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Introduction: Usually there are some outliers (abnormal measurements) in observed data, and they can significantly affect the
quality of the data processing. Many dynamic processes are described with stochastic nonlinear equations. Modern nonlinear fil-
ters that include the cubature Kalman filter, which deserves a special attention, cannot effectively process data containing abnor-
mal measurements. One of the possible solutions to this problem is to use so-called robust methods that have good performance
when one has to analyze data containing outliers. The paper deals with the common situations, when the considered process is
actually continuous, but the observed data is taken discretely. Purpose: Identifying the most effective advanced robust modifica-
tions of the continuous-discrete cubature Kalman filter and giving the appropriate recommendations for their appliance. Results:
Four modifications of the continuous-discrete cubature Kalman filter have been proposed based on the variational Bayesian and
correntropy robust approaches to parameter estimation for stochastic processes. All the modifications have parameters with op-
timal values depending on both the selected mathematical model and the considered set of observations composing the sample.
These values are determined numerically by minimizing the accumulated root mean square error on some grid. The research on
the effectiveness of the proposed robust modifications has been carried out for the problem of tracking a space vehicle during its
reentry into the atmosphere. The stochastic and the grouped outliers have been considered. Two most effective filters that have
approximately equal qualities of estimation have been derived. The correntropy filter that has one configurable parameter can be
recommended for practical using. Practical relevance: The identified most effective robust filter can be used for solving various
applied problems related to the identification of stochastic nonlinear continuous-discrete systems.
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Introduction

In many fields of science and engineering, var-
ious applied problems related to statistical estima-
tion of stochastic process parameters take place
(see [1-3]). The optimal solution to such problems in
the case of linear stochastic models can be obtained
by applying the Kalman filter and its square-root
modifications [4, 5]. Due to the fact that many real
processes are described with nonlinear equations,
nonlinear filtering methods are of particular im-
portance.

Until the middle of the 1990s, the main method
for solving nonlinear filtering problems was the
extended Kalman filter [6, 7]. This filter is based
on the linearization over the time domain of the
state and measurement models conducted in the
neighborhood of a specially defined nominal trajec-
tory. In addition to the estimation accuracy loss, it
has to be taken into account that even if there are
no significant nonlinearities, the right-hand side
of the state and the measurement equations may
be determined with cumbersome analytical for-
mulas. This leads to the problem of Jacobian ma-
trices correct computing in the case of linearized
models. Nowadays, the unscented (UKF) and the

cubature Kalman filter (CKF) gain significant
popularity as they don’t have the mentioned draw-
backs.

The UKF proposed in 1995 [8] and developed in
[9-11] assumes using the optimal set of determined
sigma points for approximating the first and the
second moments of the system state vector. In each
specific case, the quality of the results obtained
with the UKF depends on the optimal choice of the
filter parameter values.

The CKF used in this paper overcomes this
drawback. For discrete systems, it was developed in
2009 [12], and after that it was modified for con-
tinuous-discrete systems in [13, 14]. To derive the
CKF, the third-degree cubature rule was used for
numerical approximation of a special type of multi-
dimensional probability integrals [15, 16]. In prac-
tical terms, it is important that (unlike the UKF)
the CKF has an algebraically equivalent square-
root modification that provides computational ro-
bustness.

In practice, there are often the cases when ob-
served data contain some abnormal measurements.
This can be caused by failures occurring while
gathering and transmitting the measurements. In
mathematical terms, this can be interpreted as a
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significant deviation of the actual distribution of
measurement noise from the postulated one for the
points corresponding to outliers. To overcome these
difficulties, various robust methods can be applied
(see [17-20]) including the variational Bayesian
[21-23] and the correntropy approaches [24—26]
used in this paper. These methods are particularly
worthy to be highlighted.

