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Introduction: Development of post-quantum digital signature standards represents a current challenge in the area of
cryptography. Recently, the signature schemes based on the hidden discrete logarithm problem had been proposed. Further
development of this approach represents significant practical interest, since it provides possibility of designing practical signature
schemes possessing small size of public key and signature. Purpose: Development of the method for designing post-quantum
signature schemes and new forms of the hidden discrete logarithm problem, corresponding to the method. Results: A method
for designing post-quantum signature schemes is proposed. The method consists in setting the dependence of the public-
key elements on masking multipliers that eliminates the periodicity connected with the value of discrete logarithm of periodic
functions constructed on the base of the public parameters of the cryptoscheme. Two novel forms for defining the hidden discrete
logarithm problem in finite associative algebras are proposed. The first (second) form has allowed to use the finite commutative
(non-commutative) algebra as algebraic support of the developed signature schemes. Practical relevance: Due to significantly
smaller size of public key and signature and approximately equal performance in comparison with the known analogues, the
developed signature algorithms represent interest as candidates for practical post-quantum cryptoschemes.
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Introduction

Since the mid-1990s, cryptographic algorithms
and protocols have been widely used to solve infor-
mation security problems [1, 2]. Public key crypto-
systems are of particular importance in electronic
document management technologies [3, 4]. The most
widely used public-key algorithms and protocols are
based on the computational complexity of the factor-
ization problem (FP)[5, 6] and the discrete logarithm
problem (DLP)[7, 8]. However, progress in the theory
and technology of quantum computing suggests that
in the fairly near future, a quantum computer will be
available and can be used to solve FP and DLP.

Since polynomial algorithms for solving FP and
DLP are known for a quantum computer [9, 10], the
implementation of this forecast will make it inse-
cure to use public-key cryptographic algorithms
and protocols based on FP and DLP [11, 12]. This
raises the problem of the development of post-quan-
tum public-key cryptoschemes based on the compu-
tationally hard problems of other types

Over the past decade the global cryptograph-
ic community has been actively developing the
post-quantum public-key cryptosystems [13, 14].
As a basic primitive, a number of studies consider
the problem of searching for a conjugating element

in non-commutative braid groups [15, 16]. This
problem has been studied in numerous papers and
fundamental difficulties associated with the devel-
opment of practical post-quantum cryptosystems
based on it have been identified [17].

At the end of 2016, the National Institute of
Standards and Technology of the United States
(NIST) announced a program on the developing
a project for post-quantum standards for public
key-agreement and electronic digital signature
(EDS) schemes by 2024, within which a world com-
petition was announced [18] for the development
of cryptoschemes of the said type. Out of 69 pro-
posed candidates for post-quantum cryptograph-
ic schemes 17 public key-agreement schemes and
9 EDS schemes were selected for participation in
the second stage of the competition [19, 20].

The main drawback of the proposed post-quan-
tum EDS schemes is the large total size of the pub-
lic key and digital signature. A promising approach
to the development of post-quantum EDS schemes,
based on the use of the computational complexity
of the hidden discrete logarithm problem (HDLP),
remained out of the attention of the participants of
the NIST competition.

The known forms of HDLP are given in finite
non-commutative associative algebras (FNAA)
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given over a ground finite field GF(p) [21]. The ex-
tention of the class of algebraic carriers of HDLP
and the development of new forms of HDLP is of
significant interest for the development of practi-
cal post-quantum cryptosystems [22, 23]. In this
paper, we propose two new forms of setting the
HDLP, which differ in that they use a commuta-
tive group with pu-dimensional cyclicity (u > 2) as
a hidden group. One of the forms is set in a com-
mutative group with multidimensional cyclicity
[24, 25] (a finite group whose basis includes two or
more group elements that have the same order is
called group with multidimensional cyclicity). The
second form of HDLP is set in the FNAAs, vari-
ous types of which are considered in the works [22,
26, 27].

The hidden discrete logarithm problem
as base primitive of post-qantum
cryptoschemes

The well-known polynomial algorithms for solv-
ing DLP and FP on a quantum computer are based
on reducing each of them to the problem of finding
the period length of a periodic function construct-
ed using public parameters of the cryptosystem.
When solving DLP, a periodic function is construct-
ed that contains a period that depends on the value
of the logarithm. A sufficiently fast calculation of
the period length is provided by the fact that for
functions that take values in a finite cyclic group, a
quantum computer effectively performs a discrete
Fourier transform [28, 29].

