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Introduction: There are just a few known methods for the construction of symmetric C-matrices, due to the lack of a universal
structure for them. This obstruction is fundamental, in addition, the structure of C-matrices with a double border is incompletely
described in literature, which makes its study especially relevant. Purpose: To describe the two-border two-circulant construction
in detail we introduce the concept of the Legendre C-pairs. Results: The paper deals with C-matrices of order n = 2v + 2 with two
borders and extends the so called generalized Legendre pairs, v odd, to a wider class of Legendre C-pairs with even and odd v,
defined on a finite abelian group G of order v. Such a pair consists of two functions a, b: G — Z, whose values are +1 or —1 except
that a(e) = 0, where e is the identity element of G and Z is the ring of integers. To characterize the Legendre C-pairs we use the
subsets X={x € G:a(x)= -1} and Y = {x € G: b(x) = -1} of G. We show that a(x~") = (=1)" a(x) for all x. For odd v we show that X
and Y form a difference family, which is not true for even v. These difference families are precisely the so called Szekeres difference
sets, used originally for the construction of skew-Hadamard matrices. We introduce the subclass of the special Legendre C-pairs
and prove that they exist whenever 2v + 1 is a prime power. In the last two sections of the paper we list examples of special cyclic
Legendre C-pairs for lengths v < 70. Practical relevance: C-matrices are used extensively in the problems of error-free coding,
compression and masking of video information. Programs for search of conference matrices and a library of constructed matrices
are used in the mathematical network “mathscinet.ru” together with executable on-line algorithms.
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Introduction

We introduce the notion of Legendre C-pairs
on a finite abelian group G of order v and use it
to construct many C-matrices of order n=2v + 2
with two borders and a core made up from two mul-
ti-circulants. Such a pair consists of two functions
a, b: G — Z, whose values are +1 or —1 except that
a(e) = 0, where e is the identity element of G. (By Z
we denote the ring of integers.) Moreover the sum
of the periodic autocorrelation functions (PAF) of a
and b must be —2, except at shift 0. These pairs are
similar to the so called generalized Legendre (GL)
pairs. While for the GL-pairs v must be odd, there is
no such restriction for the Legendre C-pairs.

In Proposition 1 we show that a(x™1) = (-1)Ya(x)
for all x and determine the cardinalities of the
sets X={x e G:a(x)=—-1} and Y = {x € G: b(x) =—1}.
We introduce special Legendre C-pairs and in
Proposition 2 and Corollary 2 we show that they ex-
ist whenever 2v + 1 is a prime power.

In the last two sections of the paper we list
examples of special cyclic Legendre C-pairs for
lengths v < 70. In Proposition 3 we characterize the
Legendre C-pairs in terms of the subsets X and Y
defined above. For odd v we show that X and Y form

a difference family, which is not true for even v.
These difference families are precisely the so
called Szekeres difference sets (see Corollary 3).
Originally they were used for the construction of
skew-Hadamard matrices, see [1-4]. A wider class
of two-block difference families with parameters
w; - 1)/2, (v—- 1)/2; (v— 3)/2), v odd, has been in-
vestigated recently in [5]. In Fig. 3 we summarize
diagramatically the main facts about such families.
The existence question remains open in many cases.

Let usnow recall some definitions and facts about
Hadamard and conference matrices. A Hadamard
matrix is a matrix H of order n with entries +1 or -1
and such that HHT = nI (T is the transposition oper-
ator and I is the identity matrix of some order, here
of order n). If such a matrix exists and n > 2 then
n must be divisible by 4. A Hadamard matrix His a
skew-Hadamard matrix if H+ HT = 2I.

A conference matrix (C-matrix) is a matrix C of
order n whose diagonal entries are zeros, the oth-
er entries are +1 or —1, and CCT = (n — 1I. If such
a matrix exists and n > 1 then n must be even.
Two C-matrices of the same order are equivalent
if one can be transformed to the other by permut-
ing the rows and columns so that the diagonal ze-
ros are preserved and by multiplying by —1 some
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rows and some columns. Every equivalence class
of C-matrices of order n contains a symmetric ma-
trix if n = 2 (mod 4) and a skew-symmetric matrix if
n =0 (mod 4). If C is a skew-symmetric C-matrix of
order n then H=C +1 is a skew-Hadamard matrix
of order n, and the converse holds.

It is well-known (see e. g. [6]) that if a C-matrix of
order n = 2 (mod 4) exists then n — 1 must be a sum
of two squares. Let us list such integers n < 200:

2,6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54,
62, 66, 74, 82, 86, 90, 98, 102, 110, 114, 118,
122, 126, 138, 146, 150, 154, 158, 170, 174,
182, 186, 194, 198. 1)

We say that a symmetric or skew-symmetric
C-matrix is normalized if all entries of its first
row are +1, except the first entry which must be 0.
In that case, its core is the submatrix obtained by
dropping the first row and column.

The basic examples of C-matrices are so called
Paley C-matrices C of order n = ¢ + 1 where g is a pow-
er of an odd prime (see e. g. [7] or [8, Chapter 18]).
The matrix C is normalized and its core Q is a matrix
of order q. The rows and columns of Q are labeled by
the elements of the finite field GF(q) of order g. The
entries of Q are given by the formula Q, , = y(x — y),
where y is the quadratic character of GF(g). We recall
that y(x) =1 if x # 0 is a square in GF(g), y(x) = -1 if
x is not a square, and x(0) = 0. Moreover, y satisfies
the multiplicative property x(xy) = x(x)x(y) for all x, y
in GF(q). Both C and Q are symmetric if g = 1 (mod 4)
and skew-symmetric otherwise.

There are just a few methods of construction of
symmetric C-matrices. They are listed in the recent
survey paper [9]. We investigate here only one of
these methods, namely the two-border two-circulant
(2b2c) construction. In the next section we describe
this construction in detail and introduce the con-
cept of Legendre C-pairs.

