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Introduction: There are just a few known methods for the construction of symmetric C-matrices, due to the lack of a universal 
structure for them. This obstruction is fundamental, in addition, the structure of C-matrices with a double border is incompletely 
described in literature, which makes its study especially relevant. Purpose: To describe the two-border two-circulant construction 
in detail we introduce the concept of the Legendre C-pairs. Results: The paper deals with C-matrices of order n2v2 with two 
borders and extends the so called generalized Legendre pairs, v odd, to a wider class of Legendre C-pairs with even and odd v, 
defined on a finite abelian group G of order v. Such a pair consists of two functions a, b: G Z, whose values are 1 or –1 except 
that a(e)0, where e is the identity element of G and Z is the ring of integers. To characterize the Legendre C-pairs we use the 
subsets X{xG: a(x)–1} and Y{xG: b(x)–1} of G. We show that a(x–1)(–1)v a(x) for all x. For odd v we show that X 
and Y form a difference family, which is not true for even v. These difference families are precisely the so called Szekeres difference 
sets, used originally for the construction of skew-Hadamard matrices. We introduce the subclass of the special Legendre C-pairs 
and prove that they exist whenever 2v1 is a prime power. In the last two sections of the paper we list examples of special cyclic 
Legendre C-pairs for lengths v < 70. Practical relevance: C-matrices are used extensively in the problems of error-free coding, 
compression and masking of video information. Programs for search of conference matrices and a library of constructed matrices 
are used in the mathematical network “mathscinet.ru” together with executable on-line algorithms.
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Introduction

We introduce the notion of Legendre C-pairs 
on a finite abelian group G of order v and use it 
to construct many C-matrices of order n2v2 
with two borders and a core made up from two mul-
ti-circulants. Such a pair consists of two functions 
a, b: GZ, whose values are 1 or –1 except that 
a(e)0, where e is the identity element of G. (By Z 
we denote the ring of integers.) Moreover the sum 
of the periodic autocorrelation functions (PAF) of a 
and b must be –2, except at shift 0. These pairs are 
similar to the so called generalized Legendre (GL) 
pairs. While for the GL-pairs v must be odd, there is 
no such restriction for the Legendre C-pairs. 

In Proposition 1 we show that a(x–1)(–1)va(x) 
for all x and determine the cardinalities of the 
sets X{xG: a(x)–1} and Y{xG: b(x)–1}. 
We introduce special Legendre C-pairs and in 
Proposition 2 and Corollary 2 we show that they ex-
ist whenever 2v1 is a prime power.

In the last two sections of the paper we list 
examples of special cyclic Legendre C-pairs for 
lengths v < 70. In Proposition 3 we characterize the 
Legendre C-pairs in terms of the subsets X and Y 
defined above. For odd v we show that X and Y form 

a difference family, which is not true for even v. 
These difference families are precisely the so 
called Szekeres difference sets (see Corollary 3). 
Originally they were used for the construction of 
skew-Hadamard matrices, see [1–4]. A wider class 
of two-block difference families with parameters 
(v; (v – 1)/2, (v – 1)/2; (v – 3)/2), v odd, has been in-
vestigated recently in [5]. In Fig. 3 we summarize 
diagramatically the main facts about such families. 
The existence question remains open in many cases. 

Let us now recall some definitions and facts about 
Hadamard and conference matrices. A Hadamard 
matrix is a matrix H of order n with entries 1 or –1 
and such that HHTnI (T is the transposition oper-
ator and I is the identity matrix of some order, here 
of order n). If such a matrix exists and n > 2 then 
n must be divisible by 4. A Hadamard matrix H is a 
skew-Hadamard matrix if HHT2I.

A conference matrix (C-matrix) is a matrix C of 
order n whose diagonal entries are zeros, the oth-
er entries are 1 or –1, and CCT(n – 1)I. If such 
a matrix exists and n > 1 then n must be even. 
Two C-matrices of the same order are equivalent 
if one can be transformed to the other by permut-
ing the rows and columns so that the diagonal ze-
ros are preserved and by multiplying by –1 some 
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rows and some columns. Every equivalence class 
of C-matrices of order n contains a symmetric ma-
trix if n2 (mod 4) and a skew-symmetric matrix if 
n0 (mod 4). If C is a skew-symmetric C-matrix of 
order n then HCI is a skew-Hadamard matrix 
of order n, and the converse holds.

It is well-known (see e. g. [6]) that if a C-matrix of 
order n2 (mod 4) exists then n – 1 must be a sum 
of two squares. Let us list such integers n < 200:

2, 6, 10, 14, 18, 26, 30, 38, 42, 46, 50, 54, 

62, 66, 74, 82, 86, 90, 98, 102, 110, 114, 118, 

122, 126, 138, 146, 150, 154, 158, 170, 174, 

 182, 186, 194, 198.  (1)

We say that a symmetric or skew-symmetric 
C-matrix is normalized if all entries of its first 
row are 1, except the first entry which must be 0. 
In that case, its core is the submatrix obtained by 
dropping the first row and column. 

The basic examples of C-matrices are so called 
Paley C-matrices C of order nq1 where q is a pow-
er of an odd prime (see e. g. [7] or [8, Chapter 18]). 
The matrix C is normalized and its core Q is a matrix 
of order q. The rows and columns of Q are labeled by 
the elements of the finite field GF(q) of order q. The 
entries of Q are given by the formula Qx,y(x – y), 
where  is the quadratic character of GF(q). We recall 
that (x)1 if x  0 is a square in GF(q), (x)–1 if 
x is not a square, and (0)0. Moreover,  satisfies 
the multiplicative property (xy)(x)(y) for all x, y 
in GF(q). Both C and Q are symmetric if q1 (mod 4) 
and skew-symmetric otherwise.