The DLP is formulated as follows: given a pub-
lic key Y’, which is an element of a cyclic group of
prime order and calculated by the formula Y’ = G¥,
where G is the group generator, x is the private key
(x < q). You need to calculate the value of x from
the known G and Y. For a classical computer, pol-
ynomial algorithms for finding discrete logarithm
are unknown in the multiplicative group of the field
GF(p) and in the groups of elliptic curve points.

Calculating the value of x on a quantum com-
puter consists in constructing a periodic function
7@, j) = (Y')!G/ from two variables i and j, taking in-
teger values, which contains periods of the follow-
ing lengths: (0, q), (g, 0), (¢, @) and (-1, x). The first
three values are related to the order value of the cy-
clic group, and the last one is related to the discrete
logarithm:

(V)G = (Y)Y G = fG, j) = fi -1, + 2).

For a function f(i, j), that takes values in an ex-
plicitly defined cyclic group of any nature, the quan-
tum algorithm finds the period of length (-1, x) in
polynomial time.

7

For the construction of HDLP-based EDS
schemes, FNAAs of various dimensions m are used
as algebraic carriers (usually m =4 and m = 6),
which contain a sufficiently large number of iso-
morphic cyclic groups [22, 26, 27]. A secret cyclic
group of prime order is selected to generate the
public key. Some group element N that is different
from the unit element of the group is selected, and
the element N¥ is calculated, two secret masking
operations y; and vy, are formed, each of which is
mutually commutative with the base exponentia-
tion operation, and two elements of the algebra are
calculated Y and Z: Y = y;(N*), Z = yy(N), belong-
ing to two other cyclic groups of algebra. To ensure
the correct operation of the EDS scheme coordinat-
ed operations y; and y, are selected. Thanks to this
feature the function f(i, j) = Y'Z/ is periodic and
contains a period of length (-1, x), however, it takes
arbitrary values in the FNAA used as an algebraic
carrier, i. e. the values are not restricted to some
fixed finite group. This determines the security
of the HDLP-based EDS schemes to attacks using
known algorithms for finding the length of a period
on a quantum computer.

The design criterion of the post-quantum sig-
nature schemes, described in [22, 26], this is the
following: setting periodic functions constructed
on the base of public parameters of the EDS scheme
should lead to the fact that these functions with a
fairly low probability take values that belong to any
one fixed group.

However, quantum algorithms for finding the
period length for a broader class of periodic func-
tions may appear in the future. The possibility of
maintaining high security of EDS schemes with the
appearance of such quantum algorithms can poten-
tially be provided by specifying the computational
impossibility of constructing periodic functions
with a period length that depends on the value of
the discrete logarithm.

Thus, the wording of the strengthened crite-
rion of providing resistance to quantum attacks
can be shown as follows: cryptoscheme should be
constructed in such a way that the construction
of periodic functions based on public parameters
of the cryptoscheme should cause these functions
will be free from period, depending on the value of
discrete logarithm, although there will be periods
whose lengths are set by prime order of hidden cy-
clic group.

In this paper, finite associative algebras con-
taining finite commutative groups with multidi-
mensional cyclicity are used as the algebraic carri-
er of the cryptosystem to develop EDS schemes that
satisfy the enhanced criterion. Groups of this type
include groups whose basis includes two or more el-
ements, the order of each of which is equal to the
same value [24, 25].
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Setting the finite commutative groups with
multidimensional cyclicity

Suppose a finite m-dimensional vector space is
set over the field GF(p), where p is a prime. Usually,
a vector is presented as an ordered set of coordi-
nates A = (a,, ay, ..., a,, ;) or as a sum of one-compo-
nentvectors A = a,e, + a,e;+ ... + a,, ;e ;, where
e; (i=0,1, .., m~-1)are basis vectors. Defining ad-
ditionally the operation of vector multiplication (°)
possessing the property of the two-sided distribu-
tivity relatively the addition operation of vectors,
one gets the finite m-dimensional algebra.