This paper provides a comparative analysis of
some advanced modern robust modifications of the
continuous-discrete cubature Kalman filter (CD-
CKF). The used modifications have been chosen
on the basis of the results of studies performed in
[27, 28] for linear nonstationary systems. Also the
materials of some relevant publications on nonlin-
ear robust filtering [29—-32] have been taken into
account. It should be emphasized that all the con-
sidered filters have been obtained by applying the
corresponding discrete expressions to the continu-
ous-discrete case. In addition, some robust modifi-
cations of the CD-CKF have been purposely derived
from already known UKF modifications.

This paper is the first in the author’s series of
papers devoted to the construction of resistant to
abnormal measurements and machine rounding er-
rors nonlinear continuous-discrete filter. Only the
first part of the specified task is considered.

Structural-probabilistic description
of the model

Following [33], consider the state space model of
a controlled and observed stochastic nonlinear con-
tinuous-discrete system
XU (o), (o), T+ (w(e)s <t
Y(tk+1) = h[x(tk+1)’ u(tk+1)’ tk+1]+v(tk+1)’

k=0, N-1,

where x(*) is the n-dimensional state vector; u(’) is
the r-dimensional predefined control vector; w(})
is the p-dimensional process noise vector; y(*) is
the m-dimensional measurement vector; v(-) is the
m-dimensional measurement noise vector.

Suppose that

— the stochastic processes {w(?), ¢ € [t,, ty]} and
{v(t,,1), k=0, 1, .., N— 1} are the white Gaussian
noises, and

E[w(t)]=0, B w(t)w" ()|=Q(#)5(t-);
Bl v(tha)] =0 E[V(tkﬂ)vT (ti+1)} =R(tp1) i

E[v(tkﬂ)wT(r)J =0, k, i=0, N—1, te[ty, ty]

(here and further E[] is the mathematical mean
value operator; 3(¢t — 1) is the Dirac delta function;
d;; is the Kronecker symbol);

— the initial state x(¢,) has the normal distribu-
tion with the parameters

E[x(t)]=%(to),
E{[x(to)~x(to) [ x(to)~%(t0) ' |- P(to),

and it is uncorrelated with w(¢) and v(t;_,);

— the covariance matrices of the process noise,
the measurement noise and the initial state are
known, R(¢,,;) and P(¢;) are positive-definite ma-
trixes;

— the observed data {y(t,,;), k=0, 1, ..., N—- 1}
contain outliers.

CD-CKF

To construct the CKF, the third-degree Gaussian
cubature rule[15, 16]is used to compute probability
integrals of the following type

E[g(x)]= [ g(x)N(x|p, T)dx~
1R2n
ngg(szé),
i-1

where g(x) is some vector function; N(x | u, Z) is the
probability density function of the n-dimensional
normal distribution with the mean p and the
covariance matrix X; Ly is the lower triangular

Cholesky factor (LZL’E = Z), the nodes of a cubature

formula §; are defined with the expression

\/Eei’ i:]-, n;
& =

—x/ﬁei_n, i=n+1, 2n,

T
where e; =(0, .., 0,1, 0, ..., Oj .
i-1 i i+l

Nowadays, two versions of the CD-CKF exist.
The first one (see [13]) is based on the It6-Taylor ex-
pansion of the 1.5 order used to discretize the corre-
sponding stochastic differential equation and on ap-
plying the discrete formulas of the CKF from [12] to
the obtained system. It should be noted, that prelim-
inary discretization requires manual adjusting the
optimal number of points of division for each specif-
ic problem. This leads to the lack of flexibility of the
first CD-CKF version. In this work, the other version
of the CD-CKF from [14] is used. This version is more
accurate and actual in practical terms (see [34]), and
it also doesn’t have the mentioned drawback.
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The CD-CKF algorithm
Step 1. Initialize the initial state and the covar-
iance:

%(to [t9)=%(t0), P(to |0) =P(to)-

Execute in a loop for k=0, N —1:
Step 2. Obtain X(ty,1 |#,) and P(t,,,]t,) by solv-
ing the system of differential equations for ¢ € [z,

Ll
dx(tlt,) 12 -
= Zn; [%(tlt)+8(¢|%) ]
dP(tlt,) 12 -,
dt 2ni=1 [ ( k) ( k) ]

1 2n
x ﬁ?ST(ﬂtk)Jr%ZS(t |t )€ x
i-1

x £7[&(t|t,)+S(¢] 5 )&; u(t), ¢ ]+
+T(£)Q()TT (¢),
where S(¢|t,) = Chol[P(¢ | ¢,)] is the Cholesky factor
for the matrix P(¢| t,).

