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Introduction

Determinant optimization of matrices with mod-
ulus of entries  1 is a very difficult problem [1–4] 
without an universal algorithm for its solution. The 
first computer experiments were started in 1962 [5]; 
the further evolution of this subject has been dis-
cussed in [6–9] with algorithmic backgrounds [10–
13], specific orders [14, 15] and websites [16, 17]. 

There are methods based on the interrelation 
between optimal solutions for various matrix class-
es [18]. For example, the determinant optimization 
method for orthogonal column matrices proposed 
in our paper [19] allows us to find, in particular, 
non-orthogonal matrices with an absolute determi-
nant maximum (D-optimal matrices or D-matrices, 
in short) [20–23]. The key point here is that local and 
absolute extremums of determinants for these ma-
trix types are interrelated [24]. 

Our vast experience in matrix determinant opti-
mization allows us to make certain conclusions which 
lead us to a conjecture about maximum determinant 
matrices of orders equal to prime Fermat numbers.

Maximum determinant and relative 
maximum on the structure

The common and well known fact of the maxi-
mum determinant problem theory consists in the 

statement, that D-matrices have to have {1, –1} en-
tries. Much less known orthogonal by string (col-
umns) matrices, order n, having maximal value of 
determinant. 

Let M be a matrix with modulus of entries  1 
and M be a class of such matrices. 

Theorem 1 (Hadamard inequality [25]). Deter-
minant of M is bounded by nn/2 following the ine-
quality
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Hadamard matrices belong to the class of square 
quasi-orthogonal matrices defined by equality 
MMT I, modulus of entries  1, I identity matrix, 
pure orthogonal matrices satisfy MMT I. For all 
quasi-orthogonal matrices we can establish follow-
ing theorem. 

Theorem 2. Determinant of quasi-orthogonal 
matrix |det(M)|n/2.

The prove follows directly from definition: 
det(MMT)det(M)2, det(I)n, so value of deter-
minant is bounded by shown power of coefficient . 

For Hadamard matrices H, n, for conference 
matrices (C-matrices) CCT (n – 1)I, det(C)(n – 1)n/2. 
Hadamard matrices, can exists for orders 1, 2, 4t 
(due conjecture of Hadamard they exist for every 
4t). Let us note, that matrices of maximum determi-
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nant, taken for even orders 4t2, can exceed value 
(n – 1)n/2, it is a price for the strings (columns) pair 
wise orthogonal property CCT (n – 1)I. 

So we can name conference matrices as matrices 
of local maximum determinant, i. e. relative (non 
absolute) maximum achieved on class M for square 
equality CCT – (n – 1)I 0.

Definition 1. Define the subclass of matrices

0   1    

for  1  0

{ | { }, , , ..., ;

| | , }.
ij

ij ii

Ñ M i j n

i j M M

  

  

M M

For the class of matrices defined above, we state 
the following simple statement based on Hadamard 
approach. Let
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where M C0. Then the determinant of M is 
maximized when MMT is a scaled identity matrix 
(n – 1)I, and the bound for the maximum value of 
determinant is (n – 1)n/2, i. e. conference matrices 
play a role of Hadamard matrices for orders 4t2 

where 
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In the difference to Hadamard 

matrices, conference matrices can exists for orders 
1, 2, 4t and for orders 4t2 (if 4t1 is a sum two 
squares a2b2). There is no conference matrices of 
orders 22, 34, 58, 70, 78, 94 (sequence A000952 of 
OEIS). Conference matrices with orders 66, 86 are 
unknown today. 

Example. Suppose 
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where M12, M13, and so on are real numbers such 
that |Mij|  1 for all i j. Thus M C0, and |det(M)| 
 |M13M21M32 M31M12M23|   |M13M21M32| 
|M31M12M23|  2. For any matrix of order 3 fixed 
structure gives estimation 

21 2 2/( )nn   , so there 
is no conference matrix of order 3 (and any other 
odd order). With it, if conference matrix exists, for 
every n4t2 it gives maximum determinant on 
the fixed structure, the same as Hadamard matrix — 
the structure of resolvable for all orders matrix is 
a non trivial subject of research (two negacirculant 
matrix, two border and two circulant matrix and 
so on). 