The multiplication operation of the vectors

A:Zi";)laiei and B:Z?Z)ijej is set with the

following formula: AoB= z;n::)l Z;Z)l a;be; oe;,

where each pair of the basis vectors is replaced by
the one-component vector indicated in the intersec-
tion of the i-th row and j-th column of the so called
basis vector multiplication table.

Setting the hidden discrete logarithm
problem in a finite commutative group
with multi-dimensional cyclicity

In commutative groups, the method of masking
the base cyclic group, in which it is supposed to
perform the exponentiation operation, should be fo-
cused on the implementation of the mentioned earli-
er strengthened criterion of providing resistance to
quantum attacks. Indeed, in commutative groups,
it is not possible to perform the automorphic and
homomorphic mapping operations used in FNAA
[22, 26], therefore we need to offer a new method of
masking.

The hidden logarithm problem is set at the stage
of forming a public key, which includes the selection
of a secret base cyclic group by generating a ran-
dom vector G, considered as the generator of this
group. After performing the basic exponentiation
operation (which makes the main contribution to
the security of the cryptosystem), we get the vec-
tor G*, which together with the vector G is subject
to masking, which will give two vectors that are
elements of the public key. The proposed masking
method uses the idea of multiplying vectors G and
G* by randomly selected vectors U and D of order g,
which belong to different cyclic groups other than
the base one, and such that the triple of vectors
(G, U, D) forms the basis of a primary subgroup of
order ¢3. Thus, one gets the public key as a pair of
vectorsY = G*oUandZ = G D.

It is easy to see that a pair of vectors (Y, Z) forms
the basis of a primitive subgroup of order ¢2, there-
fore, the periodic function f,(@i, j) = Yo Z/ takes on
all g2 values of the specified primitive subgroup
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with a period of length (g, ¢). This function also con-
tains length periods (g, 0) and (0, q) and is free of
explicit periodicity, the length of which depends on
the discrete logarithm. The latter is determined by
the masking influence of multipliers U and D.

The principal point is that these multipliers have
the same order as the vectors G and G~. If this condi-
tion is violated, for example, if the multipliers are
vectors U and D have a prime order r # g, then their
masking influence can be completely eliminated by
exponentiating the vectors Y and Z to the degree r
and defining the periodic function f,G, j) = Y o Z7,
that contains a period of the length (-1, x):
Yr(i—l) o Zr(j+x) = Y7 7T% o Zr(j+x) =Y"io 71,

Masking multipliers contribute to the digi-
tal-signature verification equation. This effect
must be compensated for ensuring the correct func-
tioning of the EDS algorithm. The latter is supposed
to be provided by calculating an additional element
of the digital signature in the form of a vector S,
that is included as a multiplier in the verification
equation.

If there is a multiplier that is a signature ele-
ment, it is possible to easily forge the signature us-
ing the vector S as a fitting parameter, the random
value of which is calculated as unknown in the EDS
authentication equation. To prevent this method of
the EDS forgery, the idea of doubling the verifica-
tion equation can be used, i. e. instead of one verifi-
cation equation, two similar equations will be used,
which use different pairs of the values (Y;, Z;) and
(Y,, Z,) and the same signature in the form of tri-
ple of the values (e, s, S). In this case forgery of
the signature for the first and second verification
equations will lead to different values of the fitting
parameter S, which makes the specified method of
EDS forgery computationally infeasible.

The proposed mechanism for doubling the veri-
fication ratio assumes the calculation of the public
key in the form of two pairs of vectors (Y;, Z;) and
(Y,, Z,), which ensure that the verification equation
will be satisfied for the same signature value. This
is ensured by the fact that the first and second ele-
ments in each of the pairs (Y;, Z;) and (Y,, Z,) are
connected by the same value of the discrete loga-
rithm x and the same values of masking factors U
and D. Independence of the pairs (Y;, Z;) and (Yj, Z,)
is ensured by the fact that independent base cyclic
groups are used for calculating the said pairs, and
random multipliers U and D are chosen such that
the four vectors Y;, Z;, Y, and Z, form the basis of
a primary group of order ¢%. The latter provides the
implementation of the enhanced post-quantum re-
sistance criterion (the computational infeasibility
of constructing a periodic function with a period
defined by the value x).