There are just a few methods of construction of 
symmetric C-matrices. They are listed in the recent 
survey paper [9]. We investigate here only one of 
these methods, namely the two-border two-circulant 
(2b2c) construction. In the next section we describe 
this construction in detail and introduce the con-
cept of Legendre C-pairs.

Legendre C-pairs

For the sake of simplicity, we consider first the 
case of the cyclic group Zv{0, 1, …, v – 1} under 
addition modulo v. In that case we treat the func-
tions on Zv as sequences of length v. Let a and b be 
two sequences of length v 

 a(a0, a1, …, av–1); b(b0, b1, …, bv–1),  (2)

where a00 while all other ai and all the bi are equal 
to 1 or –1. Recall that the value of the P AF of a 
sequence x(x0, x1, …, xv–1) at shift s is 

1

0
PAF ( ) .

v

x i i s
i

s x x





 
 

Definition 1 (cyclic case). We say that the pair 
(a, b) given by (2) is a (cyclic) Legendre C-pair if the 
sum of the PAFs of the sequences a and b has the 
constant value –2, except at the shift 0 where the 
sum attains its peak value 2v – 1.

The first examples of Legendre C-pairs orig-
inate from Number Theory. Indeed let vp be a 
prime number 3 (mod 4). Then the sequence a of 
Legendre symbols 

,i
i

a
p

 
  
 

 i0, 1, ..., p – 1

has constant PAF values, PAFa(s)–1 for all 
nonzero s. The same is true for the sequence b which 
is obtained from a by replacing the first term 0 by 
1. Hence (a, b) is a Legendre C-pair of length p. 
This construction does not work when p is a prime 
number 1 (mod 4).

The above definition differs from that of “gener-
alised Legendre pairs” given in [10, p. 76] (see also 
[6]) which requires that all elements of the sequences 
a and b be 1 or –1. We shall refer to them simply as 
“Legendre pairs”. For the Legendre pairs, the sum of 
the PAFs of a and b is required to be the constant func-
tion –2 except for the value 2v at shift 0. Our definition 
of Legendre C-pairs is designed for the construction 
of C-matrices and so the condition that a00 is man-
datory. It is mentioned in [10, p. 80] that the length of 
Legendre pairs must be odd. On the other hand, there 
exist Legendre C-pairs of even and odd lengths. Those 
of even length give symmetric C-matrices while the 
ones of odd length give skew-symmetric C-matrices 
(and skew-Hadamard matrices).

Now let p be a prime number 1 (mod 4). Let a 
and b be the sequences obtained from the sequence 
of Legendre symbols by replacing the 0 term by 
1 and –1 respectively. Then (a, b) is a Legendre 
pair of length p which cannot be used to produce a 
Legendre C-pair of the same length.

Next we show how to use a cyclic Legendre C-pair 
(a, b) of length v to construct a C-matrix C of order 
n2v2. Let A and B denote the circulant matrices 
whose first rows are given by a and b, respectively. 

In the case when v is even, the matrix C is ob-
tained by plugging the blocks A and B into the next 
array; the first two rows and columns of C form its 
border and its core is made up from the circulants A 
and B (and their transposes): 

 

T T

T T

T T

0 1

1 0 .

 
 
 

  
 
   

e e

e eÑ
e e A B

e e B A

  (3)

(By e we denote a column vector of 1’s.)



ИНФОРМАЦИОННО
УПРАВЛЯЮЩИЕ СИСТЕМЫ № 4, 20204

ТЕОРЕТИЧЕСКАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА

It is easy to verify (see Problem 18B on p. 174 
and the hint on p. 490 in [8]) that if the matrix C 
defined by (3) is a C-matrix then C must be symmet-
ric. Consequently, if C is a C-matrix then A must be 
symmetric, i. e. aiav–i for i1, …, v – 1. For an 
example of such C-matrix see Fig. 1, a.

In the case when v is odd, we use the modified array

 

T T

T T

T T

0 1

1 0 .

 
 
  

  
  
   

e e

e eÑ
e e A B

e e B A

  (4)

As in the previous case one can show that if C is 
a C-matrix then the block A must be skew-symmet-
ric matrix, i. e. aiav–i0 for i1, …, v – 1. For an 
example see Fig. 1, b.

We shall now extend the definition of Legendre 
C-pairs to any abelian group G of order v with iden-
tity element e. Denote by * the involution of the in-
tegral group ring Z[G] sending any element x to its 
inverse x–1. For any zZ[G] we define its norm N(z) 
to be the product zz*. For a subset X of G we say that 
it is symmetric if X*X and that it is skew if G is a 
disjoint union of X, X* and {e}. For any function a: 
GZ we define its periodic autocorrelation func-
tion, PAFa: GZ, by the formula

PAF ( ) ( ) ( ).a
x G

s a x a x s


 

Definition 1 (general case). Let a and b be func-
tions GZ such that a(e)0 while all other values 
of a and all values of b belong to the set {1, –1}. We 
say that the pair (a, b) is a Legendre C-pair if the 
sum of the PAFs of a and b has the constant value 
–2, except at the shift 0 where the sum attains its 
peak value 2v – 1.