If for Hadamard matrices the fixed structure is 
not defined, for conference matrices, historically, 
it was taken the diagonal structure C0. Due conjec-

ture of Seberry there are skew Hadamard matrices 
(HHT2I) for every n4t, conference matrices 
follows them on orders 4t due CH – I for Hadamard 
matrices with positive diagonal. Maximum of deter-
minant for the fixed structure, as we see, belongs to 
the conference matrices. We can try to generalize 
class C0 by class of any quasi-orthogonal matrices 
(with no 0), but this estimation is enough for our 
aims to comment conference matrix property to be 
matrix of relative maximum determinant.

The following question of theory of matrices con-
sists in the search of odd order matrices including 
matrices of local maximum determinant (having no 
fixed structure, but being not absolute maximum) 
defined by the square equality MMT – I 0. 

For the latest task we can prepare an optimiza-
tion procedure, that starts from some beginning 
M0 and tries to make determinant bigger for every 
new step, giving a chain of matrices Mk: det(Mk) > 
> det(Mk–1). To achieve this result we take in con-
sideration so called m-norm of quasi-orthogonal 
matrix (it is not usual norm used for matrices). 

Definition 2. m-norm of orthogonal matrix Q, 
QQTI, Q{Qij}, is .

,
max ij
i j

m Q  

Quasi-orthogonal matrices H, C and other ones 
defined by MMT I, modulus of entries  1, could 
be found by the corresponding orthogonal matrices 
divided by m-norm, so the maximum of their en-
tries becoming be equal 1. 

Definition 3. m-norm of quasi-orthogonal matrix 
M, MMTI, is m-norm of corresponding orthogo-
nal matrix Q mM. 

Theorem 3. Let be constructed a chain of Qk, 
|Qk|1, mk  mk–1 (their m-norms), so it follows 
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Lemma 1. Let M be quasi-orthogonal matrix, or-

der n, with m-norma m, then 
1

.
nm

M

It follows from QmnM1. The tasks of de-
terminant optimization, it is maxmin-task, when 
we minimize the maximal entry of orthogonal ma-
trix Qk: mk  mk–1. 

To realize this process, due Lemma 1, we choose 
initial condition M0 with m-norm m0. Let us bound 
modulus of entries of corresponding matrix Q0 
by value pm0, where p 1. Due this action matrix 
will lose property to be pair wise strings (columns) 
orthogonal, but we can restore it by a standard 
Gramm — Schmidt procedure giving us the next 
matrix Q1 saving general property m1  m0 for 
enough little shift , p1 – . As it is seen, this al-
gorithm leads to the extreme point satisfying the 
equality MMT – I0. 

For the quasi-orthogonal matrices of low order, 
2 or 3, we can build determinant as a function of 
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one or two arguments, the latest one drawn on the 
Fig. 1. 

For the quasi-orthogonal matrices of bigger 
orders algorithm based on the theorem 3 gives an 
effective multi-parametric optimization returning 
Hadamard or conference matrices which were build 
historically through the very different approach. 
Hadamard observed it as solution of square equa-
tion HHT – nI0. This approach is good, but it 
brings no guaranty that integer solution exists for 
all orders equal to 4t. 

The second idea, that Hadamard matrices have 
biggest determinant was forgotten as a practical ap-
proach to calculate matrices due computations that 
were impossible for his time (but not today). This 
idea is interesting with many points of view as a 
bridge between solutions in integer and real num-
bers: theorem 3 makes Hadamard matrices a part 
of iteration process with clean prospective accord-
ingly his famous conjecture by means of not combi-
natorial mathematics. 

Theorem style review of determinant bounds 
known for odd orders well done by the work [26] hav-
ing numerous details. Main problem of these func-
tional bounds, they go through rational and irra-
tional points, while rational matrices have rational 
determinant. So it gives some sharp bounds for nar-
row classes of observed matrices. Remember, that 
theory of maximum determinant matrices with 1, 
–1 entries cannot resolve just order 22 to our time. 
“Barba” matrices exist as a fact of abstract theory 
for many “resolved” points. It means, they are de-
scribed by bound partially. Algorithm (to build ma-
trices, if it works) has combinatorial character and 
cannot be used effectively for big orders.

We take other matrices for irrational values of 
bound. In such case these theorems lose their sense 
and cannot be used to describe the result given by 
“special points”. 