Legendre C-pairs

For the sake of simplicity, we consider first the
case of the cyclic group Z,=1{0, 1, ..., v— 1} under
addition modulo v. In that case we treat the func-
tions on Z, as sequences of length v. Let a and b be
two sequences of length v

a=(ag, A5 wes @y_1); b=(bg, by wees b, 1), 2)

where a, = 0 while all other a; and all the b, are equal
to +1 or —1. Recall that the value of the PAF of a
sequence X = (X, Xy, ..., X,_;) at shift s is
v-1
PAF,(s)= ) x;%;,5.
i=0

Definition 1 (cyclic case). We say that the pair
(a, b) given by (2) is a (cyclic) Legendre C-pair if the
sum of the PAFs of the sequences a and b has the
constant value —2, except at the shift 0 where the
sum attains its peak value 2v — 1.

The first examples of Legendre C-pairs orig-
inate from Number Theory. Indeed let v=p be a
prime number =3 (mod 4). Then the sequence a of
Legendre symbols

aiz[ij, i=0,1,....,p—1
P

has constant PAF values, PAF,(s)=-1 for all
nonzero s. The same is true for the sequence b which
is obtained from a by replacing the first term 0 by
+1. Hence (a, b) is a Legendre C-pair of length p.
This construction does not work when p is a prime
number =1 (mod 4).

The above definition differs from that of “gener-
alised Legendre pairs” given in [10, p. 76] (see also
[6]) which requires that all elements of the sequences
a and b be +1 or —1. We shall refer to them simply as
“Legendre pairs”. For the Legendre pairs, the sum of
the PAFs of a and b is required to be the constant func-
tion —2 except for the value 2v at shift 0. Our definition
of Legendre C-pairs is designed for the construction
of C-matrices and so the condition that a, =0 is man-
datory. It is mentioned in [10, p. 80] that the length of
Legendre pairs must be odd. On the other hand, there
exist Legendre C-pairs of even and odd lengths. Those
of even length give symmetric C-matrices while the
ones of odd length give skew-symmetric C-matrices
(and skew-Hadamard matrices).

Now let p be a prime number =1 (mod 4). Let a
and b be the sequences obtained from the sequence
of Legendre symbols by replacing the 0 term by
+1 and —1 respectively. Then (a, b) is a Legendre
pair of length p which cannot be used to produce a
Legendre C-pair of the same length.

Next we show how to use a cyclic Legendre C-pair
(a, b) of length v to construct a C-matrix C of order
n=2v + 2. Let A and B denote the circulant matrices
whose first rows are given by a and b, respectively.

In the case when v is even, the matrix C is ob-
tained by plugging the blocks A and B into the next
array; the first two rows and columns of C form its
border and its core is made up from the circulants A
and B (and their transposes):

C= . 3)

(By e we denote a column vector of 1’s.)

N°4,2020 N\

VNH®OPMALIVIOHHO-YMNPABASIOLLIVIE CUCTEMBI N\ 3



// TEOPETUVHECKAS N NPUKAAAHASI MATEMATVIKA /

It is easy to verify (see Problem 18B on p. 174
and the hint on p. 490 in [8]) that if the matrix C
defined by (3) is a C-matrix then C must be symmet-
ric. Consequently, if C is a C-matrix then A must be
symmetric, i. e. a;,=a,_; for i=1, ..., v— 1. For an
example of such C-matrix see Fig. 1, a.

In the case when v is odd, we use the modified array

C= . “)
—e e -BT AT

As in the previous case one can show that if C is
a C-matrix then the block A must be skew-symmet-
ric matrix, i.e.a;+a,_;=0fori=1,..,v— 1. Foran
example see Fig. 1, b.

We shall now extend the definition of Legendre
C-pairs to any abelian group G of order v with iden-
tity element e. Denote by * the involution of the in-
tegral group ring Z[G] sending any element x to its
inverse x 1. For any z € Z[G] we define its norm N(2)
to be the product zz*. For a subset X of G we say that
it is symmetric if X* = X and that it is skew if Gisa
disjoint union of X, X* and {e}. For any function a:
G — Z we define its periodic autocorrelation func-
tion, PAF: G — Z, by the formula

PAF,(s)= z a(x)a(x+s).
xeG

Definition 1 (general case). Let a and b be func-
tions G — Z such that a(e) = 0 while all other values
of a and all values of b belong to the set {+1, —1}. We
say that the pair (a, b) is a Legendre C-pair if the
sum of the PAFs of a and b has the constant value
-2, except at the shift 0 where the sum attains its
peak value 2v — 1.

To a function a: G — Z we associate the matrix
A of order v whose rows and columns are labe-
led by the elements of G and are given by the for-
mula Ax,y =a(xly). Such matrices are known as

G-invariant matrices because they have the property
that A, .= Ax,y for all x, y, zin G. (By suitably ar-
ranging the indices, such matrices can be written as
multi-circulants, i. e., circulants of circulants of ...).
If (a, b) is a Legendre C-pair of length v and A and B
are their associated matrices, it is easy to show that
the matrix C given by (3) or (4) is a C-matrix. In that
case we say that (a, b) is the Legendre C-pair of C.
It is well known, see [7, Theorem 2.2], that each Paley
C-matrix is equivalent to one of the form (3) or (4)
with circulant blocks A and B. Hence, cyclic Legendre
C-pairs of length v exist whenever 2v +1 is a prime
power. The converse is false. For instance there exist a
Legendre C-pair of length v = 7 while 2v + 1 = 15is not
a prime power. For a concrete example with multi-cir-
culant blocks A and B of order 25 see [5] or [6, section
10.3]. Another example is given below.