To a function a: GZ we associate the matrix 
A of order v whose rows and columns are labe-
led by the elements of G and are given by the for-
mula Ax,ya(x–1y). Such matrices are known as 

G-invariant matrices because they have the property 
that Axz,yzAx,y for all x, y, z in G. (By suitably ar-
ranging the indices, such matrices can be written as 
multi-circulants, i. e., circulants of circulants of …). 
If (a, b) is a Legendre C-pair of length v and A and B 
are their associated matrices, it is easy to show that 
the matrix C given by (3) or (4) is a C-matrix. In that 
case we say that (a, b) is the Legendre C-pair of C. 
It is well known, see [7, Theorem 2.2], that each Paley 
C-matrix is equivalent to one of the form (3) or (4) 
with circulant blocks A and B. Hence, cyclic Legendre 
C-pairs of length v exist whenever 2v1 is a prime 
power. The converse is false. For instance there exist a 
Legendre C-pair of length v7 while 2v115 is not 
a prime power. For a concrete example with multi-cir-
culant blocks A and B of order 25 see [5] or [6, section 
10.3]. Another example is given below.

On Fig. 2 we show two skew-symmetric C-mat-
rices. The first one has the form (4) with multi-cir-
culant blocks A and B of order 27. It is construct-
ed from the difference set X consisting of the 
nonzero squares in GF(27). To construct this field 
we used the primitive polynomial x3 – x21 over 
Z3. The elements of GF(27) are the 27 polynomi-
als abxcx2, with a, b, c{0, 1, 2}. We encode 
this polynomial by the symbol abc, and arrange the 
symbols in the lexicographic order 000, 001, 002, 
010, 011, 012, …, 222. Explicitly, we have X{1, x2, 
22xx2, 2x2x2, 2xx2, 12xx2, 2xx2, 
2x, 12x2, 1x, 22x2, 1xx2, 12x}. 

The corresponding 13 symbols are 100, 001, 221, 
022, 211, 121, 021, 020, 102, 110, 202, 111, 120. The 
matrix B associated to X has –1 entries exactly at 
these 13 positions. It has the block-circulant structure 
with the first row [U V W]. The matrices U, V, W are 
also multi-circulants but of order 9. Their first block-
rows are [P, J, –J], [–P, –Q, –Q], [Q, P, P] where P, Q, 
J are the circulants with the first rows [1, –1, 1], [1, 1, 
–1], [1, 1, 1], respectively. Further, AB – I.

The second matrix has the form T T

 
   

A B

B A
 

where A and B are negacyclic blocks of size v28. 
We recall that a square matrix of order n is nega-

  Fig. 1. 2b2c conference matrices of orders 14 (a) and 
12 (b), matrix portraits have white and black colors for 
entries 1, –1 and gray for 0

a) b)

  Fig. 2. Two skew-symmetric C-matrices of order 56 
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cyclic if each row but the first is obtained from the 
previous one by the negacyclic shift

(x1, x2, x3, …, xn–1, xn)

(–xn, x1, x2, …, xn–2, xn–1).

The first rows of A and B, respectively, are 

a[0, –1, 1, –1, 1, –1, –1, –1, –1, –1, 1, 1, –1, –1, 
1, –1, –1, 1, 1, –1, –1, –1, –1, –1, 1, –1, 1, –1];

b[1, 1, 1, –1, 1, –1, 1, 1, –1, –1, 1, 1, 1, –1, –1, 1, 
1, –1, 1, –1, 1, 1, 1, 1, 1, –1, –1, –1].

Since A is negacyclic and aiav–i for i1, …, 
v – 1 the block A is skew-symmetric. Hence the sec-
ond matrix is also skew-symmetric. 

The list (1) gives the feasible sizes n < 200 of 
symmetric C-matrices. It is known that such matri-
ces exist when n – 1 is a prime power. By removing 
such sizes we are left with only seven cases n46, 
66, 86, 118, 146, 154, 186. C-matrices of size 46 
have been constructed long time ago, while it is still 
unknown whether they exist in the remaining six 
sizes, see [9]. By using a computer search, we have 
shown that there are no cyclic Legendre C-pairs of 
length 22 or 32. 

The first assertion of the following proposition 
follows from the properties of the block A men-
tioned earlier in this section.

Proposition 1. Let (a, b) be a Legendre C-pair 
on an abelian group G of order v and let k1 and k2 
be the cardinalities of the sets {xG: a(x)–1} 
and {xG: b(x)–1}, respectively. Then a(x–1)
(–1)va(x) for all x. If v is even then k1k2v/2. If 
v is odd then k1k2(v – 1)/2. 

Proof: Let us prove the second assertion. By the 
hypothesis, v is even. Let A and B be the multi-cir-
culant matrices associated to the functions a and b, 
respectively. Since (a, b) is a Legendre C-pair, the 
matrix C given by (3) is a C-matrix. The first and 
the second row of C are orthogonal to the third row. 
This gives the two equations

1(v – 1 – 2k1)(v – 2k2)0; 

1(v – 1 – 2k1) – (v – 2k2)0.

It follows that k1k2v/2. The proof of the 
third assertion is similar.

Corollary  1. If (a, b) is a Legendre C-pair on an 
abelian group G of odd order, then after replacing 
a(e)0 by a(e) 1 (or a(e)–1) we obtain a Legendre 
pair. (The converse is not valid.)

Special Legendre C-pairs

We now introduce a subclass of the class of 
Legendre C-pairs.

Definition 2. Let (a, b) be a Legendre C-pair on 
G, a group of order v. If v is odd we say that (a, b) is 
special if the subset {xG: b(x)–1} is symmetric. 
If v is even and G is cyclic, say GZv, we say that 
(a, b) is special if bv–1–i–bi, i0, 1, …, v – 1.

We shall now prove that cyclic special Legendre 
C-pairs of length v exist whenever 2v1 is a prime 
power.