There are rare orders equal to prime Fermat 
numbers (today known five ones). 

In different to previous case there is algorithm 
that doesn’t work outside described area. But for 
given points it gives result no difference how big 
is the size of matrix — the latest prime Fermat 
numbers are very big. Matrix, order 17, can be con-

structed on the base of so called regular Hadamard 
matrix, order 16, adding the border. The same step 
is impossible for other regular structures, for ex-
ample, it doesn’t work with order 64.

The tiny details of numerical procedure from 
theorem 3 are discussed in [18]. Naturally, we have 
the global (absolute) and local maximum with given 
square bound. Algorithm was realized and maxi-
mum determinant quasi-orthogonal matrices were 
classified in the set of papers [18, 24]. Their prop-
erty consists in the number of entry values ({1, –1} 
observed for even orders 4t, and {0, 1, –1} observed 
for 2t) for odd orders it arises and gives a set of val-
ues {a, b, c, …}. 

The local maximum determinant matrices ap-
peared to be preferable due their simple structure 
and low number of entries {1, –b}. As a matter of 
fact, Hadamard matrices have these extreme struc-
tures as circulant or two-circulant blocks. It prolon-
gates the other way to construct them. Non orthogo-
nal extreme matrices of odd orders have two entries 
{1, –1}. The correspondence between Hadamard ma-
trices and local maximum determinant matrices is 
continued on this case by change –b on –1. 

Numerical sequences and number theory

Hadamard was the first one to consider a numer-
ical sequence with a determinant maximum [25]. 
He showed that for a set of matrices with entries {1, 
–1} the determinant is maximum, for example, in 
Н matrices (Hadamard matrices) of orders 1, 2 and 
n4t, t an integer, for which HTH nI, I diag(1, 
1, …, 1). 

Columns (and rows) of {1, –1} matrices which 
have a maximal determinant are strictly orthogo-
nal; such matrices are called Hadamard matrices. 
Thereby, the absolute maximum determinants 
of matrices with orthogonal columns and those 
of D-matrices are the same. This statement is not 
true for other orders, but the difference of abso-
lute maximum determinant for matrices of the two 
above-mentioned sets is very small. The absolute 
maximum determinant on the class of non-orthog-
onal matrices is related to the local extremum (not 
the absolute one) on the class of quasi-orthogonal 
matrices. 

Let us consider, for example, suboptimal (with-
out an absolute determinant maximum on their 
set) quasi-orthogonal matrices of orders 17 and 14 
shown on Fig. 2. The variety of matrix entry values 
is depicted by shades of gray. 

Rounding of the entries of these matrices to inte-
gers {1, –1} produces matrices which are not orthogo-
nal by columns, but strictly optimal by determinants. 
The rule, demonstrated on the pictures, is a general 
one. The determinant maximums of matrices which   Fig. 1. Extremal points of determinant 
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are non-orthogonal or orthogonal by columns (qua-
si-orthogonal) usually correspond to each other. 

The structures of optimal matrices are the 
same, and the entry values described by paramet-
ric dependencies allow us to obtain matrices of both 
types. Maximum determinant matrices can be ob-
tained by rounding. It gives entries 1 and –1. 

However, there is a shift in strict optimums: 
the absolute determinant maximum in non-orthog-
onal matrices corresponds to a local optimum on 
the quasi-orthogonal matrix class which is not the 
biggest one. The opposite is also true. Extreme qua-
si-orthogonal matrices with a small number of en-
tries are called Cretan (see more precise definitions 
in [24, 27]). The interrelation of extremal problems 
allows us to use the same numerical method to find 
both Cretan and maximum determinant matrices 
[20–23]. However, this brings up a question: on 
which orders should we seek for a family of matri-
ces extreme by their determinants? 

Apart from Sylvester orders n 2k, k an inte-
ger, Mersenne numbers n2k – 1 embedded in a se-
quence of numbers 4t – 1 are known. Fermat num-
bers are embedded in a 4u21 sequence which, in 
turn, is embedded in a 4t 1 sequence. 

Quasi-orthogonal matrices of odd orders n 

2k – 1 and 22 1
k

n    which have a local maximum 

of determinant are called Mersenne and Fermat 
matrices [28, 29] respectively. The definition of 
Mersenne matrices can be expanded to orders 
4t – 1. The definition of Fermat matrices can be ex-
panded to “quadratic” orders 4u21. These fami-
lies are discussed more specifically in [18, 24, 27].