In the versions of the HDLP specified in the
FNAAs and used for designing EDS schemes in [22,
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26], the calculation of the value of the discrete log-
arithm x in the secret base cyclic group can be per-
formed using the baby-step-giant-step algorithm.
This is directly connected with the possibility of
constructing a periodic function containing a pe-
riod whose length depends on the x. This circum-
stance makes it necessary to use a hidden cyclic
group of prime order, the size of which is 256 bits
while providing 128-bit security.

The proposed version of the HDLP, set in finite
commutative groups, implements the enhanced cri-
terion for ensuring post-quantum resistance, i. e.
periodic functions constructed on the base of pub-
lic parameters of the EDS scheme are free from the
periodicity associated with the value of the discrete
logarithm x. The calculation of the value x by the
baby-step-giant-step method and other known ana-
logues can not be carried out due to the fact that the
calculation of the value of x can not be separated
from the calculation of at least one of the secret vec-
tors G, U, and D. Thus, you can expect that a 128-
bit value ¢ is sufficient to provide 128-bit security.
However, due to the fact that the new version of the
HDLP is little studied, we will consider the imple-
mentation of the HDLP-based EDS algorithm for
the case of using 256-bit values q.

Digital signature scheme using calculations
in a finite group with four-dimensional
cyclicity

As the algebraic carrier of the EDS scheme, we
will use a four-dimensional finite commutative al-
gebra defined over a field GF(p), where p = 2¢q + 1
with the 256-bit prime ¢, when using BVMT shown
as Table 1, where the structural coefficient A = 4.

The unit of this associative algebra is the vec-
tor (0, 0, 1, 0), and its multiplicative group has a
four-dimensional (two-dimensional) cyclicity at the
value A equal to the quadratic residue (non-residue)
in the field GF(p). In the case of forming a group
with two-dimensional cyclicity, its basis includes
two vectors, each of which has the order p2 - 1, and
the group order is equal to (p2 — 1)2. When develop-

7

B Table 1. Setting the multiplication operation in finite
algebra multiplicative group of which possesses multi-
dimensional cyclicity

ing the EDS scheme in this section, we will consid-
er the case of four-dimensional cyclicity, when the
basis of the multiplicative group includes four vec-
tors, each of which has an order p — 1, and the group
order is equal to (p — 1)%.

The public key is generated as follows:

1. Generate random vectors G, Q, U and D, the
order of each of which is equal to the same prime
number q.

2. Generate random natural number x < ¢ and
calculate vectors Y; = G*oUand Y, = Q- U.

3. Calculate vectors Z; = GeD and Z, = Q°D.

The public key is two pairs of vectors (Y;, Z;) and
(Y,, Z,). The private key of the owner of this public
key is a set of the following values x, G, Q, U, and
D, knowledge of which is required for calculation
of the signature. The probability that the vectors
Y;, Z, Y, and Z, form the basis of a primary group
of order ¢4, practically is equal to 1. Indeed, the said
four vectors are random because they depend on
random vectors G, Q, U and D. The probability that
the products of all possible degrees of the vectors
Y, Z, Y, and Z, form a primary subgroup of order
g3 or ¢2 is negligible and equal to ~¢g! (if the vec-
tors Y;, Z;, Y, are independent and form a primary
group of order ¢3, then the probability that a ran-
dom vector Z, is contained in this primary group
is equal to the ratio of its order to the number of all
vectors of order ¢, which are contained in the mul-
tiplicative group of the four-dimensional algebra
under consideration (accounting for case when the
vectors Yy, Z;, Y, form a primary group of order g2
makes a small adjustment to the value ¢g1).

Let an electronic document M be given, to
which a digital signature of owner of the public key
(Yy, Z,) and (Y,, Z,) is to be created. To do this, the
following procedure is performed, which uses some
pre-defined secure 256-bit hash function f, (the al-
gorithm for calculating a hash value is part of the
EDS scheme under consideration):

1. Generate three random natural numbers
kE<gq t<gandu <gq.

2. Calculate two vector fixators V; and V, using
the following formulas:

V, = G¥oD!oU% and V, = Q¥ o Dt o U¥,

3. Calculate the value e = f,(M, V;, V,) (the first
signature element).

4. Calculate the value s = k — ex mod ¢ (the sec-
ond signature element).

5. Calculate the vector S = D#¢oU%$ (the third
signature element).

At the output of this algorithm we get the digi-
tal signature (e, s, S). The main contribution to the
computational complexity W of the algorithm is
made by exponentiation operations in the four-di-
mensional algebra under consideration, i. e. one can
accept the estimate W = 8 exponentiation opera-
tions.