Proposition 2. The equivalence class of any Paley 
C-matrix C contains a C-matrix of the form (3) or (4) 
whose Legendre C-pair is cyclic and special.

Proof: We follow the proof of [7, Theorem 2.2] 
and modify it in order to prove our assertion. All 
Paley C-matrices of the same order are mutually 
equivalent, see [7]. Hence it suffices to construct for 
each odd prime power q2v1 a Paley C-matrix C 
of order q1, having the 2b2c form (3) or (4), whose 
Legendre C-pair is cyclic and special. 

Let V be the 2-dimensional vector space over 
GF(q) with basis vectors x(1, 0) and y(0, 1). 
Choose a primitive element  of GF(q). Define the 
vectors zky – kx(–k, 1) for k0, 1, …, q – 2. 
We arrange the vectors x, y and the zk as follows: 
x, y, z0, z2, …, z2v–2, z1, z3, …, z2v–1. Note that this 
arrangement is slightly different from the one used 
in [7]. We use these q1 vectors to define a Paley 
C-matrix C as usual and let (a, b) be its Legendre 
C-pair. It follows from [7, Theorem 2.2] that C has 
the 2b2c form. 

In more details, the entries of C are computed 
as follows. Let i and j be any indices in the range 
1, 2, …, q1. Let u and w be the i-th and j-th vec-
tors in the above list, respectively. Then the (i, j)-th 
entry of C is equal to (det(u, w)) where (u, w) de-
notes the matrix of order two made up from u and 
w. Moreover, akC3,3k and bkC3,v3k for k0, 1, 
…, v – 1. 

We claim that C3,q1–k–(–1)C3,v3k for k0, 
1, …, v – 1. Indeed for i3 and jq1 – k we 
have uz0(–1, 1) and wzq–2–2k(––2k–1, 1). 
Since det(u, w)–2k–1 – 1, we have C3,q1–k
(–2k–1 – 1–(–1)(2k1 – 1). Similarly we have 
C3,v3k(2k1 – 1). We conclude that our claim 
holds. 

Hence the sequence b satisfies the equalities 
bv–k–(–1)bk for k0, 1, …, v – 1. If q1 (mod 4) 
this means that the Legendre C-pair (a, b) is special. 
The same is true in the case q3 (mod 4) after a 
suitable cyclic shift of b. This completes the proof.

Corollary 2. Cyclic special Legendre C-pairs of 
length v exist whenever 2v1 is a prime power.

Many special Legendre C-pairs of odd length v 
can be constructed from the so called Szekeres dif-
ference sets. We recall that the Szekeres difference 
sets are in fact a difference family (DF) in an abe-
lian group G of odd order v consisting of two blocks, 
X and Y, such that X is skew and |X||Y|(v – 1)/2. 
Hence the parameters of such DF are 
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 (v; (v – 1)/2, (v – 1)/2; (v – 3)/2).  (5)

We say that a Szekeres DF (X, Y) is special if 
Y is symmetric. It is well known, see [1, Theo-
rem 5.18] or [2], that the special Szekeres DFs in Zv 
exist whenever 2v1 is a prime power 3 (mod 4). 
Let us give a simple example.

Example 1. Let v5 and note that 2v111 is 
a prime 3 (mod 4). The subsets X{g, g3}gg3 
and Y{g2, g3}g2g3 of the cyclic group G< g >  
of order 5 form a special Szekeres DF. The * op-
erator sends gi to g–i. Thus X*{g2, g4}g2g4, 
Y*Y and we have GXX*e. To construct 
the special Legendre C-pair, we form the binary se-
quence a(1, –1, 1, –1, 1) by setting ai–1 if giX 
and ai1 otherwise, and form b(1, 1, –1, –1, 1) 
similarly by using Y. The sum of the PAFs of a and 
b is the constant function –2 apart from the origin. 
Thus (a, b) is a Legendre pair. By replacing the first 
term of a by 0 we obtain a special Legendre C-pair.

Difference families with parameters (5)

In the following diagram (Fig. 3) we summarize 
the main results on the existence of DFs (X, Y) with 
parameters (5) and X and Y symmetric or skew. By 
EA(q) we denote an elementary abelian group of or-
der qpr, p a prime, r a positive integer. [The ad-
ditive group of GF(q) is an EA(q).] The symmetry 
types of X and Y are indicated by the letter s if the 
block is symmetric, k if it is skew, and the symbol * 
if no symmetry is required. For instance (ks) means 
that X is skew and Y is symmetric. While arbitrary 
Szekeres DFs have the symmetry type (k*), the spe-
cial ones have type (ks).

In Case 1 the block X is the set of nonzero 
squares in GF(q). The same is true for part a) of 
Case 2, see [2, Theorem 4]. For part b) of Case 2 

see [2, Theorem 3] and [1, Theorem 5.18]. Note that 
in the first subcase (p1, 3, 7 (mod 8)) of Case 1 
we also require that q1 (mod 8). No general re-
sult seems to be known about this subcase. In the 
second subcase (p5 (mod 8)), part a) was proved 
in [2, Theorem 5] when q5 (mod 8) and in [3, 4] 
when q1 (mod 8). For part b) of the same subcase 
see [11]. 

Let us give two examples of Legendre C-pairs (X, 
Y) of type (kk) and length v with 2v1 not a prime 
power. Both examples are obtained from a theorem 
of Szekeres, see [2, Theorem 6] and [5, Theorem 2]. 
First example: we start with the Szekeres DF (X, Y) 
in Z37:

X{3, 4, 5, 6, 8, 11, 13, 17, 19, 21, 22, 23, 25, 27, 
28, 30, 35, 36};

Y{2, 3, 4, 11, 14, 15, 18, 20, 21, 24, 25, 27, 28, 
29, 30, 31, 32, 36}.

