The four circulants A1, A2, A3A2, A4 associated 
with blocks X1, X2, X3X2, X4 of the X-series can be plugged into the so called propus array, see (2), to obtain 
a symmetric Hadamard matrix of order 4v [2, 3, 7]. On the other hand, after a suitable permutation of the 
blocks, they can be also plugged into the GS-array to obtain a skew-Hadamard matrix of the same order.

For v53 there are three propus parameter sets, but there are six essentially different choices for se-
lecting the symmetric and the repeated blocks. Below we list the solutions (i. e., propus difference families) 
for each of these six choices. In all cases the block X1 is symmetric and X2X3, and so we list only the three 
blocks X1, X2, X4 in that order. The first solution belongs to the X-series.

(53; 23, 22, 22, 26; 40)
{0, 1, 3, 9, 10, 12, 14, 16, 17, 20, 23, 25}
{0, 1, 2, 3, 9, 11, 18, 21, 24, 25, 29, 33, 34, 35, 36, 41, 44, 46, 48, 49, 50, 52}
{1, 5, 6, 10, 11, 12, 15, 18, 22, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 44, 45, 46, 49, 50, 51}

(53; 26, 22, 22, 23; 40)
{1, 7, 9, 10, 12, 14, 17, 18, 19, 20, 21, 24, 25}
{7, 11, 13, 14, 16, 18, 19, 20, 24, 26, 27, 28, 30, 31, 36, 41, 42, 44, 45, 48, 50, 51} 
{0, 5, 9, 11, 12, 13, 18, 22, 23, 25, 31, 32, 33, 36, 37, 38, 41, 43, 45, 48, 49, 50, 52}

(53; 24, 25, 25, 20; 41)
{4, 7, 9, 10, 13, 14, 15, 16, 19, 22, 24, 26}
{1, 6, 7, 8, 9, 16, 17, 21, 22, 23, 25, 27, 30, 33, 34, 35, 37, 38, 39, 40, 41, 44, 48, 50, 52} 
{1, 2, 9, 10, 13, 17, 18, 22, 23, 29, 36, 39, 42, 43, 45, 47, 48, 50, 51, 52}

(53; 20, 25, 25, 24; 41)
{2, 4, 6, 10, 13, 16, 19, 20, 21, 23}
{0, 1, 3, 4, 5, 9, 15, 16, 17, 18, 23, 24, 25, 28, 31, 33, 36, 37, 42, 45, 46, 47, 49, 51, 52} 
{1, 3, 4, 8, 11, 12, 14, 15, 16, 24, 27, 29, 34, 39, 40, 42, 43, 45, 46, 47, 49, 50, 51, 52}
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(53; 24, 22, 22, 24; 39)
{2, 6, 8, 10, 11, 12, 14, 15, 17, 21, 22, 24}
{0, 3, 10, 11, 19, 20, 21, 22, 23, 24, 26, 28, 31, 34, 35, 37, 39, 40, 41, 45, 46, 50}
{6, 7, 10, 11, 12, 14, 16, 17, 19, 22, 24, 27, 28, 31, 36, 37, 39, 43, 44, 45, 49, 50, 51, 52}

(53; 22, 24, 24, 22; 39)
{7, 8, 10, 12, 14, 15, 17, 18, 23, 24, 26}
{1, 2, 3, 8, 10, 12, 13, 14, 15, 16, 17, 19, 22, 23, 29, 31, 32, 33, 37, 39, 42, 43, 47, 50} 
{2, 6, 7, 12, 14, 19, 23, 25, 26, 29, 31, 34, 37, 38, 39, 41, 42, 46, 49, 50, 51, 52} 

Six symmetric Hadamard matrices of order 236 

As 2364 · 59 we set v59. Define the subsets X1, X2, X3, X4 of Zv by:

X1 {0, 1, 4, 5, 7, 8, 11, 14, 20, 25, 28, 29},
X2X3{4, 5, 7, 11, 12, 16, 17, 24, 25, 26, 27, 28, 29, 33, 34, 37, 39, 40, 42,43, 44, 45, 47, 49, 51, 53, 56, 58},
X4{2, 3, 10, 12, 13, 14, 16, 18, 19, 26, 28, 29, 36, 38, 39, 40, 42, 44, 46, 47, 49,50, 53, 54, 55, 57}.