Orders of Mersenne and Fermat [18, 28] matri-
ces with entry values rounded to integer (rounded 
matrices, for short) are neighboring with the or-
ders of Hadamard matrices which have absolute 
determinant maximums. Determinants of rounded 
Mersenne matrices of small orders are maximal on-
ly for a few first prime numbers of their sequence. 

This sequence of extreme matrices is regressing 
by the relative (with reference to the global maxi-

mum) values of the determinant. Rounded Fermat 
matrices of orders equal to the first three Fermat 
prime numbers are different, having strictly max-
imal determinants. Fermat prime numbers are a 
rapidly increasing sequence; therefore checking the 

matrices of all orders 22 1
k

n    is numerically im-

possible. However, their difference from the first 
matrices with Mersenne prime numbers as orders is 
obvious. It allows us to assume that a sequence of 
Fermat matrices is not regressing, and its determi-
nant is always a global maximum. 

The two mentioned sets of matrices neighboring 
with Hadamard matrices are similar, but not iden-
tical in relation to the determinant maximums. Let 
us discuss some important details. 

Guido Barba’s inequality

The odd orders for which the upper formally at-
tainable bound of determinants of maximum deter-
minant matrices is known, are obtained from the 
Guido Barba’s inequality [1, 26]. 

Theorem 4. It states that matrices A of orders n 
with modulus of entries 1 satisfy the inequality: 
|det(A)|2  det((n – 1)IJ)(n – 1)n–1(2n – 1), where 
Idiag(1, 1, …, 1), and J is a unity matrix. The max-
imum can be attained on orders for which 2n – 1 is a 
square. 

This necessary condition for extreme solutions 
follows the fact that optimal matrix entries are 
integers 1 and –1. Note that the Barba’s bound is 
attainable for orders na2b2, ba1 [1] nested 
in the same sequence 4t1 that the Fermat number 
sequence is embedded. 

For Fermat numbers different from 5, 2n – 1 is 
not a square, which means that the Barba’s bound 
is not attainable. It is an optimistic determinant 
estimation, certainly not pragmatic, because it is 
irrational. 

The non-attainability of the bound is not critical. 
The orders of matrices described by certainly at-

tainable integer values of the bound are 5, 13, 25, 
41, 61, 85, 113…, and the structures of every second 
one of these matrices of orders 13, 41, 85, … are sig-
nificantly more complex than those of the others. 
There is no algorithm to construct these matrices: 
the existence of matrices for the orders we have list-
ed is theoretically possible, but not all of them are 
known [1, 5, 17].

Matrices of orders equal to Mersenne numbers 
and Fermat matrices of prime orders Fk3, 5, 17, 
257, 65 537… have an advantage over all other ma-
trices, because they have an algorithm for their con-
struction, which is a modified Sylvester algorithm 
[28, 29] producing matrices of a local determinant 
maximum [18, 24] and, as we believe, maximum 

  Fig. 2. Suboptimal quasi-orthogonal matrices of or-
ders 17 and 14
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determinant matrices for orders equal to prime 
Fermat numbers. 

At the same time, an irrational Mersenne matrix, 
after its irrational elements are rounded to integer 
values, becomes equal to the {1, –1}-core of a normal-
ized Hadamard matrix, and the core of a Fermat ma-
trix after rounding its irrational elements to {1, –1} 
becomes equal to a regular Hadamard matrix of order 
4u2. Thus, matrices of non-strict determinant opti-
mums of orders equal to Mersenne numbers are find-
able and can be used for indirect finding of Hadamard 
matrices strictly optimal by their determinants. 

Maximum determinant matrix conjecture

Based on the preliminary study, we identified that: 
— skew-symmetric circulant Mersenne matrices 

correspond to prime Mersenne numbers [27, 28];
— prime numbers and the symmetry types of 

circulant optimal and sub-optimal structures are 
synonyms of a certain hyperquality of such differ-
ent mathematical objects as numbers and matrices. 