Step 3. Calculate the cubature points and the
propagated cubature points:

S(tps1 5 ) = Chol| P(tpq | 1) |
i (T 1) = X (81 | 8) + S (tan [ ) &5 i =1, 2m5

Yi (the1 |tk):h[Xi(tk+1 [tk )> u(tpar), tk+1]’ i=1, 2n.

Step 4. Find the extrapolated measurement esti-
mate and the update vector:

A 1 2n
Y(tk+1 |tk) :%Z'Yi (tk+1 |tk);
i=1

&(tp1) =¥ (ts1) = F (s | 2)-

Step 5. Obtain the cross-covariance matrix:
2n

1 A
Py (the1 lte) = %Z[xz (st [t ) =& (tha 1) | %
i-1

x [Yi (tre1 1) =9 (tre 1 2 )]T

Step 6. Evaluate the covariance matrix of the
prediction error:

2n

1 A
Py, (trer |te) = 52[% (tear [t0) = (tpaa | tk)] X
i=1

X[Yi<tk+1 |tk)—§’(tk+1 |tk)]T +R (1) @

Step 7. Calculate the Kalman gain factor:
-1
K(t41) = Poy (ts1 |t )Py (thea [ 1) @)
Step 8. Obtain the filtered state estimate:

R(tpet | tpe1) = R (tpar 1) T K (b1 E(tpi1)- - B)

Step 9. Find the corresponding error covariance
matrix:

P(tpe1 | tps1) =P(tper [1) - K(tpy) ¥

x Pyy (ts1 1, )K" (t41)- @

End of the loop for k.

In order to make the further discussion brief,
when describing the robust modifications of the
CD-CKF we will consider this algorithm to be a ba-
sis, but will add and edit certain steps.

Robust modifications of the CD-CKF

First of all, consider the continuous-discrete
variational Bayesian-based cubature Kalman fil-
ter (CD-VBCKF) proposed in [29] and derived based
on [22]. This modification suggests using the fol-
lowing parameters: v, (scalar), V, (m-dimensional
square matrix), L (number of iterations for the fil-
tration step), p (scaling factor selected on the inter-
val (0, 1]). The optimal values of the parameters are
determined by selection.

The CD-VBCKF algorithm

Step 1. At the step 1 of the CD-CKF algorithm,
the initialization of the following parameters is in-
cluded:

U(to | to) =0, V(to |t0)=V0.

Execute in a loop for k=0, N -1:
Step 2. At the step 2 of the CD-CKF algorithm,
the parameter calculating is included

U(tk+1 |tk)=p(v(tk|tk)—n—1)+n+1;

V(e [te) =PV (e | 2)-

Steps 3—5 are equivalent to the steps 3—5 of the
CD-CKF algorithm.
Step 6. Obtain

VO (t1 [ ths1) = V(tgen [ 1)

V(the1 [tar) = 1+ 0(tr1 | 1)

Execute in a loop for j= 1, L:
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Step 7. Obtain
. 1
RJ(tk+1):(v(tk+1|tk+1)_n_1) \& l(tk+1 | the1)-

Step 8. Calculate Pjy(tk 11 1t,) and Ki(t, ;) us-
ing the formulas (1), (2), where the matrices R(¢,;)
and Pyy(tk 41 | t,) are replaced with Ri(¢,,,) and
P}, (tee1 | te) respectively.

Step 9. Calculate &’ (tg1 |t511) and Pi(t, | t,,)
by replacing K(t,,;) and P, (¢, | ¢,) in the for-
mulas (3) and (4) with the matrices K/(¢,,;) and
P}, (t441|t;) respectively.