One can easily verify that these four blocks form a difference family in Zv with parameters (59; 23, 28, 28, 
26; 46). The four circulants A1, A2, A3, A4 of order 59 associated with the blocks X1, X2, X3, X4 respectively 
can be plugged into the propus array
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to obtain the desired symmetric Hadamard matrix of order 236.
For the parameter set (59; 27, 25, 25, 26; 44) we have constructed the following five nonequivalent differ-

ence families. As in the previous section we list only the blocks X1, X2, X4. In each case the block X1 is obvi-
ously symmetric.

{0, 2, 4, 7, 8, 12, 13, 15, 16, 17, 18, 20, 23, 29}
{1, 2, 4, 5, 12, 13, 17, 19, 20, 21, 22, 23, 26, 27, 31, 35, 37, 38, 40, 44, 47, 49, 50, 55, 57}
{3, 7, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 31, 32, 33, 34, 36, 38, 43, 45, 46, 50, 51, 53}

{0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 20, 21, 26, 29}
{1, 4, 5, 8, 9, 11, 15, 18, 19, 20, 21, 23, 26, 29, 31, 35, 36, 38, 41, 42, 43, 44, 49, 51, 55} 
{1, 2, 4, 5, 7, 9, 11, 13, 14, 15, 21, 23, 28, 32, 33, 34, 35, 36, 37, 39, 44, 45, 49, 50, 53, 57}

{0, 1, 5, 8, 11, 12, 13, 17, 21, 22, 23, 27, 28, 29}
{1, 2, 3, 5, 6, 9, 10, 12, 14, 15, 17, 20, 27, 30, 34, 41, 42, 43, 45, 46, 47, 48, 50, 52, 54}
{2, 4, 5, 6, 8, 12, 15, 17, 20, 23, 25, 28, 29, 31, 35, 40, 41, 42, 43, 44, 49, 51, 52, 54, 57, 58}

{0, 4, 6, 7, 10, 12, 13, 15, 16, 18, 20, 25, 26, 29}
{2, 4, 6, 10, 11, 15, 16, 17, 18, 19, 21, 26, 27, 28, 29, 30, 33, 35, 36, 42, 53, 54, 56, 57, 58} 
{3, 6, 7, 8, 9, 13, 18, 19, 21, 23, 24, 26, 28, 29, 33, 34, 36, 37, 41, 43, 47, 50, 51, 54, 56, 58}
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{0, 1, 2, 7, 12, 17, 18, 19, 21, 23, 25, 26, 27, 29}
{2, 5, 7, 13, 14, 15, 17, 23, 24, 25, 28, 29, 32, 35, 39, 41, 44, 45, 46, 48, 49, 51, 52, 53, 58} 
{1, 2, 4, 6, 7, 15, 20, 21, 23, 25, 31, 32, 34, 35, 37, 38, 39, 43, 46, 47, 48, 50, 52, 53, 57, 58}

As in the first example of this section, these propus difference families give five symmetric Hadamard 
matrices of order 236.

Difference families with X1 skew 

In the case when X1 is skew v must be odd, k1(v – 1)/2 and the parameter set will be written as

 (v; k1(v – 1)/2, k2, k3k2, k4; ).                                                                    (3)

Further we have

 2k2 k4(v 1)/2                                                                                  (4)

and

 (v – 2k4)2 2(v – 2k2)24v – 1.                                                                        (5)

Without any loss of generality, we impose the following additional restriction:

 v/2 k2, k4.                                                                                          (6)

We co njecture that for each parameter set (3) there exists at least one difference family (X1, X2, X3X2, 
X4) in Zv with these parameters and with X1 skew.

There exist positive odd integers v for which there is no parameter set of the form (3). For instance, this is 
the case for v9, 23, 29, 39, 49, 51, 59. More precisely, it was proved by Gauss [8] that the Diophantine equa-
tion a2 2b2m, where m is a positive integer, has a solution with a and b relatively prime if and only if –2 is 
a square in Zm.