The corresponding binary sequences a and b are

a(1, 1, 1, –1, –1, –1, –1, 1, –1, 1, 1, –1, 1, –1, 1, 
1, 1, –1, 1, –1, 1, –1, –1, –1, 1, –1, 1, –1, –1, 1, –1, 1, 
1, 1, 1, –1, –1);

b(1, 1, –1, –1, –1, 1, 1, 1, 1, 1, 1, –1, 1, 1, –1, –1, 
1, 1, –1, 1, –1, –1, 1, 1, –1, –1, 1, –1, –1, –1, –1, –1, 
–1, 1, 1, 1, –1). 

Since X is skew, by replacing the first term of 
a by 0, we obtain a Legendre C-pair of length 37. 
Second example: (X, Y) in Z61:

X{2, 3, 4, 5, 7, 14, 18, 19, 23, 24, 26, 27, 30, 
32, 33, 36, 39, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 
53, 55, 60};

Y{3, 4, 5, 6, 8, 10, 11, 14, 17, 19, 21, 27, 28, 29, 
31, 35, 36, 37, 38, 39, 41, 43, 45, 46, 48, 49, 52, 54, 
59, 60}.

It gives the Legendre C-pair 

a(0, 1, –1, –1, –1, –1, 1, –1, 1, 1, 1, 1, 1, 1, –1, 
1, 1, 1, –1, –1, 1, 1, 1, –1, –1, 1, –1, –1, 1, 1, –1, 1, –1, 
–1, 1, 1, –1, 1, 1, –1, –1, –1, 1, 1, –1, –1, –1, 1, –1, –1, 
–1, –1, –1, –1, 1, –1, 1, 1, 1, 1, –1);

b(1, 1, 1, –1, –1, –1, –1, 1, –1, 1, –1, –1, 1, 1, –1, 
1, 1, –1, 1, –1, 1, –1, 1, 1, 1, 1, 1, –1, –1, –1, 1, –1, 1, 
1, 1, –1, –1, –1, –1, –1, 1, –1, 1, –1, 1, –1, –1, 1, –1, 
–1, 1, 1, –1, 1, –1, 1, 1, 1, 1, –1, –1)

of length 61. In general, such pairs of length q exist 
whenever q is a power of a prime p5 (mod 8), see 
[2–4].

Regarding the Legendre C-pairs of symmetry 
type (ks) one can ask whether they exist for lengths 
v when 2v1 is not a prime power? It turns out that 
they do. The smallest such pair known to us has 

Parameters: (v; (v – 1)/2, (v – 1)/2; (v – 3)/2) 

q pr, p a prime, r > 0 integer 

Case 1: q 1 (mod 4) Case 2: q 3 (mod 4)

a) G EA(q), (kk), X Y
b) G Z(q – 1)/2, (ks)

G EA(q), (ss) 

Y (G\X)\{0} 

a) G EA(q), (kk)

b) G EA(q), (ks),

p 1, 3, 7 (mod 8)

? 

p 5 (mod 8) 

q 4 + s2, s 1 (mod 4)

  Fig. 3. Existence of DFs (X, Y) with parameters (5) 
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length v1373 in which case 2v1274741 67. 
For this see [11, Theorem 3.1]. 

Characterization of Legendre C-pairs

Let us give an algebraic characterization of 
Legendre C-pairs over an abelian group G of order v 
with the identity element e. Let a, b: GZ be func-
tions such that a(e)0 and all other values of a and 
all the values of b are 1 or –1. Define the subsets 
X, Y G by 

X{xG: a(x)–1} and Y{xG: b(x)–1}. (6)

Note  that e X because a(e)0. Also note that 
the pair (X, Y) determines uniquely the pair (a, b). 
If (a, b) is a Legendre C-pair, by using Definition 1 
and [6, equation (7)], it is straightforward to verify 
that 

N(G – e – 2X)N(G – 2Y)

 (2v – 1)e – 2(G – e)(2v1)e – 2G.  (7)

Proposition 3. Let a, b, X, Y be as above. (We 
shall view the subsets X, Y G also as elements 
of the group ring Z[G].) If v is even then (a, b) is a 
Legendre C-pair if and only if

 2
* * ( ) .v

XX YY e G X   
  

(8)

If v is odd then (a, b) is a Legendre C-pair if and 
only if

 

1 3
2 2

* * .v v
XX YY e G

 
     (9)

Proof: First, let v be even and assume that 
(a, b) is a Legendre C-pair. By Proposition 1 we 
have X*X and k1k2v/2. Since GGvG, 
GXk1G and GYk2G, it is easy to verify that 
N(G – e – 2X)4N(X)4Xe–(v2)G and N(G –
– 2Y)4N(Y) – vG. The sum of these two norms 
is equal to 4(N(X)N(Y))4Xe – 2(v1)G. By 
comparing this expression with the right hand side 
of (7) we obtain (8). For the converse note that (8) 
implies that X*X and so we can reverse the above 
arguments.

Second, let v be odd and assume that (a, b) 
is a Legendre C-pair. By Proposition 1 we have 
X*XG – e and k1k2(v – 1)/2. Since GG
vG, GXk1G and GYk2G, it is easy to veri-
fy that N(G – e – 2X)4N(X) – (v – 2)G – e and 
N(G – 2Y)4N(Y) – (v – 2)G. The sum of these 
two norms is equal to 4(N(X)N(Y)) – (v – 2)
G – e – (v – 2)G. By comparing this expression with 
the right hand side of (7) we obtain (9).