On Fig. 2 we show two skew-symmetric C-mat-
rices. The first one has the form (4) with multi-cir-
culant blocks A and B of order 27. It is construct-
ed from the difference set X consisting of the
nonzero squares in GF(27). To construct this field
we used the primitive polynomial x3 — x2 + 1 over
Zs. The elements of GF(27) are the 27 polynomi-
als a + bx + cx2, with a, b, ¢ € {0, 1, 2}. We encode
this polynomial by the symbol abc, and arrange the
symbols in the lexicographic order 000, 001, 002,
010, 011, 012, ..., 222. Explicitly, we have X = {1, x2,
2+ 2x+x2,2x+2x2, 2+ x + x2, 1 + 2x + x2, 2x + x2,
2x,1+2x2,1+x,2+2x2, 1 +x+x2, 1+ 2x}.

The corresponding 13 symbols are 100, 001, 221,
022, 211, 121, 021, 020, 102, 110, 202, 111, 120. The
matrix B associated to X has —1 entries exactly at
these 13 positions. It has the block-circulant structure
with the first row [U V W]. The matrices U, V, W are
also multi-circulants but of order 9. Their first block-
rows are [P, J, —J], [P, —Q, —Q], [Q, P, P] where P, Q,
J are the circulants with the first rows[1, -1, 1], [1, 1,
-1], [1, 1, 1], respectively. Further, A=B — 1.

A B
The second matrix has the form ( BT ATJ
where A and B are negacyclic blocks of size v = 28.
We recall that a square matrix of order n is nega-

a) b)

B Fig. 1. 2b2c conference matrices of orders 14 (a) and
12 (b), matrix portraits have white and black colors for
entries 1, —1 and gray for 0

B Fig. 2. Two skew-symmetric C-matrices of order 56
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cyclic if each row but the first is obtained from the
previous one by the negacyclic shift

(1> Xg5 X3y wer Xpp_q5 X)) =

= (=X, X5 Xgy vy Xy g5 X, 1)-

The first rows of A and B, respectively, are

a=[0,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1, -1,
1-1,-1,1,1,-1,-1,-1,-1,-1,1,-1, 1, -1];

b=[1,1,1,-1,1,-1,1,1,-1,-1,1,1,1,-1,-1, 1,
1,-1,1,-1,1,1,1,1,1,-1, -1, -1].

Since A is negacyclic and a;=a, ;for i=1, ..,
v — 1 the block A is skew-symmetric. Hence the sec-
ond matrix is also skew-symmetric.

The list (1) gives the feasible sizes n < 200 of
symmetric C-matrices. It is known that such matri-
ces exist when n — 1 is a prime power. By removing
such sizes we are left with only seven cases n = 46,
66, 86, 118, 146, 154, 186. C-matrices of size 46
have been constructed long time ago, while it is still
unknown whether they exist in the remaining six
sizes, see [9]. By using a computer search, we have
shown that there are no cyclic Legendre C-pairs of
length 22 or 32.

The first assertion of the following proposition
follows from the properties of the block A men-
tioned earlier in this section.

Proposition 1. Let (a, b) be a Legendre C-pair
on an abelian group G of order v and let k; and &,
be the cardinalities of the sets {x € G: a(x) =-1}
and {x € G: b(x)=—1}, respectively. Then a(x1)=
= (—1)%a(x) for all x. If v is even then k; = ky = v/2. If
visodd then k; =k, =( — 1)/2.

Proof: Let us prove the second assertion. By the
hypothesis, v is even. Let A and B be the multi-cir-
culant matrices associated to the functions a and b,
respectively. Since (a, b) is a Legendre C-pair, the
matrix C given by (3) is a C-matrix. The first and
the second row of C are orthogonal to the third row.
This gives the two equations

1+@ -1~ 2k)+ (@ — 2ky) =0;
1+@—-1-2k) — (@~ 2ky)=0.

It follows that k; =k, =v/2. The proof of the
third assertion is similar.

Corollary 1. If (a, b) is a Legendre C-pair on an
abelian group G of odd order, then after replacing
a(e) = 0by a(e) =1 (or ale) = —1) we obtain a Legendre
pair. (The converse is not valid.)

Special Legendre C-pairs

We now introduce a subclass of the class of
Legendre C-pairs.

Definition 2. Let (a, b) be a Legendre C-pair on
G, a group of order v. If v is odd we say that (a, b) is
special if the subset {x € G: b(x) = —1} is symmetric.
If v is even and G is cyclic, say G = Z,,, we say that
(a, b) is special it b, ; ;=—b;,i=0,1, ..,v — 1.

We shall now prove that cyclic special Legendre
C-pairs of length v exist whenever 2v + 1 is a prime
power.

Proposition 2. The equivalence class of any Paley
C-matrix C contains a C-matrix of the form (3) or (4)
whose Legendre C-pair is cyclic and special.

Proof: We follow the proof of [7, Theorem 2.2]
and modify it in order to prove our assertion. All
Paley C-matrices of the same order are mutually
equivalent, see[7]. Hence it suffices to construct for
each odd prime power ¢ = 2v + 1 a Paley C-matrix C
of order ¢ + 1, having the 2b2c form (3) or (4), whose
Legendre C-pair is cyclic and special.

Let V be the 2-dimensional vector space over
GF(q) with basis vectors x=(1, 0) and y=(0, 1).
Choose a primitive element 1 of GF(g). Define the
vectors z, =y — nfx=(-nF, 1) for k=0, 1, ..., ¢ — 2.
We arrange the vectors x, y and the z, as follows:
X, Ys 205 295 wes oy_gr 21> 23> +er Z9,_1- NOte that this
arrangement is slightly different from the one used
in [7]. We use these g + 1 vectors to define a Paley
C-matrix C as usual and let (a, b) be its Legendre
C-pair. It follows from [7, Theorem 2.2] that C has
the 2b2c form.