¢ €9 € € €3
e, Aegy e; e, ey
€1 €3 ) €1 €9
€a €9 € €g €3
eg heq e, eg Ae,
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Algorithm for verifying triples of values (e, s, S)
as a genuine signature to a document M includes
the following steps:

1. Using the public key, namely, two pairs of the
vectors (Y;, Z;) and (Y,, Z,), calculate the vectors
Vi =Y{ 0SoZ] and Vg =Y5 0SoZ3.

2. Attaching vectors \71 and \72 to the doc-
ument M, calculate the hash-function value
&= (M, V1, V3).

3. Check whether the equality is valid é =e. If it
is true, the EDS (e, s, S) is accepted as a genuine
one. If ¢ #e, the signature (e, s, S) is rejected.

The computational complexity of the EDS au-
thentication algorithm is equal to W = 4 exponenti-
ation operations. Demonstration of the correctness
of the considered EDS scheme involves performing
a proof that the signature calculated by the owner
of the public key successfully passes the signature
authentication procedure. Let the signature (e, s, S)
be obtained in accordance with the signature gener-
ation procedure when using the correct signer’s pri-
vate key. Then, submitting the signature (e, s, S) to
the input of the verification procedure, we have the
following proof of the correctness of the proposed
signature scheme:

Vy = Y{ 0SoZs :(GxoU)eoUt_eoDu_so(GoD)s -

=Gx€OU€OUt—€ODu—SOGSODS =Gxe°Ut°Du°Gs —
:GxeoUtoDquk—xe :GkOUtoDu :Vl;

~ e
V3= Y5 8023 =(Q7oU) U oD**(Q-D)’ =
=QererUt—eoDu—sonoDs =QerUtODuOQ8 —
:QxeoUtoDquk—xe:QkOUtODu:V2:
:>é=fh(M,V1,V2)=fh(M,Vl,V2)=e.

The obtained equality € = e means the signature
(e, s, S) passes the verification procedure as a gen-
uine one.

Setting the HDLP in non-commutative
algebra and the EDS scheme based on it

Used in the previous section mechanism of dou-
bling the signature authentication equation can also
be applied to develop the EDS algorithms based on the
computational complexity of the HDLP set in FNAAs.
Let’s consider the implementation of an EDS scheme
of this type as a doubling of the cryptosystem de-
scribed earlier in the paper [26] and using the four-di-
mensional FNAA as its algebraic carrier, in which the
vector multiplication operation is set by Table 2 over
the field GF(p). As in the previous signature scheme,
we assume p = 2¢q + 1 for a 256-bit prime value q.

\ SALLNTA MHDOPMALLAN N\

B Table 2. Setting the multiplication operation in
4-dimensional non-commutative algebra [26] (A # O;
A=1)

° €o € €y €3
€o €9 €3 €o €3
e; Le, e; e, Aeq
€ € € € €
eg Ae, es e, Leg

The said four-dimensional FNAA contains
a global two-sided unit E= (1 — )7, (1 — )71,
AL — DL, 0 - 1)) and p(p + 1)(p — 1)? invertible
vectors. A sign of the invertibility of a certain vec-
tor A = (ay, a;, ay, a3) is non-equality aya,; # aya;.
Multiplying a certain vector X = (x4, x;, X4, X3)
by vectors of the form D = (d(1 — ML, d(1 — M,
dMA — 1)L, d(n — 1)) = dE is actually a multipli-
cation by a scalar d: D o X = dX. The latter means
that for any value d € GF(p) the vector D is permu-
table with each vector X in the considered FNAA:
DoX =X oD. Obviously, the equation D! = dE
holds true. When choosing an integer d, which is
a primitive root modulo p, one gets the vector D
that is a generator of a cyclic group I', having order
equal top - 1.