The following corollary follows immediately 
from the second claim of Proposition 3.

Corollary 3. In the case when v is odd, the functions 
(a, b) form a Legendre C-pair if and only if the corre-
sponding subsets X, Y form a Szekeres DF in G. 

Note that if (a, b) in this corollary is a special 
Legendre C-pair then the corresponding Szekeres 
DF (X, Y) is also special.

Example 2. Let us verify the equation (9) for 
the sequences a(0 –  – ), b(–    –). In these 
sequences,  and – stand for 1 and –1 respective-
ly. They form a special Legendre C-pair of length 
v5. By using (6) we find that X{g1, g3}gg3 
and Y{g0, g4}eg4. Thus Y*eg and so Y is 
not symmetric. However its translate Yg–2g2g3 
is symmetric. Further, XX*2eg2g3 and 
YY*2egg4. Thus XX*YY*4egg2
g3g4 3eG.

Example 3. Let us verify the equation (8) for the 
sequences a(0  – – – ), b(–   – – ). They 
form a special Legendre C-pair of length v6. By 
using (6) we find that X{g2, g3, g4}g2g3g4 
and Y{g0, g3, g4}eg3g4. Further, we have 
XX*3e2gg2g42g5 and YY*3eg
g22g3g4g5. Thus XX*YY*6e3g
2(g2g3g4)3g53(eG) – X. 

Algorithm for constructing negacyclic 
C-matrices

As stated earlier, all Paley C-matrices of the same 
order n1q are equivalent to each other. In view 
of Proposition 2, the equivalence class of any Paley 
C-matrix contains a C-matrix of 2b2c-type. It is also 
well known that the same equivalence class also con-
tains a negacyclic C-matrix, see [12, Corollary 7.2].

Let q be any odd prime power. We describe a sim-
ple algorithm which for any given q outputs a nega-
cyclic C-matrix C of order n1q equivalent to the 
Paley C-matrix of the same order. This algorithm is 
based on the proof of [12, Corollary 7.2]. Since C is 
negacyclic it suffices to find its first row [c00, c1, 
c2, …, cq].

By a theorem of Belevitch, see [12, Theorem 4.1], 
we have cn/2j(–1) jcn/2–j for j1, 2, …, n/2 – 1. 
Thus it suffices to compute only the values of ci for 
i1, 2, …, n/2. 

We assume that a suitable software for computa-
tions in finite fields is available. (One of the authors 
used Maple and its GF package.)

Step 1. Construct the finite field GF(q2) and se-
lect any primitive element  of that field.

Step 2. Construct the matrix A of order 2 with 
first row [0, –] and second row [1, ] where 1q 
and q. Note that  and  belong to the sub-
field GF(q) while  does not. In fact  is a primitive 
element of GF(q). 
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Step 3. Set 0
1

0
x

 
  
 

 and define the vectors 

1

2

[ ]
,

[ ]
i

i
i

x
x

x
 

  
 

 i1, 2, …, n/2 recursively by the for-

mula xi1Axi.

Step 4. Then we have ci(xi[2]) for i1, 2, …, 
n/2 where  is the quadratic character of GF(q).

This completes the description of the algorithm.
We remark that in the case q1 (mod 4) the 

Paley C-matrix of order 1q is also equivalent to a 
C-matrix of 2c-type, i. e., a C-matrix made up from 
two circulants as in (2) or (3) but without any bor-
der.

Example 4. We choose q9 and for a primitive 
polynomial f(x) of degree 4 over the field GF(3)
Z3 we choose f(x)x4 – x – 1. Then GF(81)
Z3[x]/(x4 – x – 1), a quotient ring of Z3[x] mod 
the ideal (f). Denote by  the image of x in GF(81). 
Then we have 41. Thus 81 – 2, and we 
obtain that 1012 – 3. A further com-
putation shows that 21 –  and 3–1 – . As 
4–1 we have 5–, 6–2 and 7–3. The 
subfield GF(9) is given by GF(9){0, ±1, ±, ±1±}. 
The matrix A has rows [0, –] and [1, 2]. The first 
row c of C has the form c[0, c1, c2, c3, c4, c5, –c4, 
c3, –c2, c1]. The vectors xi are 

0
1

0
,x

 
  
 

 1
0

1
,x

 
  
 

 2 2 ,x
 

    
 

3

3
1

,x
 

     
2

4 3 2
,x

  
 
   

 

3

5 2

1

1
.x

 
 
   

Finally, we compute the ci: c1(1)1, c2(2)
1, c3(–1 – )(3)–1, c4(3 – 2)(1)1 
and c5(12)(3)–1. Thus c[0, 1, 1, –1, 1, 
–1, –1, –1, –1, 1].

Special Legendre C-pairs of even length

We list below the special Legendre C-pairs of 
even length v < 70, which give 2b2c-type symmet-
ric C-matrices of order 2v2. The pairs are speci-
fied by the subsets X and Y (see Proposition 3). For 
v2, 4, 6 we show the sequences a and b as well. In 
all cases 2v1 is a power of a prime.

v2
[1], [0] a(0 –), b(– )
v4
[1, 3], [0, 1] a(0 –  –), b(– –  )
v6
[2, 3, 4], [0, 3, 4] a(0  – – – ), b(–   – – )
v8
[2, 3, 5, 6], [0, 4, 5, 6] 

v12
[1, 4, 5, 7, 8, 11], [0, 2, 3, 4, 5, 10]
v14
[3, 4, 5, 7, 9, 10, 11], [0, 1, 2, 4, 5, 7, 10]
v18
[1, 2, 4, 5, 9, 13, 14, 16, 17], [0, 1, 2, 3, 6, 8, 10, 