For odd v < 50, we list in Tables 1–3 all parameter sets (3) which satisfy the conditions (4) and (6). There 
are in total 27 such parameter sets (12 of them arise from the X-series). For each of them we have recorded in 
Tables 1–3 at least one difference family with X1 skew and X2 X3. Thus our conjecture has been verified for 
v < 50. The block X4 is symmetric in Table 1, skew in Table 2, and neither symmetric nor skew in Table 3. In 
Table 1 the symbol X indicates that the parameter set belongs to the X-series.

In some cases we build the base blocks Xi from the orbits of a subgroup, H, of the group of the invertible ele-
ments, *

vZ , of the ring Zv. In such cases our choice for H is always a cyclic subgroup s, with generator s, and we 
show it below the corresponding parameter set. In these cases, instead of listing all elements of the Xi we list (in 
square brackets) only the representatives of the orbits of H contained in Xi.

One of the blocks of difference families in the X-series is symmetric and we have endevoured to find such solu-
tions in other cases as well. In some cases, exaustive computer searches showed that such solutions do not exist.

The second solution given above for the case v7 gives a positive answer to a question raised in [6, p. 503]. 
Indeed the polynomials

f1()– 2 – 3 4 5 – 6;

f2()1 2 – 3 – 4 5 6;

f3()–1 – 2 3 4 5 6;

f4()f3()

satisfy the conditions (16) and (17) of the cited paper [6] as well as

f(1)20, f2(1)2f3(1) 2f4(1)29.

If both X2X3 and X4 are skew then the parameter set must have the form

(v2s2 2s 1; s2 s, s2, s2, s2 s; 2s2 – 1); s1, 2, 3, …
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  Table 1. X1 skew, X2X3, and X4 symmetric

(3; 1, 1, 1, 0; 0) X {1} {0} 0

(5; 2, 1, 1, 2; 1) X {1, 2} {0} {2}

(7; 3, 3, 3, 1; 3) X {1, 2, 4} {0, 1, 3} {0}

(7; 3, 2, 2, 2; 2) {2, 3, 6} {0, 2} {3}

(11; 5, 4, 4, 3; 5) X {1, 2, 4, 6, 8} {0, 1, 2, 5} {0, 3}

(13; 6, 6, 6, 3; 8) {1, 2, 3, 4, 7, 8} {0, 1, 2, 6, 9, 11} {0, 3}

(13; 6, 4, 4, 6; 7) {1, 2, 3, 5, 6, 9} {0, 1, 3, 9} {1, 3, 4}

(15; 7, 5, 5, 6; 8) X {2, 4, 5, 6, 7, 12, 14} {2, 5, 6, 9, 11} {2, 6, 7}

(17; 8, 7, 7, 5; 10) X {1, 2, 3, 5, 9, 10, 11, 13} {0, 3, 7, 9, 12, 13, 14} {0, 2, 3}

(19; 9, 7, 7, 7; 11) {1, 2, 3, 7, 10, 11, 13, 14, 15} {4, 5, 9, 11, 13, 14, 17}

{0, 2, 3, 5}

(21; 10, 10, 10, 6; 15) X {1, 3, 4, 6, 7, 8, 9, 10, 16, 19} {0, 4, 5, 7, 8, 9, 11, 13, 18, 19}

{3, 4, 8}

(25; 12, 11, 11, 8; 17) {1, 2, 3, 5, 7, 8, 10, 11, 12, 16, 19, 21}

{1, 3, 9, 10, 11, 13, 14, 15, 16, 20, 23} {1, 5, 8, 9}

(27; 13, 10, 10, 12; 18) X {2, 3, 5, 6, 8, 13, 15, 16, 17, 18, 20, 23, 26}

{3, 4, 9, 11, 14, 18, 20, 22, 23, 24}

{3, 7, 8, 11, 12, 13}

(31; 15, 12, 12, 13; 21) 

5 [6, 8, 11, 12, 16] [2, 8, 16, 17] [0, 3, 4, 11, 16]

(33; 16, 14, 14, 12; 23) X {1, 4, 8, 12, 14, 17, 18, 20, 22, 23, 24, 26, 27, 28, 30, 31}

{3, 5, 6, 9, 10, 11, 12, 14, 17, 22, 23, 24, 27, 32}

{3, 4, 5, 12, 14, 16}

(35; 17, 16, 16, 12; 26) X {2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 23, 29, 31, 34}