In more details, the entries of C are computed
as follows. Let i and j be any indices in the range
1, 2, ..., ¢+ 1. Let u and w be the i-th and j-th vec-
tors in the above list, respectively. Then the (i, j)-th
entry of C is equal to y(det(u, w)) where (u, w) de-
notes the matrix of order two made up from u and
w. Moreover, a;, =Cg 3 ,and b, =C; .3 ,for k=0, 1,
e, U — 1.

We claim that C; .,y =—x(-1Cj3 3, for k=0,
1, .., v—1. Indeed for i=3 and j=¢+1 -k we
have u=2o=(1, 1) and w=2,5 9,=(" 26710 1),
Since det(u, w)=n2"1-1, we have C; ;=
= (21 — 1 = —y(-1)y(2*¥* — 1). Similarly we have
C3ui3:: = x(M?¥1 — 1). We conclude that our claim
holds.

Hence the sequence b satisfies the equalities
b, =D, for k=0, 1, ..., v — 1. If g=1 (mod 4)
this means that the Legendre C-pair (a, b) is special.
The same is true in the case ¢ =3 (mod 4) after a
suitable cyclic shift of b. This completes the proof.

Corollary 2. Cyclic special Legendre C-pairs of
length v exist whenever 2v + 1 is a prime power.

Many special Legendre C-pairs of odd length v
can be constructed from the so called Szekeres dif-
ference sets. We recall that the Szekeres difference
sets are in fact a difference family (DF) in an abe-
lian group G of odd order v consisting of two blocks,
X and Y, such that X is skew and |X| = Y| = (v — 1)/2.
Hence the parameters of such DF are
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@; v = D/2, 0 — /25 (v — 3)/2). (6))

We say that a Szekeres DF (X, Y) is special if
Y is symmetric. It is well known, see [1, Theo-
rem 5.18] or [2], that the special Szekeres DFsin Z,
exist whenever 2v + 1 is a prime power = 3 (mod 4).
Let us give a simple example.

Example 1. Let v =5 and note that 2v+ 1 =11 is
aprime =3 (mod 4). The subsets X = {g, g3} =g + g3
andY = {g2, g3} = g2 + g3 of thecyclicgroupG=< g >
of order 5 form a special Szekeres DF. The * op-
erator sends g’ to gi. Thus X* ={g2, gt} =g2 + g4,
Y*=Y and we have G=X + X*+e. To construct
the special Legendre C-pair, we form the binary se-
quencea =(1,-1,1, -1, 1) by settinga,=-1if gl € X
and a; =1 otherwise, and form b=(1, 1, -1, -1, 1)
similarly by using Y. The sum of the PAFs of a and
b is the constant function —2 apart from the origin.
Thus (a, b) is a Legendre pair. By replacing the first
term of a by 0 we obtain a special Legendre C-pair.

Difference families with parameters (5)

In the following diagram (Fig. 3) we summarize
the main results on the existence of DFs (X, Y) with
parameters (5) and X and Y symmetric or skew. By
EA(q) we denote an elementary abelian group of or-
der g =p’", p a prime, r a positive integer. [The ad-
ditive group of GF(q) is an EA(g).] The symmetry
types of X and Y are indicated by the letter s if the
block is symmetric, % if it is skew, and the symbol *
if no symmetry is required. For instance (ks) means
that X is skew and Y is symmetric. While arbitrary
Szekeres DF's have the symmetry type (&%), the spe-
cial ones have type (ks).

In Case 1 the block X is the set of nonzero
squares in GF(q). The same is true for part a) of
Case 2, see [2, Theorem 4]. For part b) of Case 2

Parameters: (v; (v—1)/2, (v—1)/2; (v—3)/2)
q=p’, paprime, r > 0 integer

Case 1: ¢g=1 (mod 4)
G =EA(g), (ss)
Y = (G\X)\{0}

Case 2: ¢= 3 (mod 4)
a) G=EA(q), (kk), X =Y
b) G=2(q - 1)/2, (ks)

p=5(mod 8)
a) G =EA(q), (kk)
b) G=EA(q), (ks),
qg=4+s2,s=1(mod 4)

p=1,3, 7 (mod 8)

?

B Fig. 3. Existence of DFs (X, Y) with parameters (5)

see [2, Theorem 3] and [1, Theorem 5.18]. Note that
in the first subcase (p=1, 3, 7 (mod 8)) of Case 1
we also require that ¢ =1 (mod 8). No general re-
sult seems to be known about this subcase. In the
second subcase (p = 5 (mod 8)), part a) was proved
in [2, Theorem 5] when ¢ =5 (mod 8) and in [3, 4]
when g = 1 (mod 8). For part b) of the same subcase
see [11].

Let us give two examples of Legendre C-pairs (X,
Y) of type (kk) and length v with 2v + 1 not a prime
power. Both examples are obtained from a theorem
of Szekeres, see [2, Theorem 6] and [5, Theorem 2].
First example: we start with the Szekeres DF (X, Y)
in Zg:

X={3,4,5,6,8,11,13, 17, 19, 21, 22, 23, 25, 27,
28, 30, 35, 36};

Y={2, 3,4, 11, 14, 15, 18, 20, 21, 24, 25, 27, 28,
29, 30, 31, 32, 36}.

The corresponding binary sequences a and b are

a=1,1,1,-1,-1,-1,-1,1,-1,1,1,-1, 1, -1, 1,
1,1,-1,1,-1,1,-1,-1,-1,1,-1,1, -1, -1, 1, -1, 1,
1,1,1,-1,-1);

b=(1,1,-1,-1,-1,1,1,1,1,1,1,-1,1, 1, -1, -1,
1,1,-1,1,-1,-1,1,1, -1, -1, 1, -1, -1, -1, -1, -1,
-1,1,1,1,-1).

Since X is skew, by replacing the first term of
a by 0, we obtain a Legendre C-pair of length 37.
Second example: (X, Y) in Zg;:

X=1{2, 3,4, 5,1 14, 18, 19, 23, 24, 26, 27, 30,
32, 33, 36, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52,
53, 55, 60};

Y=13,4,5,6,8,10, 11, 14, 17, 19, 21, 27, 28, 29,
31, 35, 36, 37, 38, 39, 41, 43, 45, 46, 48, 49, 52, 54,
59, 60}.