12, 13] 
v20
[2, 6, 7, 8, 9, 11, 12, 13, 14, 18], [0, 4, 5, 7, 8, 10, 

13, 16, 17, 18]
v24
[2, 3, 5, 9, 10, 11, 13, 14, 15, 19, 21, 22], [0, 2, 3, 

9, 12, 13, 15, 16, 17, 18, 19, 22] 
v26
[1, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 25], [0, 1, 

6, 7, 9, 10, 12, 14, 17, 20, 21, 22, 23] 
v30
[1, 3, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 27, 

29], [0, 6, 7, 11, 12, 14, 16, 19, 20, 21, 24, 25, 26, 27, 
28] 

v36
[2, 7, 9, 10, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 

26, 27, 29, 34], [0, 3, 5, 6, 10, 11, 12, 14, 15, 16, 18, 
22, 26, 27, 28, 31, 33, 34] 

v40
[1, 2, 3, 6, 8, 9, 13, 14, 16, 18, 22, 24, 26, 27, 31, 

32, 34, 37, 38, 39], [0, 1, 3, 4, 6, 10, 11, 12, 13, 14, 
15, 17, 18, 19, 23, 30, 31, 32, 34, 37] 

v44
[1, 2, 3, 8, 11, 12, 13, 16, 18, 19, 20, 24, 25, 26, 

28, 31, 32, 33, 36, 41, 42, 43], [0, 3, 5, 6, 9, 10, 12, 
13, 14, 15, 16, 17, 19, 21, 23, 25, 32, 35, 36, 39, 41, 
42] 

v48
[3, 4, 9, 11, 12, 14, 16, 17, 18, 20, 21, 22, 26, 27, 

28, 30, 31, 32, 34, 36, 37, 39, 44, 45], [0, 3, 4, 5, 8, 
12, 14, 15, 16, 17, 18, 19, 21, 24, 25, 27, 34, 36, 37, 
38, 40, 41, 45, 46] 

v50
[2, 3, 8, 10, 11, 13, 17, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 33, 37, 39, 40, 42, 47, 48], [0, 2, 5, 9, 
10, 11, 13, 14, 17, 19, 20, 21, 25, 26, 27, 31, 33, 34, 
37, 41, 42, 43, 45, 46, 48] 

v54
[2, 3, 4, 5, 13, 15, 16, 18, 19, 22, 23, 24, 26, 27, 

28, 30, 31, 32, 35, 36, 38, 39, 41, 49, 50, 51, 52], [0, 
2, 3, 5, 9, 12, 16, 17, 18, 22, 24, 27, 28, 30, 32, 33, 
34, 38, 39, 40, 42, 43, 45, 46, 47, 49, 52] 

v56
[3, 4, 5, 7, 9, 15, 16, 18, 20, 21, 23, 24, 25, 26, 30, 

31, 32, 33, 35, 36, 38, 40, 41, 47, 49, 51, 52, 53], [0, 
1, 4, 5, 6, 7, 9, 13, 19, 20, 23, 26, 28, 30, 31, 33, 34, 
37, 38, 39, 40, 41, 43, 44, 45, 47, 52, 53] 

v60
[1, 2, 4, 5, 7, 9, 11, 14, 15, 16, 17, 21, 22, 25, 26, 34, 

35, 38, 39, 43, 44, 45, 46, 49, 51, 53, 55, 56, 58, 59], [0, 
3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 17, 22, 24, 25, 26, 28, 29, 
32, 36, 38, 39, 40, 41, 43, 44, 49, 51, 57, 58] 
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v62
[3, 4, 8, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 28, 

29, 31, 33, 34, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 
54, 58, 59], [0, 2, 4, 5, 6, 9, 12, 13, 19, 21, 22, 24, 27, 
31, 32, 33, 35, 36, 38, 41, 43, 44, 45, 46, 47, 50, 51, 
53, 54, 58, 60] 

v68
[1, 3, 4, 5, 7, 9, 10, 11, 14, 15, 18, 20, 23, 30, 31, 

32, 33, 35, 36, 37, 38, 45, 48, 50, 53, 54, 57, 58, 59, 
61, 63, 64, 65, 67], [0, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 
17, 22, 23, 25, 26, 28, 29, 33, 35, 36, 37, 40, 43, 46, 
47, 48, 49, 52, 57, 59, 64, 65, 66] 

Special Legendre C-pairs of odd length

For the sake of completeness we list here the spe-
cial Szekeres DFs in cyclic groups Zv for odd lengths 
v < 70 whenever 2v1 is a prime power. In the first 
three cases we also give the corresponding special 
Legendre C-pairs. For odd v in this range, when 
2v1 is not a prime power, we were not able to find 
any special Szekeres DFs. We point out that the di-
agram in Fig. 2 shows (the case q251 (mod 4) 
and p5) that there exist Szekeres DFs in EA(25) 
of symmetry type (kk). 

v1
[], [] a(0), b()
v3
[1], [0] a(0 – ), b(–  )
v5
[3, 4], [1, 4] a(0   – –), b( –   –)
v9
[1, 2, 3, 5], [1, 4, 5, 8];
v11
[2, 3, 4, 6, 10], [0, 2, 3, 8, 9]
v13
[4, 7, 8, 10, 11, 12], [1, 3, 4, 9, 10, 12]
v15
[3, 5, 8, 9, 11, 13, 14], [0, 1, 2, 6, 9, 13, 14]
v21
[2, 4, 8, 11, 12, 14, 15, 16, 18, 20], [2, 3, 4, 5, 8, 