{0, 1, 3, 5, 8, 9, 16, 17, 18, 19, 23, 25, 28, 30, 31, 34}

{5, 6, 7, 9, 12, 16}

(41; 20, 16, 16, 20; 31) {1, 4, 6, 7, 9, 11, 13, 14, 18, 19, 20, 24, 25, 26, 29, 31, 33, 36, 38, 39}

{4, 6, 9, 12, 13, 14, 17, 18, 25, 26, 28, 29, 30, 32, 35, 39}

{5, 7 ,8, 9, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 28, 32, 33, 34, 36}

(45; 22, 19, 19, 18; 33) X {3, 4, 8, 11, 13, 14, 15, 17, 18, 20, 21, 23, 26, 29, 33, 35, 36, 38, 39, 40, 43, 44} 

{2, 4, 6, 7, 8, 9, 12, 15, 18, 19, 20, 22, 23, 24, 26, 31, 32, 33, 41} 

{1, 4, 5, 6, 12, 13, 16, 18, 20}

  Table 2. X1 and X4 skew and X2X3

s v Subgroup X1 X2 X4

1 5 1 {1, 2} {0} {1, 3}

2 13 3 [2, 4] [0, 2] [1, 2]

3 25 1 {1, 2, 3, 5, 6, 7, 12, 14, 15, 16, 17, 21}

{1, 5, 9, 12, 13, 15, 18, 19, 21}

{2, 3, 4, 5, 7, 9, 10, 11, 12, 17, 19, 24}

4 41 10 [1, 2, 11, 15] [0, 1, 4, 11] [1, 5, 6, 11]

5 61 9 [1, 2, 4, 10, 13, 23] [1, 5, 8, 12, 13] [1, 4, 6, 8, 13, 26]

6 85 ? ?

7 113 ? ?
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For the first five values of s, difference fami-
lies with these parameters exist. They are shown in 
Table 2.

 Table 3 covers the cases where we could not find 
solutions with X4 symmetric or skew.

Difference families with X2X3 skew 

We list here the difference families with the re-
peated block X2X3 skew. A necessary condition 
for the existence of such families is that 2v – 1 must 
be a sum of two squares. This follows from the equa-
tion (1). We assume that k1  k4. In the second col-

umn we indicate the symmetry types of the blocks 
X1, X2 and X4. The letter “s” means that the block 
is symmetric and “k” means that it is skew. The let-
ter “x” means that, in the given solution, the corre-
sponding block is neither symmetric nor skew. The 
question mark indicates that the existence question 
remains undecided.

If v is a prime number 3 (mod 4) and if there 
exists a D-optimal design (X1, X4) with parameters 
(v; k1, k4; k1 k4 – (v – 1)/2) then we can take 
X2X3 to be the Legendre difference set to obtain 
the desired difference family (X1, X2, X3, X4). For an 
example see the difference family for (43; 21, 21, 21, 
15; 35) in Table 4. Solutions where (X1, X4) is not a 

  Table 4. X2 skew and X2X3

(3; 1, 1, 1, 0; 0) (kks) {1} {1} 0

(5; 1, 2, 2, 1; 1) (xkx) No

(7; 3, 3, 3, 1; 3) (kks) {3, 5, 6} {3, 5, 6} {0}

(9; 3, 4, 4, 2; 4) (xkx) No

(13; 6, 6, 6, 3; 8) (skx) {2, 5, 6} {2, 4, 5, 6, 10, 12} {0, 1, 4}

{4, 7, 8, 10, 11, 12} {1, 3, 7, 8, 9, 11} {0, 3, 12}

(13; 4, 6, 6, 4; 7) (skx) {1, 2} {1, 3, 7, 8, 9, 11} {0, 1, 6, 10}

(15; 6, 7, 7, 4; 9) (xkx) No

  Table 3. X1 skew and X2X3

(25; 12, 10, 10, 9; 16) {1, 3, 4, 5, 7, 8, 9, 13, 14, 15, 19, 23} {1, 3, 5, 8, 10, 11, 13, 14, 21, 22} 

{5, 6, 7, 8, 11, 14, 15, 18, 20}

(31; 15, 15, 15, 10; 24)

5 [2, 6, 8, 11, 16] [1, 2, 3, 4, 6] [0, 2, 4, 11]

(37; 18, 15, 15, 15; 26)