The maximum order of invertible vectors of
the multiplicative group of the considered FNAA
is p2 — 1. In this group you can find many differ-
ent pairs of vectors G ¢ I'y and Q ¢ I'yy of the or-
der p — 1, for which the non-equality G°Q #Q o G
holds true. Each of the pairs of vectors <G, D> and
<Q, D> forms a minimal system of generators (ba-
sis) of some commutative group I'_g . and I'_q 1.,
correspondingly, of order (p — 1)2. Intersection of
the groups I' g . and I'_q 1, represents the cyclic
group I'. Thus, the four-dimensional algebra under
consideration contains a large number of different
commutative groups with two-dimensional cyclici-
ty, and the cyclic group I';, being a subgroup of each
of them. This structure of the algebra allows for
such modification of the EDS scheme [26], in which
a new form of HDLP is specified, which implements
an enhanced criterion for ensuring post-quantum
security.

This modification is based on the idea of using
a commutative group with two-dimensional cyclic-
ity (instead of a cyclic group in the analog [26]) as
a hidden group. The proposed version of the EDS
scheme is described as follows.

Procedure of generating the public key includes
the following steps:

1. Generate random vectors G ¢ I'yy and B € I,
whose order is equal to a prime number q. (These
two vectors form the basis <G, B> of the group
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I_gp- that is commutative, has two-dimensional
cyclicity, and has order equal to ¢2.)

2. Generate two random  numbers 1
(r; <q) and r, (ry < q) and calculate the vector
Q = Grl 0]3r2 € F<G,B>'

3. Generate two random numbers u; (u; < ¢q)
and u, (uy <¢q) and calculate the vector
U= Gul o Bu2 S F<G,B>‘

4. Generate a random natural number x
(x < q) and two random vectors J and H of order
p? — 1, which satisfy the conditions GedJ # J°G,
GeH # HeoG, and HoJ = JoH. Then calculate
the vectors Z, =HoGoUcH7, Y, =JoG*oJ1,
Y,=HcQ*°H',andZ, =JoQoUoJ

The public key is a set of four vectors Y, Z;, Y,,
and Z,. All other parameters are secret. You can
specify the integer number x and vectors G, Q, U,
H, J as private key of the owner of the public key.
Calculation of the value x according to the public pa-
rameters of the EDS scheme, represents the HDLP,
the specific form of which is determined by formulas
describing the dependence of the public values Y;,
Z,,Y,, and Z, on secret vectors G, Q, U, H, J.

Algorithm for creating EDS for an electronic
document M:

1. Generate random integers k (k < ¢q) and ¢
(¢ < g)and calculate the vectors V; = J o G*o Uto H1
and V, = JoQFoUto H L.

2. Calculate the value e = f,(M, V;, V,) (the first
signature element).

3. Calculate the value s = k — ex mod ¢ (the sec-
ond signature element).

4. Calculate the vector S =JoU!SoH! (the
third signature element).

The computational complexity of the signature
generation algorithm is equal to W = 5 exponenti-
ation operation.

Signature verification algorithm:

1. Calculate the vectors Vi=Y{oSoZj and
V5 =Y5 0SoZ3.
2. Calculate the hash-function value e'=

=1 (M, Vi, V3).

3. If ¢’ = e and the vector S satisfies the invert-
ibility condition, then the signature is accepted as
genuine one. Otherwise the signature is rejected as
false one.

The computational complexity of the signature
verification algorithm is equal to W = 4 exponenti-
ation operation.

Correctness proof of the signature scheme is as
fallows:

V| =Y{oSoZ] =
e S
:(JonoJfl) O(JoUt*soﬂfl)o(HoGoUoﬂfl) -
_ Jone oUt—sGs oUs oH—l _ Jone oUtGk—ex OH—l _
=JoGFoUt o H =V

7

Vé:ZgOSOYzez
:(JOQOUOJ‘l)SO(JoUt‘soH—l)o(HonoH‘l)e:
:JonoUsoUt_soneoH_l =J0Qk—xeoUthon—1 _
=JoQF Ut H L =Vy;

(Vi=V; Vi=Vy}=e' =e.

The last equality means the correctly comput-
ed signature passes the verification procedure as a
genuine one.