Step 10. Calculate

S (ths1 | thar) = ChOl[Pj (thet | tren )J
% (Bt [ tes1) =& (tn [ tos1 )+ S (B [ 841 ) &

vl (tpe1ltes1) = h[x{ (tre1 141 )s (tpyr)s tk+1}

i=1, 2n.

Step 11. Obtain the matrix

2n

VI (b1 | tg41) = 52[3’(’%1) —v! (tpa tk+1)} x
i-1

. T
X [Y(tk+1) _'Y{ (tk+1 | 798] ):| +V(tk+1 | tk)’

End of the loop for j.
Step 12. Obtain

V(thot [tge1) = VE (1 [ tas1)-

Step 13. Obtain the filtering estimate and the
corresponding covariance matrix:

(tpo1 [ teer) = X5 (the1 [ 1 )
Pt |the1) =P (1 [ 51 )

End of the loop for k.

Now consider the correntropy modifications of
the CD-CKF, which have been intensively developed
in the recent years. Initially, the correntropy fil-
ters were obtained for linear dynamic models (see
[835—3T7]). Later, they were successfully adapted for
solving nonlinear problems [30—-32, 38—40].

The correntropy filters are constructed on the
basis of the maximum correntropy criterion, and
correntropy is considered to be a statistical meas-
ure of the similarity between two random varia-
bles. This measure takes into account the second
and the higher-order moments. Technically, the
correntropy between X, Y is determined with the
formula [26]

C(X,Y)=Exy[x(X,Y)]=
:”K(x’ y)fxy (%, y)dxdy,

where «(--) is some continuous positive defined
function (a kernel); Ixy (,) is the joint density
function of the random variables X and Y. Most
commonly, the Gaussian kernel of size ¢ > 0 is
used:

2
k(x, y) =G5 (x-y)= eXP{(—z)}-
20
In practice, the distribution of fyy is usually un-
known, thus the correntropy estimate C(X,Y) is
used instead of C( X, Y)

. 1 N
C(X, Y):EZGG(xi -y;)-
i=1

Note that the kernel size significantly affects
the quality of correntropy filters. There are no ac-
tual general recommendations for the optimal se-
lection of the parameter ¢ value that depends on
the considered sample. This is the bottleneck of all
the correntropy filters. Some adaptive techniques
for determining the kernel size based on the update
vector are given in [26, 32, 41], but the problem has
not been solved yet, because generally the results
are better when the kernel size is optimal.

Consider three correntropy modifications of the
CD-CKF based on different maximum correntropy
criteria.

The first modification named the CD-MCCKF-1
(Continuous-discrete maximum correntropy cuba-
ture Kalman filter) contains scalar parameters ¢
and 8. This modification has been obtained by re-
placing the equations of the correntropy discrete
UKF from [30] with the relevant CD-CKF formulas.
The following algorithm corresponds to this modi-
fication.

The CD-MCCKF-1 algorithm

Step 1. Repeat the step 1 of the CD-CKF algo-
rithm.

Executein a loop for k=0, N —-1:

Steps 2—5 are equivalent to the steps 2—5 of the
CD-CKF algorithm.

Step 6. Obtain the matrix H(t,,):

H (t,1) =Py (tps1 | t )P (thn |- (5)
Step 7. Find S(#,,1):
SR (tk+1)=Chol[R(tg.1) s
S(tps1) = diag[ S(tgs1 [ t), Sr(the1) ]
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Step 8. Obtain D(¢,,,) and W(t,_,):
X(tpen I th) )
(tk+1) + H(tk+1)f‘(tk+1 ‘ tk)

W (tpq)=S" (tk+1){H(Z+1J'

D(tk+1) -5 (tk+1)|:8

Step 9. Seti =1 and evaluate

-1
2 (tpe1 | tpsn ) = [WT (tk+1)W(tk+1)] x

x W (t,1) D (t1)-

Execute in a loop for i:
Step 10. Calculate

e’ (t511) =D (tps1) ~ W (ts1) X (te [ 51 )5
Cu (ths1) = diag[Gc (ei (tk+1))’ wes G (eril (tk+1))}
Cy (th:1) = diag] G (€h o (t4:1)): s Go(hum (1)) |
P (g1 [t ) =S (ther [ 1) C' (t21)S™ (a1 [ 825
R’ (t341) =Sk (tk41)Cy' (tr11)SE (the1)s