The first person (if not the legendary Pythagoras) 
who noticed the correlation between objects from 
different areas of mathematics was Karl Friedrich 
Gauss. In 1796, he discovered a relation between 
prime numbers and geometric figures, after he in-
scribed a regular heptadecagon into a circle. 

Later, Gauss formulated a generic case about the 
relation between the number of sides of a regular 
polygon inscribed in a circle, and the Fermat prime 
numbers. 

The peculiarity of Fermat prime numbers allows 
us to formulate a conjecture about the relation be-
tween matrix orders and the maximums of their 
determinants. 

Generalised Gauss сonjecture. Quasi-orthogonal 
local maximum determinant matrices [24, 27] of or-
ders equal to prime Fermat prime numbers Fk 3, 
5, 17, 257, 65 537, … and only they for all matrices of 
orders within a sequence which nests Fermat num-
bers, when rounded to {1, –1}, give global maximum 
determinant matrices.

First three Fermat matrices 
Ta s

s

 
   
 

F
H

 of or-

ders 3, 5 and 17 are based on regular Hadamard 
matrices H with entries changed to {a, –b} to get F 
orthogonal by rows (columns) [18, 24], the latter of 
which is shown on Fig. 3, can be rounded to {a1, 
b1, entries of s are 1} and checked to validate the 
conjecture. It was noted earlier that 2n – 1 is not a 
square for Fermat numbers different from 5.

The Barba’s bound B(n – 1)(n–1)/2(2n – 1)1/2 is 
an irrational and unattainable number for Fermat 
matrices rounded by entries (integer). However, 
this is just an optimistic upper-bound estimate of 

the determinant, an abstract bound deducted in the 
work [1] which may or may not be attained by an in-
teger matrix. 

In case this optimistic irrational bound B is un-
attainable, the pragmatic estimate differs from it by 
an irrational scale multiplier, multiplying by which 
makes the real bound integer-valued and attaina-
ble. Since we know the Fermat matrix stricture, and 
the irrational multiplier of the bound can be found, 
the determinant for a Fermat matrix of order n Fk 
should be estimated as Fk–1/(2Fk – 1)1/2B. 

As noted above, Fk–1/(2Fk – 1)1/2 is an irrational 
number, in the general case. 

It gives a relative (as compared to the bound B) 
determinant value described by the following for-
mulae: |det(A)|(n – 1)(n–1)/2(2n – 1)1/2Fk–1/(2n –
– 1)1/2 (n – 1)(n–1)/2Fk–1, n Fk the Fermat num-
ber. This is an estimate of the attainable value of an 
integer matrix determinant.

The first Fermat number F03 is a starting one, 
without a preliminary Fermat number, but this ma-
trix, like the matrix of order 5, is known. In this 
matrix, the –1 entries which are different from 1 
are placed on the diagonal. 

For order F15, we have an integer determinant 
correction value equal to 1. 

This is an exception: the Fermat matrix deter-
minant attains the Barba’s bound and we have 
F0/(2F1 – 1)1/23/91/21. The optimal matrix struc-
ture matches the starting one (for order 3), so these 
are two diagonal structures with a simple form. 

The first matrix which is different from them is 
a Fermat matrix of order 17. 

For F217, we have 2F2 – 133, which is not a 
square. Its relative (in reference to the Barba’s bound) 
determinant equals F1/(2F2 – 1)1/25/331/2
0.8704... This irrational number is a scale multipli-
er which is a correction to the unattainable Barba’s 
bound B168331/2. 

Their product is an integer 5/331/2B5168 
21 474 836 480. This is the determinant for the 
Fermat matrix of order 17. This estimation is the 
same as 327 680216 stated on the website [15].

Fermat matrices can be found for orders into 
which Fermat numbers are nested, like 37, 65, etc. 
According to the same resource [15], the determi-
nant of a determinant maximum matrix of order 

  Fig. 3. Quasi-orthogonal Fermat matrices
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37 is equal to 72917236. The determinant of a 
determinant maximum matrix of order 65 is esti-
mated as 1481631264.

The determinant of the Cretan matrix of order 37 
given in [30] and rounded by its entries is approximate-
ly equal to 7.221028, being less than the estimate 
8.251028 for the integer matrix in the table [17]. For 
the order 65 (Fig. 4 illustrates it and the next order 
257), the determinant of a rounded Cretan matrix is 
5.651058, whereas the table [15] gives the value of 
5.811058 for an integer matrix of the same order. 