It gives the Legendre C-pair

a=0©,1,-1,-1,-1,-1,1,-1,1, 1,
1,1,1,-1,-1,1,1,1,-1,-1,1, -1, -1,
-1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1, —
-1, 1 -1,-1,1,-1,1,1,1, 1, -1);
1,1,1,-1,-1,-1,-1,1,-1,1,-1, -1,
,1,-1,1,-1,1,1,1,1,1,-1,-1,-1
,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,1, -1,
-1 1,1 )

1,1,
1,1 ,
’1’ 1’1’ ) ,1, 1, -1

=(

-1
s L -1
-1,1,1,
of length 61. In general, such pairs of length ¢ exist
whenever ¢ is a power of a prime p =5 (mod 8), see
[2—4].

Regarding the Legendre C-pairs of symmetry
type (ks) one can ask whether they exist for lengths
vwhen 2v + 1 is not a prime power? It turns out that
they do. The smallest such pair known to us has

6 7/ VHOOPMALIVIOHHO-YNPABASIOLLIVIE CUCTEMBI

7 Ne°4,2020



\ TEOPETUYECKASI VI NIPUKAAAHASI MATEMATUKA \

length v=1373 in which case 2v+ 1= 2747 =41 x 67.
For this see [11, Theorem 3.1].

Characterization of Legendre C-pairs

Let us give an algebraic characterization of
Legendre C-pairs over an abelian group G of order v
with the identity element e. Let a, b: G — Z be func-
tions such that a(e) = 0 and all other values of a and
all the values of b are +1 or —1. Define the subsets
X,YcGby

X={xeGalx)=—1}and Y ={x € G: b(x) =—1}. (6)

Note that e ¢ X because a(e) = 0. Also note that
the pair (X, Y) determines uniquely the pair (a, b).
If (a, b) is a Legendre C-pair, by using Definition 1
and [6, equation (7)], it is straightforward to verify
that

NG-e—-2X)+ NG - 2Y)=
=@2v - De - 2(G—¢)=(v + 1)e — 2G. (7)
Proposition 3. Let a, b, X, Y be as above. (We
shall view the subsets X, Y < G also as elements

of the group ring Z[G].) If v is even then (a, b) is a
Legendre C-pair if and only if

xx*+yy" :%(e+G)—X. @®)

If v is odd then (a, b) is a Legendre C-pair if and
only if

xx*ryyt =YL, v=3

G. )

Proof: First, let v be even and assume that
(a, b) is a Legendre C-pair. By Proposition 1 we
have X*=X and k;=k,=v/2. Since GG=0G,
GX = kG and GY = k,G, it is easy to verify that
NG—-e - 2X)=4NX)+4X +e—(v + 2)G and NG —
- 2Y)=4N(Y) — vG. The sum of these two norms
is equal to 4(N(X)+ N(Y))+4X +e — 2(v + 1)G. By
comparing this expression with the right hand side
of (7) we obtain (8). For the converse note that (8)
implies that X* = X and so we can reverse the above
arguments.

Second, let v be odd and assume that (a, b)
is a Legendre C-pair. By Proposition 1 we have
X*+X=G—e and k) =ky=(—1)/2. Since GG =
=vG, GX =kG and GY =k,G, it is easy to veri-
fy that N(G-e - 2X)=4N(X) - (v—-2)G— e and
NG — 2Y)=4N(Y) — (v — 2)G. The sum of these
two norms is equal to 4(N(X)+NX)) — (v-2)
G — e— (v — 2)G. By comparing this expression with
the right hand side of (7) we obtain (9).

The following corollary follows immediately
from the second claim of Proposition 3.

Corollary 3.In the case when v is odd, the functions
(a, b) form a Legendre C-pair if and only if the corre-
sponding subsets X, Y form a Szekeres DF in G.

Note that if (a, b) in this corollary is a special
Legendre C-pair then the corresponding Szekeres
DF (X, Y) is also special.

Example 2. Let us verify the equation (9) for
the sequencesa=(0—+—+), b=(— +++ —). In these
sequences, + and — stand for +1 and —1 respective-
ly. They form a special Legendre C-pair of length
v = 5. By using (6) we find that X = {gl, g3} =g+ g3
and Y={g% g¥}=e+g% Thus Y¥=e+gandso Y is
not symmetric. However its translate Yg2 = g2 + g3
is symmetric. Further, XX*=2e¢+g2+g3 and
YY*=2e+g+gt Thus XX*+YY*=4e+g+g2+
+g3+gt =3e+G.

Example 3. Let us verify the equation (8) for the
sequences a=(0 +—-——+4), b=(— ++ — — +). They
form a special Legendre C-pair of length v =6. By
using (6) we find that X = {g2, g3, gt} =g2+ g3+ g¢
and Y ={g0, g3, g4} =e+ g3+ g*. Further, we have
XX*=3e+2g+g2+gt+2g% and YY*=3e+g+
+82+2g3+gt+g% Thus XX*+YY%=6e+3g+
+2(g2+g3+gY)+38g5=3(e+G) - X.

Algorithm for constructing negacyclic
C-matrices

As stated earlier, all Paley C-matrices of the same
order n =1+ q are equivalent to each other. In view
of Proposition 2, the equivalence class of any Paley
C-matrix contains a C-matrix of 2b2c-type. It is also
well known that the same equivalence class also con-
tains a negacyclic C-matrix, see [12, Corollary 7.2].

Let g be any odd prime power. We describe a sim-
ple algorithm which for any given g outputs a nega-
cyclic C-matrix C of order n = 1 + g equivalent to the
Paley C-matrix of the same order. This algorithm is
based on the proof of [12, Corollary 7.2]. Since C is
negacyclic it suffices to find its first row [¢, =0, ¢y,
Cgs wees cq].