B (t41) = H(tps1 )P (tpe [t )H" (t41) + R (th1);

K’ (ty1) =P (tper [ 1) H" (tk+1)[Bi (tk+1)] ;

R (g1 | 1) = Rt 1) + K (ta1) &(than)-

“’A‘i (thar [teer) =% (thor [t )”

“ﬁiil (tpe1 | thin)

end of the loop for i, elseseti=i+ 1.
Step 11. Define the filtering estimate and the
corresponding error covariance matrix:

If <9, then the

R (tpon [ tper) =& (tpar [ 1 )3
P(tyyq | tp1)= |:In ~K' (tp41)H(tp 1 )in (tpe1lte)-

End of the loop for k.

The next algorithm corresponds to the second
modification named the CD-MCCKF-2 and obtained
by applying the CKF equations from [31] to the con-
tinuous-discrete case. This modification contains a
scalar parameter c.

The CD-MCCKF-2 algorithm
Step 1. Repeat step 1 of the CD-CKF algorithm.
Execute in a loop for k=0, N —1:
Steps 2—5 are equivalent to the steps 2—5 of the
CD-CKF algorithm.

Step 6. Calculate the measurement noise covari-
ance matrix estimate:

SR (tk+1)=Chol[R(tg.1) s
e(tr11) =SR (re1)
%[ ¥ (1) =D& (the1 [ ), W (the)s tren ] ]
Cy (tp+1) = diag| Gy (€1 (tgs1))s -+ Go(em (the1))

R(t511) =Sg (th41)Cy ' (th41) Sk (tes1)-

Step 7. Define P, (4 | t,) with the expression

(1) replacing R(t,.;) with R(t4,1)-

Steps 8—10. Carry out the steps 7-9 of the CD-
CKF algorithm.

End of the loop for k.

The last algorithm corresponds to the third
modification named the CD-MCCKF-3 and ob-
tained by replacing the correntropy discrete UKF
formulas from [32] with the relevant CD-CKF
equations. This modification contains a scalar pa-
rameter c.

The CD-MCCKF-3 algorithm

Step 1. Repeat the step 1 of the CD-CKF algo-
rithm.

Execute in a loop for k=0, N—-1:

Steps 2—6 are equivalent to the steps 2—6 of the
CD-CKF algorithm.

Step 7. Calculate the matrix H(¢,_ ) using the ex-
pression (5).

Step 8. Calculate the measurement noise covari-
ance matrix estimate:

R(te1) =Py (tren 1) ~H(th11) Pt |tk)HT(tk+1)'

Step 9. Find the scalar value L(¢;,):
. 1/2
L(tk+1):Gc([8T(tk+1)R l(tk+1)8(tk+1)J j

Step 10. Calculate the Kalman gain factor
K1)

B(ty1) =R (tps1)+
+L(tls¢+1)I'I(tk’+1)P(tk+1 ‘ tk)HT (tk+1);
K (te1) = L(tpa1 )P (ther [t )H” (tp1) B! (t01)-

Step 11. Obtain the filtering estimate by repeat-
ing the step 8 of the CD-CKF algorithm.
Step 12. Calculate the error covariance matrix:

P(tk+1 | tk+1) = [In _K(tk+1)H(tk+1 )]P(tk+1 | tk)-

End of the loop for k.
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Comparison of the CD-CKF robust
modifications

This section presents the comparison of the con-
sidered CD-CKF modifications effectiveness. The
analysis has been made for the problem of tracking
a space vehicle, entering the atmosphere, given in
[10, 42]. In this case the state and the measurement
equations in the planar Earth-centered Cartesian
coordinate system are defined as follows