13, 16, 17, 18, 19]
v23 
[1, 2, 4, 5, 6, 7, 9, 12, 13, 15, 20], [0, 1, 2, 6, 8, 11, 

12, 15, 17, 21, 22]
v29
[1, 7, 8, 10, 12, 15, 16, 18, 20, 23, 24, 25, 26, 27], 

[2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27]
v33
[2, 3, 4, 6, 7, 8, 9, 10, 12, 17, 18, 19, 20, 22, 28, 32], 

[2, 3, 4, 6, 9, 10, 13, 15, 18, 20, 23, 24, 27, 29, 30, 31]
v35
[1, 3, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 23, 29, 30, 

31, 33],
[0, 2, 6, 7, 9, 12, 15, 16, 17, 18, 19, 20, 23, 26, 28, 

29, 33]

v39
[1, 3, 4, 5, 6, 10, 13, 14, 16, 20, 21, 22, 24, 27, 28, 

30, 31, 32, 37],
[0, 3, 5, 9, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 

25, 29, 30, 34, 36]
v41
[2, 3, 4, 5, 6, 8, 9, 11, 12, 16, 17, 19, 21, 23, 26, 

27, 28, 31, 34, 40],
[2, 3, 4, 6, 7, 8, 10, 15, 17, 18, 23, 24, 26, 31, 33, 

34, 35, 37, 38, 39]
v51
[5, 9, 11, 12, 13, 16, 17, 19, 21, 22, 26, 27, 28, 31, 

33, 36, 37, 41, 43, 44, 45, 47, 48, 49, 50], [0, 1, 2, 3, 
4, 7, 10, 11, 13, 15, 20, 22, 23, 28, 29, 31, 36, 38, 40, 
41, 44, 47, 48, 49, 50]

v53 
[1, 5, 8, 10, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 

27, 28, 33, 34, 36, 42, 44, 46, 47, 49, 50, 51], [2, 3, 
5, 8, 12, 14, 18, 19, 20, 21, 22, 23, 26, 27, 30, 31, 32, 
33, 34, 35, 39, 41, 45, 48, 50, 51]

v63 
[1, 2, 5, 6, 12, 17, 18, 19, 21, 25, 27, 29, 30, 32, 

35, 37, 39, 40, 41, 43, 47, 48, 49, 50, 52, 53, 54, 55, 
56, 59, 60], [0, 1, 4, 6, 7, 8, 10, 11, 13, 14, 22, 23, 25, 
27, 30, 31, 32, 33, 36, 38, 40, 41, 49, 50, 52, 53, 55, 
56, 57, 59, 62]

v65 
[2, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 28, 

29, 31, 33, 35, 38, 39, 40, 41, 42, 44, 47, 53, 54, 57, 
61, 62, 64], [4, 5, 7, 10, 12, 14, 18, 19, 20, 22, 23, 24, 
25, 26, 30, 31, 34, 35, 39, 40, 41, 42, 43, 45, 46, 47, 
51, 53, 55, 58, 60, 61]

v69 
[1, 5, 8, 10, 11, 12, 13, 16, 17, 18, 19, 22, 24, 25, 

26, 27, 28, 29, 31, 33, 35, 37, 39, 46, 48, 49, 54, 55, 
60, 62, 63, 65, 66, 67], [2, 3, 5, 7, 8, 11, 12, 13, 15, 
20, 21, 24, 27, 31, 32, 33, 34, 35, 36, 37, 38, 42, 45, 
48, 49, 54, 56, 57, 58, 61, 62, 64, 66, 67]
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Конференц-матрицы на основе C-пар Лежандра
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Введение: существует несколько методов построения симметричных С-матриц ввиду отсутствия для них универсальной струк-
туры. Это ограничение принципиально, кроме того, в литературе неполно освещена структура С-матриц с парной каймой, что 
делает ее изучение особенно актуальным. Цель: детально описать бициклическую конструкцию с парной каймой и предложить 
концепцию C-пар Лежандра. Результаты: рассмотрены C-матрицы порядка n2v2 с парной каймой на основе адаптации так 
называемых обобщенных пар Лежандра нечетной длины v к более широкому случаю четных и нечетных значений v, что позволя-
ет построить новые C-пары Лежандра в конечных абелевых группах G порядка v. Такая пара описывается двумя функциями a, b: 
GZ, значения которых равны 1 или –1, за исключением a(e)0, где e – единичный элемент группы G, через Z обозначено коль-
цо целых чисел. Для характеристики C-пар Лежандра введены два набора X{xG: a(x)–1} и Y{xG: b(x)–1} группы G. 
Показано, что a(x–1)(–1)va(x) для всех x. Для нечетных значений v отмечено, что X и Y образуют разностное семейство, что не-
применимо к четным порядкам. Это разностное семейство и разностное семейство Секереша — один и тот же класс, первоначально 
используемый для построения кососимметричных матриц Адамара. Введен подкласс специальных C-пар Лежандра и доказано, 
что они существуют для случаев, когда 2v1 — степень простого числа. В последних двух разделах статьи приведены примеры 
специальных циклических C-пар Лежандра для размеров v < 70. Практическая значимость: C-матрицы широко используются в 
задачах помехоустойчивого кодирования, сжатия и маскирования видеоинформации. Программы для поиска конференц-матриц 
и библиотеки построенных матриц применяются в математической сети «mathscinet.ru» вместе с исполняемыми онлайн-алго-
ритмами.

Ключевые слова — конференц-матрицы, кососимметричные матрицы Адамара, периодические автокорреляционные функ-
ции, разностные семейства Секереша, обобщенные пары Лежандра, конструкции, телефония.
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