By a theorem of Belevitch, see [12, Theorem 4.1],
we have ¢, 5 =(-1)/c, o ; for j=1, 2, ..., n/2 - 1.
Thus it suffices to compute only the values of ¢, for
i=1,2,..,n/2.

We assume that a suitable software for computa-
tions in finite fields is available. (One of the authors
used Maple and its GF package.)

Step 1. Construct the finite field GF(g2) and se-
lect any primitive element ¢ of that field.

Step 2. Construct the matrix A of order 2 with
first row [0, —w] and second row [1, t] where o = gl*¢
and 1 = ¢+ &4. Note that ® and t belong to the sub-
field GF(q) while € does not. In fact ® is a primitive
element of GF(q).
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1
Step 3. Set xg= 0 and define the vectors

_ [xi [1]j . .

x; = , i=1, 2, ..., n/2 recursively by the for-
x;[2]

mula x;,; = Ax;.

Step 4. Then we have c; = y(x,[2]) fori=1, 2, ...,
n/2 where y is the quadratic character of GF(g).

This completes the description of the algorithm.

We remark that in the case ¢=1 (mod 4) the
Paley C-matrix of order 1 + ¢ is also equivalent to a
C-matrix of 2c-type, i. e., a C-matrix made up from
two circulants as in (2) or (3) but without any bor-
der.

Example 4. We choose ¢ =9 and for a primitive
polynomial f(x) of degree 4 over the field GF(3) =
=Z, we choose f(x)=x*-x — 1. Then GF(81)=
=Zg[x]/(x* — x — 1), a quotient ring of Zs[x] mod
the ideal (f). Denote by ¢ the image of x in GF(81).
Then we have et =1 +¢. Thuse8=1 — ¢ + €2, and we
obtain that ®=gl9=1+¢+¢2 — €3. A further com-
putation shows that =1 — © and ®3=-1 — ©. As
o*=-1 we have ©° = -, ©% = -»? and ©” = —®3. The
subfield GF(9) is given by GF(9) = {0, =1, o, =1+o}.
The matrix A has rows [0, —»] and [1, ®2]. The first
row c of C has the form ¢ =10, ¢y, ¢y, c3, ¢4, C5, —C4,
c3, —Cy, ¢1]. The vectors x; are

SOSRHER IS

Finally, we compute the ¢;: ¢; = (1) =1, ¢y = 3(®?) =
=1, cg=y(-1 - ) =3 =-1, ¢, = (@3 - 0?) =y1) =1
and ¢ =31 + 0?) = (@3 =-1. Thus ¢=[0, 1, 1, -1, 1,
1,1, -1, -1, 1].

Special Legendre C-pairs of even length

We list below the special Legendre C-pairs of
even length v < 70, which give 2b2c-type symmet-
ric C-matrices of order 2v + 2. The pairs are speci-
fied by the subsets X and Y (see Proposition 3). For
v=2, 4, 6 we show the sequences a and b as well. In
all cases 2v + 1 is a power of a prime.

v=2

[1,[0]la=(0-),b=(+

v=4

[1,3],[0,1]la=0—-+-),b=(——++)

v==6
[2,3,4],[0,3,4]la=0+———+H,b=(-++——+)

2,3,5,6],[0, 4, 5, 6]

v=12

[1,4,5,7, 8, 11], [0, 2, 3, 4, 5, 10]

v=14

[3,4,5,7,9,10,11],[0, 1, 2,4, 5, 7, 10]

v=18

1, 2, 4, 5,9, 13, 14, 16, 17], [0, 1, 2, 3, 6, 8, 10,
12, 13]

v=20

2,6,78,9,11, 12, 13, 14, 18], [0, 4, 5, 7, 8, 10,
13, 16, 17, 18]

v=24

2, 38, 5,9, 10, 11, 13, 14, 15, 19, 21, 22], [0, 2, 3,
9,12, 13, 15, 16, 17, 18, 19, 22]

v=26

[1,6,8,9,10,12, 13, 14, 16, 17, 18, 20, 25], [0, 1,
6,7,9,10, 12, 14, 17, 20, 21, 22, 23]

v=30

[1, 3, 8,9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 27,
291,10, 6, 7,11, 12, 14, 16, 19, 20, 21, 24, 25, 26, 27,
28]

v =36

2,79, 10, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25,
26, 27, 29, 34], [0, 3, 5, 6, 10, 11, 12, 14, 15, 16, 18,
22, 26, 27, 28, 31, 33, 34]

v=40

1, 2, 3, 6,8,9, 13, 14, 16, 18, 22, 24, 26, 27, 31,
32, 34, 37, 38, 39}, [0, 1, 3, 4, 6, 10, 11, 12, 13, 14,
15, 17, 18, 19, 23, 30, 31, 32, 34, 37]

v=44

[1, 2, 3, 8, 11, 12, 13, 16, 18, 19, 20, 24, 25, 26,
28, 31, 32, 33, 36, 41, 42, 43], [0, 3, 5, 6, 9, 10, 12,
13, 14, 15, 16, 17, 19, 21, 23, 25, 32, 35, 36, 39, 41,
42]

v=48

[3, 4,9, 11, 12, 14, 16, 17, 18, 20, 21, 22, 26, 27,
28, 30, 31, 32, 34, 36, 37, 39, 44, 45], [0, 3, 4, 5, 8,
12, 14, 15, 16, 17, 18, 19, 21, 24, 25, 27, 34, 36, 37,
38, 40, 41, 45, 46]

v=>50

2, 38, 8, 10, 11, 13, 17, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 33, 37, 39, 40, 42, 47, 48], [0, 2, 5, 9,
10, 11, 13, 14, 17, 19, 20, 21, 25, 26, 27, 31, 33, 34,
37,41, 42, 43, 45, 46, 48]