10 [3, 6, 11, 17, 18, 21] [1, 3, 11, 14, 18] [6, 7, 11, 14, 17]

(43; 21, 21, 21, 15; 35)

6 [1, 3, 4, 13, 14, 20, 26] [1, 2, 5, 10, 13, 19, 20] [1, 14, 19, 20, 26]

(43; 21, 19, 19, 16; 32)

6 [1, 5, 9, 10, 14, 19, 21] [0, 1, 7, 9, 10, 13, 19] [0, 3, 4, 7, 13, 20]

(43; 21, 17, 17, 20; 32) {1, 4, 5, 6, 7, 11, 14, 15, 19, 21, 23, 25, 26, 27, 30, 31, 33, 34, 35, 40, 41} 

{2, 4, 7, 9, 10, 13, 15, 20, 21, 22, 24, 25, 29, 32, 34, 35, 41} 

{0, 5, 6, 8, 10, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 34, 35, 41}

(47; 23, 22, 22, 17; 37) {1, 4, 5, 9, 10, 12, 17, 18, 19, 21, 22, 24, 27, 31, 32, 33, 34, 36, 39, 40, 41, 44, 45} 

{4, 5, 6, 9, 12, 20, 21, 22, 23, 25, 28, 30, 31, 32, 34, 36, 38, 40, 41, 42, 45, 46} 

{0, 2, 4, 5, 9, 16, 18, 19, 21, 22, 23, 24, 25, 28, 31, 38, 43}

(47; 23, 19, 19, 21; 35) {2, 3, 4, 6, 7, 9, 14, 17, 18, 19, 23, 25, 26, 27, 31, 32, 34, 35, 36, 37, 39, 42, 46} 

{0, 2, 4, 12, 14, 17, 20, 21, 25, 27, 28, 34, 37, 38, 39, 40, 43, 45, 46} 

{1, 3, 4, 5, 7, 8, 10, 11, 12, 14, 19, 20, 24, 25, 34, 35, 39, 40, 41, 43, 45}
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DO-design may also exist, as an example see the dif-
ference family for (43; 18, 21, 21, 16; 33) in Table 4.  

Difference families with X2X3 symmetric 

The difference families (X1, X2, X3, X4) in Zv, 
v odd, associated with the Williamson matrices in 

the well-known Turyn series [9] have the follow-
ing properties. After a suitable permutation of 
the Xi, we have  1 40 ,X X   X2X3 and all Xi 
are symmetric. They exist whenever q2v – 1
1 (mod 4) is a prime power. Apart from this se-
ries, for odd v < 30 we found only  three additional 
cyclic GS-difference families (X1, X2, X3, X4) hav-
ing a repeated block X2X3 which is symmetric  
(see Table 5).
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(19; 7, 9, 9, 6; 12) (xks) {0, 5, 8, 10, 11, 12, 14} {2, 3, 8, 10, 12, 13, 14, 15, 18}

{1, 7, 8}

(21; 10, 10, 10, 6; 15) (xkx) {1, 3, 7, 9, 13, 14, 15, 16, 19, 20} {1, 7, 8, 10, 12, 15, 16, 17, 18, 19} 

{0, 4, 7, 12, 17, 20}

(23; 10, 11, 11, 7; 16) (xkx) {0, 1, 4, 5, 6, 8, 11, 12, 14, 22} {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22} 

{7, 8, 11, 15, 17, 20, 22}

(25; 9, 12, 12, 9; 17) (xkx) {4, 7, 9, 11, 15, 16, 17, 21, 22} {1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 17, 19} 

{1, 4, 7, 8, 10, 15, 18, 19, 24}

(27; 11, 13, 13, 9; 19) (xkx) {0, 1, 4, 8, 10, 13, 14, 15, 21, 23, 25}

{4, 5, 8, 13, 15, 16, 17, 18, 20, 21, 24, 25, 26}

{0, 2, 8, 11, 13, 14, 15, 17, 20}

(31; 15, 15, 15, 10; 24)

5 (kkx) [1, 3, 8, 11, 12] [1, 2, 3, 8, 11] [0, 4, 11, 17]

(33; 15, 16, 16, 11; 25) (xkx) No

(33; 13, 16, 16, 12; 24) (xkx) No

(37; 16, 18, 18, 13; 28) (xkx) ?