Discussion

Within the framework of the NIST competi-
tion [18], 9 different digital signature schemes
are currently being considered as a candidate for
the post-quantum EDS standard [20]. The most
attractive from the point of view of a compromise
between the performance and size of the public
key and signature are the following EDS schemes:
Falcon [https://falcon-sign.info/], Dilithium
[https://pg-crystals.org/dilithium/index.shtml],
Rainbow [30], and qTESLA [https://qtesla.org/].
Table 3 shows a rough comparison of the devel-
oped EDS schemes with the listed candidates for
the post-quantum EDS standard, namely with
their versions Falcon-512, Dilithium-1024x768,
Rainbow, and qTESLA-p-I, corresponding to the
level of 128-bit security. (The relative performance
of the proposed signature schemes is estimated un-
der the assumption that multiplication operations
in 4-dimensional algebras and in finite ground field
GF(p') with 1024-bit characteristic p’ have approx-
imately the same computational complexity, when
using literature data on the comparative perfor-

B Table 3. Comparison with candidates for the post-
quantum standard of EDS

Signa- . Rate of Rate of
. Public . .
Signature ture . signature signature
. key size, . Do .
scheme size, byte generation, | verification,
byte v arb. un. arb. un.
Fal-
con-512 657 897 50 25
Dilithium | 2044 1184 15 2
Rainbow 64 150 000 - -
qT}ffILA- 2592 | 15 000 20 40
Section 5 192 512 40 80
Section 6 192 512 64 80
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mance evaluation of the specified candidates for
the post-quantum EDS standard and of the 2048-bit
RSA cryptosystem.)

Let’s consider the construction of periodic func-
tions based on the public parameters of the pro-
posed EDS schemes. In the case of the signature
scheme using computations in the finite commu-
tative group with four-dimensional cyclicity we
have the following public parameters Y; = G¥- U,
Y,=Q*°U, Z, = G°D, and Z, = Q° D, where each
pair of public key elements depends on some three
vectors from the basis <Q, U, G, D>, and where each
triple of the elements depends on four vectors from
the basis. Therefore, periodic functions construct-
ed as products of natural powers of two and three
public parameters can only contain periods whose
lengths depend on the order of the basis elements,
i. e. on the prime value q.

Consider the periodic function F(i, j, k, h)=
=Y Z{ oY§oZ!. Expressing this function from
integer variables in terms of the basis of the mul-
tiplicative group of the four-dimensional algebra
given in Table 8, we obtain: F(i, j, k, h) = G*i*ko
o Uiti o Q¥/h o DE+h, Let this function have a period
©;, Sj, d;, 05). Since all basis vectors are independ-
ent, we have the following system of linear congru-
encies with the unknowns §;, 5, &, 9:

x8; + 6, =0modg
d; +8; =0modg
x8;+8, =0modq’

8k +8h EOmodq

The main determinant of this system is dif-
ferent from zero, so there is the single solution
© 8]., 8, 6,)=(0, 0, 0, 0), which means that the func-

i’
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tion in question contains only periods whose length
depends only on the value q.

For the EDS scheme using computations in
the four-dimensional FNAA we have the follow-
ing public parameters Z; =HoGoU°H7, Y, =
=JoG*oJl, Y,=HoQ*H?, and Z,=J°Q°Uo

oJ-1. Consider the periodic function F (i, j)=

=Y} oZ} =JoG™ o(QoU) oJ L. Since the vector G
and the vector Q o U are generators of different cy-
clic groups of the order g, the function F; can only
contain periods associated with the value q.

The same situation holds for the function
Fy(i, j)=YhoZ =HoQ" o(GoU) oH!. Setting
other periodic functions based on the public param-
eters also does not result in functions containing a
period that depends on the value x.