v=>54

2, 3, 4, 5, 13, 15, 16, 18, 19, 22, 23, 24, 26, 27,
28, 30, 31, 32, 35, 36, 38, 39, 41, 49, 50, 51, 52], [0,
2,3,5,9,12, 16, 17, 18, 22, 24, 27, 28, 30, 32, 33,
34, 38, 39, 40, 42, 43, 45, 46, 47, 49, 52]

v =56

[3,4,5,7,9,15, 16, 18, 20, 21, 23, 24, 25, 26, 30,
31, 32, 33, 35, 36, 38, 40, 41, 47, 49, 51, 52, 53], [0,
1,4,5,6, 7,9, 13, 19, 20, 23, 26, 28, 30, 31, 33, 34,
37, 38, 39, 40, 41, 43, 44, 45, 47, 52, 53]

v=60

1,2,4,5,79,11, 14, 15, 16, 17, 21, 22, 25, 26, 34,
35, 38, 39, 43, 44, 45, 46, 49, 51, 53, 55, 56, 58, 59], [0,
3,4,5,6,7,9,11, 12, 13, 14, 17, 22, 24, 25, 26, 28, 29,

2

32, 36, 38, 39, 40, 41, 43, 44, 49, 51, 57, 58]
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v=62

[3, 4, 8, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 28,
29, 31, 33, 34, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49,
54, 58, 591, [0, 2, 4, 5,6, 9, 12, 13, 19, 21, 22, 24, 27,
31, 32, 33, 35, 36, 38, 41, 43, 44, 45, 46, 47, 50, 51,
53, 54, 58, 60]

v=068

[1,3,4,5,7,9, 10, 11, 14, 15, 18, 20, 23, 30, 31,
32, 33, 35, 36, 37, 38, 45, 48, 50, 53, 54, 57, 58, 59,
61, 63, 64, 65, 67],[0, 4, 5,6,7,9, 11, 12, 13, 14, 16,
17, 22, 23, 25, 26, 28, 29, 33, 35, 36, 37, 40, 43, 46,
47, 48, 49, 52, 57, 59, 64, 65, 66]

Special Legendre C-pairs of odd length

For the sake of completeness we list here the spe-
cial Szekeres DFs in cyclic groups Z, for odd lengths
v < 70 whenever 2v + 1 is a prime power. In the first
three cases we also give the corresponding special
Legendre C-pairs. For odd v in this range, when
2v + 1 is not a prime power, we were not able to find
any special Szekeres DFs. We point out that the di-
agram in Fig. 2 shows (the case ¢ =25=1 (mod 4)
and p = 5) that there exist Szekeres DFs in EA(25)
of symmetry type (kk).

v=1

[, [la=(0),b=(+)

v=3
[11,[0la=0~-+),b=(++)
v=>5

[3,4],[1,4]la=0++—-),b=(+ —++-)

v=9

[1, 2, 3, 5],[1, 4, 5, 8];

v=11

2, 3, 4, 6, 10], [0, 2, 3, 8, 9]

v=13

4, 7,8, 10,11, 12],[1, 3,4, 9, 10, 12]

v=15

[3,5,8,9, 11, 13, 14], [0, 1, 2, 6, 9, 13, 14]

v=21

2, 4, 8, 11, 12, 14, 15, 16, 18, 20], [2, 3, 4, 5, 8,
13, 16, 17, 18, 19]

v=23

[1,2,4,5,6,7,9,12,13, 15, 20], [0, 1, 2, 6, 8, 11,
12, 15, 17, 21, 22]

v=29

[1,7,8,10, 12, 15, 16, 18, 20, 23, 24, 25, 26, 27],
2, 3, 8,10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27]

v=33

[2,3,4,6,7,8,
2,3,4,6,9,10, 1

v=35

13,738,910, 11, 13, 14, 15, 18, 19, 23, 29, 30,
31, 33],

[0,2,6,7,9, 12, 15, 16, 17, 18, 19, 20, 23, 26, 28,
29, 33]

9,10, 12, 17, 18, 19, 20, 22, 28, 32],
3, 15, 18, 20, 23, 24, 27, 29, 30, 31]

v=39

[1, 3, 4, 5, 6, 10, 13, 14, 16, 20, 21, 22, 24, 27, 28,
30, 31, 32, 37],

[0, 3, 5,9, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23,
25, 29, 30, 34, 36]

v=41

2, 8, 4, 5,6,8,9, 11, 12, 16, 17, 19, 21, 23, 26,
27, 28, 31, 34, 40],

2, 8, 4,6, 7,8, 10, 15, 17, 18, 23, 24, 26, 31, 33,
34, 35, 37, 38, 39]

v=>51

5,9, 11, 12, 13, 16, 17, 19, 21, 22, 26, 27, 28, 31,
33, 36, 37, 41, 43, 44, 45, 47, 48, 49, 50], [0, 1, 2, 3,
4,7,10,11, 13, 15, 20, 22, 23, 28, 29, 31, 36, 38, 40,
41, 44, 47, 48, 49, 50]

v=53

[1, 5, 8, 10, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24,
27, 28, 33, 34, 36, 42, 44, 46, 47, 49, 50, 51], [2, 3,
5,8,12, 14, 18, 19, 20, 21, 22, 23, 26, 27, 30, 31, 32,
33, 34, 35, 39, 41, 45, 48, 50, 51]

v =63

[1, 2, 5, 6, 12, 17, 18, 19, 21, 25, 27, 29, 30, 32,
35, 37, 39, 40, 41, 43, 47, 48, 49, 50, 52, 53, 54, 55,
56, 59, 60],[0,1, 4,6, 7,8, 10, 11, 13, 14, 22, 23, 25,
27, 30, 31, 32, 33, 36, 38, 40, 41, 49, 50, 52, 53, 55,
56, 57, 59, 62]