(41; 16, 20, 20, 16; 31) (xkx) ?

(43; 21, 21, 21, 15; 35) (xkx) {0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 17, 20, 24, 25, 28, 30, 31, 34, 39} 

{2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42} 

{0, 2, 3, 4, 7, 9, 12, 14, 16, 22, 24, 30, 31, 34, 39}

(43; 18, 21, 21, 16; 33)

6 (xkx) [2, 7, 10, 14, 20, 26] [1, 4, 9, 10, 13, 14, 21] 

[0, 4, 13, 14, 20, 26]

(45; 21, 22, 22, 16; 36) (xkx) ?

(49; 22, 24, 24, 18; 39) (xkx) ?

  Table 4 (compl.)

  Table 5. X2 symmetric and X2X3

(13; 6, 6, 6, 

3; 8)

(xsx) {0, 2, 3, 6, 11, 12} {1, 3, 4} 

{0, 1, 4}

(13; 4, 6, 6, 

4; 7)

(ssx) {3, 5} {2, 5, 6} {0, 1, 5, 7}

(23; 10, 11, 

11, 7; 16)

(xsx) {0, 1, 3, 5, 8, 12, 14, 15, 17, 20} 

{0, 1, 2, 4, 8, 9} 

{0, 2, 4, 5, 9, 12, 13}
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Матрицы Адамара разностного семейства Гетхальса — Зейделя с повторяющимся блоком
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aСанкт-Петербургский государственный университет аэрокосмического приборостроения, Б. Морская ул., 67, 

190000, Санкт-Петербург, РФ
бУниверситет Ватерлоо, Ватерлоо, Онтарио, N2L 3G1, Канада
вУниверситет Уилфрида Лорье, Ватерлоо, Онтарио, N2L 3С5, Канада

Цель: построить матрицы Адамара, описываемые разностными семействами Гетхальса — Зейделя с повторяющимися блока-
ми, посредством обобщения так называемой пропус-конструкции. Методы: основная составляющая конструкции пропусов — раз-
ностное семейство конечной абелевой группы порядка v, содержащее четыре блока (X1, X2, X3, X4), где X1 симметричен и X2X3. 
Параметры (v; k1, k2, k3, k4; ) такого семейства должны удовлетворять дополнительному условию .ik v    Эта конструкция 

модифицирована использованием различных типов симметрий выбираемых блоков и конструированием разнообразных приме-
ров матриц Адамара такого сорта. В этой статье работа велась с циклической группой Zv порядка v. Для больших значений v 
построены блоки Xi посредством орбит подходящих малых циклических подгрупп группы автоморфизмов Zv. Результаты: про-
должен систематический поиск симметричных матриц Адамара порядка 4v, использующий пропус-конструкцию. Аналогичные 
исследования проведены ранее для нечетных значений v  51. Мы расширяем итог, закрывая случай v53. Кроме того, скон-
струированы первые примеры симметричных матриц Адамара порядка 236. Получена обширная коллекция симметричных и 
кососимметричных матриц Адамара, и соответствующие разностные семейства классифицированы на основе видов симметрий их 
блоков. Практическое значение: матрицы Адамара имеют непосредственное практическое значение для задач помехоустойчивого 
кодирования, сжатия и маскирования видеоинформации. Программное обеспечение нахождения симметричных матриц Адамара 
и библи отека найденных матриц используются в математической сети Интернет с исполняемыми онлайн алгоритмами. 

Ключевые слова — симметричные и кососимметричные матрицы Адамара, массив Гетхальса — Зейделя, массив пропус, ци-
клические разностные семейства. 

Для цитирования: Abuzin L. V., Balonin N. A., Ðoković D. Ž., Kotsireas I. S. Hadamard matrices from Goethals — Seidel difference 

families with a repeated block. Информационно-управляющие системы, 2019, № 5, с. 2–9. doi:10.31799/1684-8853-2019-5-2-9 

For citation: Abuzin L. V., Balonin N. A., Ðoković D. Ž., Kotsireas I. S. Hadamard matrices from Goethals — Seidel difference 

families with a repeated block. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2019, no. 5, pp. 2–9. 

doi:10.31799/1684-8853-2019-5-2-9