ETOIN x3(2)
x5 (¢) x4()

s (1) |=| D(0)s(6)+G(0)11 (1) +a (1) |
x4(t)| | D(£)x4(£)+ G (t) 2o (t) + w05 (2)
x5()] | ws (t) |

te(ty, ty ]

Vi(te) || 7(tea) + o1 (tea1) v

{yz(tkﬂ)}{e(tm)wz(tkﬂ)} he0 VL

Here x,(f), x,(t) are the space vehicle coordi-
nates; x3(t), x4(t) are the corresponding coordinate
velocities; x(¢) is the parameter of the vehicle aer-
odynamic properties; y,(,,;) is the distance to the
radar; y,(t,,,) is the angle between the space vehicle
and the horizontal axis;

D(t)=b(t)exp(MjV(t);

13.406
b(t) = -0.59783exp (x5 (t));

R(t)=x{ () + 5 (1);
V() =25 (1) + 2] (1);

398600
(1) 25
R°(1)

r(the1) = \/(xl (tk+1)_6374)2 +23 (t:1);

% (tp+1) j

o(t =arct
(thu Jare g(xl(tk+l)_6374

Let t;=0, N=150, ¢, ,; =0.1(k +1) and assume
that all priori assumptions made in the “Structural-
probabilistic description of the model” section are
valid, and the statistical characteristics of the noise
and the initial state are defined as follows

Q:diag[2.4064x10_4, 2.4064x107%, 0],

R- diag[l, (0.017)2}

6500.4
349.14
%(tp)=| -1.8093 |,
~6.7967
0.6932

P(ty) = diag[107%,107%,10°%, 1075, 1],

It is worth to be mentioned that all the consid-
ered robust modifications of the CD-CKF involve
using certain parameters. The optimal values of
these parameters (except for §,= 1078 in the CD-
MCCKF-1) should be found individually for each
run by minimizing the accumulated root mean
square error (ARMSE) on some grid.

Using the presented CD-CKF modifications, we
have processed data with the stochastic ordering of
outliers. The data have been modeled in such a way
they have 20 percent noise and the outliers noise
variance equal to R, = 10000R. Data modeling was
performed using software developed in the Matlab
system under the assumption that outliers are uni-
formly distributed over the entire modeling inter-
val at the same time points for both observation
components.

Figure 1 shows the dependence of the root mean
square error (RMSE) on time.

Root mean square error value for each time point
can be calculated using the equation

n

Z(xi (tp1)— % (tk+1 | tk+1))2 ,

i=1
k=0, N-1.

RMSE((tj11) = \/

In order to reduce the impact of the observed
data on the estimation results, we have modeled
M =100 different samples. The filtering quality
has been estimated based on the ARMSE value de-
fined in accordance with the formula [33]

1.8
1.5¢ V-V
1.2}
0.9

0.6 ]
0.3} M
02 4 6 8 10 12 14

— CD-VBCKF CD-MCCKF-2
CD-MCCKF-1 — CD-MCCKF-3

B Fig. 1. The RMSE values for the stochastic outliers
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B Table 1. The values of the accumulated root mean square errors for the stochastic outliers

N\

Filters ARMSE, ARMSE, ARMSE, ARMSE, ARMSE, ARMSE
CD-VBCKF 0.191 0.161 0.039 0.027 1.114 1.143
CD-MCCKF-1 0.674 0.795 0.094 0.109 1.245 1.630
CD-MCCKF-2 0.579 0.579 0.082 0.082 1.211 1.466
CD-MCCKF-3 0.214 0.150 0.041 0.029 1.112 1.144
- 2.11
ARMSE= |> ARMSE?, 181
i=1 1.5¢
h 1.2¢
where ool ]
1 MN-1 ' 2 0.6+ M
ARMSE; = |——> 3" (%] (1)~ #/ (tro1 [ o)) 5 0.3 — Aot -
MN = = , , , , , , ,
j=1k=0 0
0 2 4 6 8 10 12 14
i i — CD-VBCKF CD-MCCKF-2
J 2] i-
x/ (ty41) and 2/ (tk 1t +1) are the i-th components CD-MCCKF-1  CD-MCCKE-3

of the state vector and its filtering estimate for the
j-thrun.