The data above confirm the conjecture: a determi-
nant maximum can be attained only for matrices of or-
ders equal to prime Fermat numbers. On orders equal 
to prime and composite numbers of a sequence, which 
nests the Fermat sequence (without them), the state-
ment is not true. An interesting analogy is noticeable 
here: according to the conjecture, and the Gauss’s the-
orem, regular polygons with 37 and 65 angles cannot 
be completed with just a ruler and a compass.

We believe that the similarity between hyper 
objects of mathematics and the conditions of the 
Gauss’s theorem can apply, among others, to deter-
minant maximum matrices. 

Extremal matrices of orders 257 and 65 537 are 
very difficult to calculate and check the values of 
their determinants (to match with determinants of 
Fermat matrices) due to the large number of pos-
sible permutations. However, we have calculated 
the Fermat matrix of order 257 using a modified 
Sylvester algorithm [27–29]. The correspondence of 
symmetries to matrix orders was studied in [31, 32]. 
The symmetric matrix image is shown in Fig. 4. 

According to our conjecture, the Fermat matrix 
of order 257 has a relative (in reference to the Barba’s 
bound) determinant value F2/(2F3 – 1)1/20.7505… 
This irrational number corresponds to the integer val-
ue of |det(A)|(n – 1)(n–1)/2Fk–1 25612817 (approxi-
mately 0.3110310). This estimation is absent in the 
table on the website [17] and should be considered new. 

Conclusion

Fermat matrices differ from the matrices of or-
ders where the Barba’s bound is attainable, because 
we know an algorithm of finite complexity for their 
calculation. Hence, for a rounded Fermat matrix of 
order 65 537, for instance, you can predict a precise 
value of its relative determinant 0.7099 (absolute 
value is 65 53632768257), and build its matrix im-
age. It will be close to the one depicted in Fig. 2, but 
with significantly more fractal details. 

Quasi-orthogonal Fermat matrices tend to 
Hadamard matrices with a rise in order, and the 
values of their entries tend to values 1 and –1. 
The determinants of rounded Fermat matrices of 
known prime orders do not go below 0.7 (in refer-
ence to the Barba’s estimation). These facts allow 
us to consider the matrices of orders equal to prime 
Fermat numbers a family of maximum determinant 
matrices. 
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Простые числа Ферма и гипотеза о матрицах максимального детерминанта

Н. А. Балонинa, доктор техн. наук, профессор, orcid.org/0000-0001-7338-4920, korbendfs@mail.ru
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А. А. Востриковa, канд. техн. наук, доцент, orcid.org/0000-0002-8513-368
aСанкт-Петербургский государственный университет аэрокосмического приборостроения, Б. Морская ул., 67, 
Санкт-Петербург, 190000, РФ 

Цель: решение задачи оптимизации определителей матриц с модулем элементов  1, разработка теории таких матриц на осно-
ве предварительных результатов исследования. Методы: экстремальные (по определителю матрицы) решения устанавливаются 
путем минимизации абсолютных значений элементов ортогональных матриц с последующей классификацией. Результаты: ма-
трицы порядков, равных простым числам Ферма, являются особыми, так как их абсолютные максимумы детерминантов могут 
быть достигнуты на простой структуре. Дана точная оценка максимума детерминанта для этих матриц и сформулирована соот-
ветствующая гипотеза. Проанализирована тесная связь между решениями экстремальных задач с ограничением на ортогональ-
ность столбцов матриц и без него. Показано, что относительные максимумы определителей ортогональных матриц соответствуют 
абсолютным максимумам определителей матриц, не ограниченных ортогональностью. Рассмотрены способы построения экс-
тремальных матричных семейств для по рядков, равных числам Мерсенна. Практическая значимость: матрицы максимального 
детерминанта широко используются в задачах помехозащищенного кодирования, сжатия и маскирования видеоинформации. 
Программы для поиска матриц максимальной детерминанты и библиотеки построенных матриц используются в математической 
сети «mathscinet.ru» вместе с исполняемыми онлайн-алгоритмами.

Ключевые слова — определитель, максимальный определитель, квазиортогональные матрицы, матрицы Адамара, матрицы 
Мерсенна, матрицы Ферма, критские матрицы.
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