Conclusion

This is the first time that a HDLP-based signa-
ture using a finite commutative algebra has been
constructed. Thus, the proposed signature scheme
satisfies the enhanced criteria of post-quantum se-
curity. An EDS scheme is also proposed that meets
the enhanced post-quantum security criterion and
is based on the computational complexity of the
HDLP set in the FNAA. The specified criterion
is met by using a commutative finite group with
two-dimensional cyclicity as a hidden group.
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BBeJ:[e}me: paspaﬁo’r}ca IIOCTKBAHTOBBIX CXeM HH(prBOfI IIOAIINCH ABJIAETCA OJHUM N3 BHISOBOB B obsacTu }CpI/IHTOI‘paqH/II/I. He/:[aBHO
IPeAJIoKeHbl cXeMbl ITU(POBOM IOAINCY, OCHOBAHHBIE Ha CKPBITOH 3a/aue JUCKPETHOTO JorapudmupoBanusa. Pazsutue sToro nmoaxona

npeacraBJiseT CyIJ.IeCTBeHHI:Iﬁ HpI/IKJIaZ[HOﬁ HNHTepeC, IIOCKOJBKY OH IIO3BOJIAET paspaGOTaTb IIPaAKTUYHBIE CXeMBbI IIOAIIUCH, 06J1az[a10ume
MaJbIMHU pasMepaMy OTKPBITOI'O KJI04Ua U IIOAIIVCHA B CDABHEHNHU C U3BECTHBIMU aHAJIOTaMHU. I_Ie.m,: paspa60TRa MeToga IIOCTPOeHU A II0CT-
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KBAHTOBBIX CXeM IIOJAIMCH, COOTBETCTBYIOIIUX eMy HOBBIX (DOPM 3aJaHUA CKPBITOHM 3aJadyd AUCKPETHOI'O Jorapu(pMHUPOBAaHUA U CXeM
MOJIVCH Ha ero ocHOBe. Pe3yspTaThl: IPEJIOXKEH METO/, IIOCTPOEHUA IOCTKBAHTOBBIX cXeM Iu(dpoBoil nognucu. CyTh MeTo/La COCTOUT
B 3aJaHUY 3aBUCUMOCTU 3JI€EMEHTOB OTKPBITOT'O KJII0Ua OT MACKUPYIOIUX MHOKUTEJEH, YCTPAHAIOIINX I€PUOJUIHOCTD, 3aBUCAIILYIO OT
3HaUeHUA AUCKPETHOTo Jiorapudma, B Iepuojudyeckux GyHKIUAX, IOCTPOEHHBIX HA OCHOBE OTKPBITHIX ITapaMeTpPoB Kpunrocxemsl. Ha
OCHOBe MeT0/a pa3paboTaHbI ZiBe HOBbIe (DOPMBI 3a/JaHUA CKPBITOM 3a/1aUy AUCKPETHOrO0 JJOTapu(MUPOBAHUA B KOHEUHBIX aCCOIMATUBHBIX
anrebpax. IlepBas m03BOJINIA UCIIOJIB30BATE KOMMYTATUBHbIE aJITe0PhI, & BTOpas — HEKOMMYTaTHBHBIE aJIre0PhI B KauecTBe ajredpanye-
CKOT'0 HOCUTeJIs padpaboTaHHbIX cxeM ItndpoBoii mognucu. IlpakTudyeckas 3HAYNMOCTh: padpaboTaHHbIe AJITOPUTMEI TG POBOI IIOJIHICH
IPeACTaBJIAIOT MHTEPEC KaK KaHAUAATHI Ha TPAKTUYHbIE IOCTKBAHTOBBIE KPUIITOCXEMBI, 00JIaZIafoIIHe CYIleCTBeHHO MEHBIITNM Pa3MepPOM
OTKPBITOT'O KJII0YA U MOAINCY IPYU TPUMEPHO PABHOM IPON3BOAUTEIbHOCTY B CDABHEHUY C U3BECTHBIMY aHAJIOTaMU.

KuaioueBsie cioBa — IIOCTKBAHTOBBIE KPUNITOCXEMBI, KOMIIBLIOTEpHAs 0€30I1aCHOCTD, dJIEKTPOHHAA Nu(poBas MOANUCH, 3a7ada IUC-
KPETHOTO JIorapu(MupoBaHuA, KOHEUHbIe KOMMYTATUBHbBIE IPYIIIbI, HEKOMMYTATUBHbBIE ACCOIIATHBHBIE aJITe0PHI.

s murupoBanusa: Moldovyan D. N., Moldovyan A. A., Moldovyan N. A. A novel method for development of post-quantum digital
signature schemes. Hugopmayuonrno-ynpasnsiouue cucmemwt, 2020, Ne 6, c. 21-29. doi:10.31799/1684-8853-2020-6-21-29
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