The values of the accumulated root mean square
errors for the various robust CD-CKF modifica-
tions are shown in the Table 1.

It should be emphasized that the presented data
on a qualitative level repeat the results of the re-
search carried out by the authors in [33] for a model
of an underdamped oscillatory circuit.

We have also applied the presented CD-CKF
modifications to data with grouped outliers. The
outliers were organized in five groups containing
six observations each. The variance of the outliers’
noise was considered to be the same. The location of
outlier’s groups in the modeling interval is uniform
and random.

Figure 2 illustrates the dependence of the RMSE
on time.

One hundred different runs of the system have
been made again. The aggregated values of the ac-
cumulated root mean square error are shown in the
Table 2.

Hence, the CD-VBCKF and the CD-MCCKF-3
were also the most resistant modifications to the
presence of grouped outliers.

B Fig.2. The RMSE values for the grouped outliers

Conclusion

In the paper, four distributional-robust modifica-
tions of the continuous-discrete cubature Kalman fil-
ter have been proposed. The study of the effectiveness
of these modifications has been made for the problem
of tracking a space vehicle during its reentry into the
atmosphere. Two types of the outliers’ ordering have
been considered. The first one is the stochastic order-
ing, and the other one is the grouped ordering.

It has been found that the CD-VBCKF and the CD-
MCCKF-3 provide the best results that have approx-
imately equal qualities of estimation. Since the first
filter requires finding the optimal values of four
parameters (one of them is a matrix) to obtain the
proper results, the second one requires estimating
the only one parameter, so it seems to be appropriate
to recommend the CD-MCCKF-3 for practical using.

It is further planned to modify CD-MCCKF-3 to
provide computational robustness by developing a
corresponding square-root modification.

B Table 2. The values of the accumulated root mean square errors for the grouped outliers