V=065

2,5,6,7,9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 28,
29, 31, 33, 35, 38, 39, 40, 41, 42, 44, 47, 53, 54, 57,
61, 62, 64],[4, 5, 7, 10, 12, 14, 18, 19, 20, 22, 23, 24,
25, 26, 30, 31, 34, 35, 39, 40, 41, 42, 43, 45, 46, 47,
51, 53, 55, 58, 60, 61]

v =69

[1, 5, 8, 10, 11, 12, 13, 16, 17, 18, 19, 22, 24, 25,
26, 27, 28, 29, 31, 33, 35, 37, 39, 46, 48, 49, 54, 55,
60, 62, 63, 65, 66, 671, [2, 3, 5, 7, 8, 11, 12, 13, 15,
20, 21, 24, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 45,
48, 49, 54, 56, 57, 58, 61, 62, 64, 66, 67]
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Kondepenn-marpuis: Ha ocHoBe C-map Jlesxanapa
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I. . MxoxoBud®, ToKTOpP HAYK, mpodeccop, orcid.org/0000-0002-0176-2395, djokovic@uwaterloo.ca
aCaukTr-IleTepOyprecKuii rocyapcTBEeHHBIN YHUBEPCUTET a9POKOCMUUYECKOro mpubopoctpoenus, B. Mopckas yi., 67,
Caukr-ITerepbypr, 190000, PO

6YVauBepcuTeT Barepioo, kadenpa YnCTOH MaTeMaTHKY U MTHCTUTYT KBAaHTOBBLIX BBIUMCIEHUH, BaTepioo, OHTapHoO,
N2L 3G1, Kanaga

Beepgenue: cyiiecTByeT HECKOJIHKO METOIOB IIOCTPOEHU S CUMMETPUUHBIX C-MaTpPUIl BBULY OTCYTCTBUSA AJISI HUX YHUBEPCAJIbHON CTPYK-
TypbI. 9TO OrPaHUYEeHVe IPUHIIUIINAILHO, KPOMe TOTO, B JIUTepaType HEIIOJIHO OCBellleHa CTPYKTypa C-MaTpuIl ¢ mapHO# KalMou, 4T
JesaeT ee U3yUeHNE 0COOEHHO aKTyalIbHBIM. 1lesb: [eTaIbHO ONKUCcaTh OMIUKIINIECKYI0 KOHCTPYKIIHMIO C IaPHON KaMOU U IPeAJIOKUTD
rounennuio C-nap Jlexxanapa. Pesyasrarsr: paccMoTpeHsl C-MaTpUIB TOPAAKA 1 = 20 + 2 ¢ IapPHOI KailMO# Ha OCHOBE afallTalluy TaK
HaBBIBAEMBIX 00001IIeHHBIX nap JlexkaHapa HeUeTHOU AJTUHEI U K 60JIee IITUPOKOMY CJIyUalo YeTHBIX ¥ HeUeTHBIX 3HAUEHUH U, UTO ITO3BOJIA-
eT mocTpouTh HOoBbIe C-napsl JleskaHapa B KOHEUHBIX abeseBbIx rpynnax G nopsagka v. Takas napa onuckiBaeTcsa IByMsa GYHKIUAMY a, b:
G — Z, 3HaueHUsA KOTOPBIX PaBHEI +1 uiu —1, 3a uckaouyernueM a(e) = 0, rae e — eTUHAYHBIN 9J1eMeHT rpynnsl G, uepes Z 0603HAYEHO KOJIb-
1o messix yncen. s xapakrepucrtuku C-nap Jleskanapa BBesens! aBa Habopa X ={x € G: a(x)=—-1} u Y = {x € G: b(x) = -1} rpynus G.
TToxaszano, uto a(x~1) = (—1)a(x) mnsa Beex x. [/ HeUeTHLIX 3HAUEHHUI U OTMedeHO, uTo X 1 Y 06pa3yioT pa3HOCTHOe ceMeiicTBO, uTo He-
IPUMEHNMO K YeTHBIM IOPAAKAaM. TO PA3HOCTHOE CeMeiCTBO U pa3HOCTHOe ceMeiicTBo Cekepelra — OJUH U TOT JKe KJIacc, IePBOHAYAIBHO
HCIOJIB3YEMBIH AJIA IOCTPOEHUA KOCOCUMMETPUYHBIX MaTpull Aramapa. Beegen nogkiace cnenuanbebix C-nap Jlesxanapa u foxkasaHo,
YTO OHU CYIIECTBYIOT AJIA CIydaeB, Korga 2v + 1 — cTemeHb IPOCTOTo Yucia. B mociefHUX ABYX pasjiesiax CTAThU IPUBELEHBI IPUMePhI
cuenuaabHbIX HMuKJInueckux C-map Jlesxauapa qisa pasmepoB v < 70. IlpakTuueckas 3HaYUMOCTh: C-MaTPUIIBI IIUPOKO UCIOJIb3YIOTCS B
3ajavyax IOMeXOyCTOHUYNBOTO KOAUPOBAHNUA, CIKATUA U MAaCKUPOBAaHUA BugeonHpopmManuu. IIporpaMMseI 414 TOuCKa KOH(EPeHI[-MaTPHI]
¥ OMOJINOTEKY IIOCTPOEHHBIX MATPHUI] IPUMEHAIOTCA B MareMaTUdecKoi cetu «mathscinet.ru» BmecTe ¢ mcmosHAEeMbIMY OHJIANH-AIT0-
puUTMaMu.

KuaioueBsie ciioBa — KOH(epPeHI-MaTPHUIbl, KOCOCUMMETPHUUHBIE MAaTPUIBI AJjlaMapa, IepUOANIecKre aBTOKOPPEIAINOHHbIe (PYHK-
uuu, pasHocTHBIE ceMelicTBa Cekeperria, 00001eHELIe Taphl JIeskaHapa, KOHCTPYKIIUY, Teae(OHMA.
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