Filters ARMSE, ARMSE, ARMSE, ARMSE, ARMSE; ARMSE
CD-VBCKF 0.225 0.159 0.045 0.028 1.121 1.156
CD-MCCKF-1 0.806 1.049 0.122 0.133 1.451 1.972
CD-MCCKF-2 0.657 0.744 0.099 0.097 1.329 1.665
CD-MCCKF-3 0.224 0.162 0.046 0.028 1.125 1.160
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HcenenoBanue 3¢hheKTHBHOCTH POOACTHHIX K aHOMAJIbHBIM HAOIIOIeHNAM Mo (KAl HeIpepPhHIBHO-TNCKPETHOTO
Ky6aTypHoro ¢puiasrpa Kanamana
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BBenenue: xapakTepHOe IJIs IPAKTUKY IPUCYTCTBUE B 9KCIIEPUMEHTAJIbHBIX JaHHBIX BEIOPOCOB — aHOMAJIbHBIX HAOIIOJEHUH — CII0-
COOHO CYIIIeCTBEHHO IIOBJIUATH HA KA4YeCTBO OﬁpaﬁOTKI/I YKa3aHHBIX JaHHBIX. Muorue AHaAMUYECKHe IIPOIeCChI OIIMChIBAIOTCA CTOXacTHu4e-
CKUMU HeJInHeNHbIMU ypaBHeHUAMY. COBpeMeHHbIE HeJIMHeHHbIe (DUIbTPHI, CPeau KOTOPBIX KyOoaTypHbIH puiabTp Kanmana 3aciykuBaer
0co00ro BHUMaHUs, He CcocOOHBI 3(hdeKTUBHO 00pabaThiBaTh JaHHBIE C AaHOMAaJbHBIMU HaOM0AeHuAMU. OJHUM M3 BOSMOYKHBIX ITyTeHl
pellleHus 3TOW MPOO6JIeMbI ABJsAETCA IPUMeHeHNe TaK Ha3bIBa€MbIX POOACTHBIX METOJO0B, YCTOMYUBBHIX K HAJIMNUYNIO BHIOPOCOB B U3MeEDHU-
TeJbHBIX NaHHBIX. I[epb uceaeqoBaHuA: BEIABUTH HanbosIee 3(pheKTUBHBIE U3 COBPEMEHHBIX ITEePCIEKTUBHBIX POOACTHBIX MOSU(MUKAIINHI
HeIPePBIBHO-AUCKPETHOr0 KybaTypHoro ¢uiabrpa KaaMaHa 1 JaTh COOTBETCTBYIOIME PEKOMEHIAIINY 110 UX IIpUMeHeHN0. Pe3yabpraThl:
PacCMOTPEHBI YaCTO BO3HUKAIOII[ME HA MPAKTUKE CUTYaIlK, KOT/[a IPOIEeCC IPOTEKAaeT HEeMIPEePhIBHO, a JaHHbIe HAOIIOJeHUN CHUMAIOTCS
nuckperno. Ha ocHOBe BapuanimoOHHOTO 0aileCOBCKOTO U KOPPEHTPOIIUITHOTO POOACTHBIX IOAXO00B K OIEHMBAHUIO IIAPaMETPOB CJIydaii-
HBIX IIPOIECCOB IIPEJIOKEHBI YeThbipe MOAUGMUKAIMY HEIPEPBIBHO-ANCKPETHOr0 KybaTypHoro ¢guiabrpa Kammana. Bo Bcex moguduka-
OUAX IPUCYTCTBYIOT IapaMeTpPhl, OIITUMAaJIbHbIe 3BHAYEHUA KOTOPBIX 3aBUCAT KaK OT HCHOHBSYEMOﬁ MaTeMaTUUYeCKOn Mozmesin, TaKk 1 OT
KOHKDETHO! pean3aly BHIOOPKU. OTU 3HAYEHUSA OIPEENAIOTCA YUCIEHHO IIyTeM MUHUMHU3AINU HAa HEKOTOPOU CeTKe HAaKOILJIEHHOM
cpenHel KBaApaTu4yHOU omubKu. IIpoBeseno ucciaenoBanue 9h(HeKTUBHOCTU IPEAJIOKEHHBIX POOACTHBIX MOAU(MUKAIINI HA IPUMepPe 3a-
[auy CJIeKeHUs 3a KOCMHUYEeCKUM allllapaToM IIPHU ero BXxoze B arMocdepy B YCJIOBUAX CIAYUANHOr0 U IPYNINPOBAHHOIO XapaKTepax pac-
MOJIOMKEHUA aHOMAJIbHBIX HAOJMIOAeHU. BhIsABIEHBI BA HAMJIYUIINX (PUIbLTPA C OJIUBKUM KauyeCcTBOM OlleHWBaHUA. K mpaKkTUyecKoOMy
IPUMEHEHUIO PEKOMEHI0BAaH KOPPEHTPOIMIHBIN (DUIbTD, UMEIONINH OqUH HacTpanBaeMblil napameTp. IIpaKTuyeckass 3HAUMMOCTD: BBI-
SABJIEHHBIN HauboJiee 9(hPeKTUBHBIN POOACTHBIN (PUIBTP MOYKHO UCIIOJIH30BATH IIPY PEIIeHUY PA3INYHBIX IPUKJIAJHBIX 3a/1a4, CBA3AHHBIX
C HlIeHTI/I(I)I/IRaILHeI;'I CTOXaCTHUYECKUX HeJIHHeﬁHbIX HEeIIPePbIBHO-AUCKPETHBIX CUCTEM.

KuaroueBsie c1oBa — HesimHellHas GuiabTpanus, KyoarypHbeil Guiasrp Kasimana, BBIOPOCH, KPUTEPU MaKCUMAaJIbHON KOPPEHTPOIINH,
BapuaIMoOHHOe 0alieCOBCKOE OlleHNBAaHKE, CTOXACTUUECKAs HEIIPEPhIBHO-IUCKPETHAS CUCTEMA.
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